数据挖掘的过程主要有:
1、定义目标
2、获取数据(直接获取或者爬虫)
3、数据探索(初步研究,无特别严格的流程)
4、数据预处理(数据清洗去掉脏数据、数据集成集中、数据变换规范化、数据规约精简)
脏数据:无效、异常、空
数据集成:不同来源的数据放在一起
5、挖掘建模(分类、聚类、关联、预测)
6、模型评价与发布
数据挖掘概念综述
数据挖掘又称从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持。KDD一词首次出现在1989年8月举行的第11届国际联合人工智能学术会议上。随后在1991年、1993年和1994年都举行KDD 专题讨论会,汇集来自各个领域的研究人员和应用开发者,集中讨论数据统计、海量数据分析算 法、知识表示、知识运用等问题。随着参与人员的不断增多,KDD国际会议发展成为年会。1998 年在美国纽约举行的第四届知识发现与数据 挖掘国际学术会议不仅进行了学术讨论,并且有30多家软件公司展示了他们的数据挖掘软件产品,不少软件已在北美、欧洲等国得到应用。
一、什么是数据挖掘
11、数据挖掘的历史
近十几年来,人们利用信息技术生产和搜集数据的能力大幅度提高,千万万个数据库被用于商业管理、政府办公、科学研究和工程开发等等,这一势头仍将持续发展下去。于是,一个新的挑战被提了出来:在这被称之为信息爆炸的时代,信息过量几乎成为人人需要面对的问题。如何才能不被信息的汪洋大海所淹没,从中及时发现有用的知识,提高信息利用率呢?要想使数据真正成为一个公司的资源,只有充分利用它为公司自身的业务决策和战略发展服务才行,否则大量的数据可能成为包袱,甚至成为垃圾。因此,面对”人们被数据淹没,人们却饥饿于知识”的挑战。另一方面计算机技术的另一领域——人工智能自1956年诞生之后取得了重大进展。经历了博弈时期、自然语言理解、知识工程等阶段,目前的研究 热点是机器学习。机器学习是用计算机模拟人类学习的一门科学,比较成熟的算法有神经网络、遗传算法等。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(KDD:Knowledge Discovery in Databases)的产生,因此,数据挖掘和知识发现(DMKD)技术应运而生,并得以蓬勃发展,越来越显示出其强大的生命力。
数据挖掘又称从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持。KDD一词首次出现在1989年8月举行的第11届国际联合人工智能学术会议上。随后在1991年、1993年和1994年都举行KDD 专题讨论会,汇集来自各个领域的研究人员和应用开发者,集中讨论数据统计、海量数据分析算 法、知识表示、知识运用等问题。随着参与人员的不断增多,KDD国际会议发展成为年会。1998 年在美国纽约举行的第四届知识发现与数据 挖掘国际学术会议不仅进行了学术讨论,并且有30多家软件公司展示了他们的数据挖掘软件产品,不少软件已在北美、欧洲等国得到应用。
22数据挖掘的概念
从1989年到现在,KDD的定义随着人们研究的不断深入也在不断完善,目前比较公认的定义是Fayyad 等给出的:KDD是从数据集中识别出有效的、新颖的、潜在有用的以及最终可理解模式的高级处理过程。从定义可以看出,数据挖掘(DataMining)就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。人们把原始数据看作是形成知识的源泉,就像从矿石中采矿一样。原始数据可以是结构化的,如关系数据库中的数据,也可以是半结构化的,如文本、图形、图像数据,甚至是分布在网络上的异构型数据。发现知识的方法可以是数学的,也可以是非数学的;可以是演绎的,也可以是归纳的。发现了的知识可以被用于信息管理、查询优化、决策支持、过程控制等,还可以用于数据自身的维护。因此,数据挖掘是一门很广义的交叉学科,它汇聚了不同领域的研究者,尤其是数据库、人工智能、数理统计、可视化、并行计算等方面的学者和工程技术人员。
特别要指出的是,数据挖掘技术从一开始就是面向应用的。它不仅是面向特定数据库的简单检索查询调用,而且要对这些数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指导实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。
一般来说在科研领域中称为KDD,而在工程领域则称为数据挖掘。
二、数据挖掘的步骤
KDD包括以下步骤:
1、数据准备
KDD的处理对象是大量的数据,这些数据一般存储在数据库系统中,是长期积累的结果。但往往不适合直接在这些数据上面进行知识挖 掘,需要做数据准备工作,一般包括数据的选择(选择相关的数据)、净化(消除噪音、冗余数据)、推测(推算缺失数据)、转换(离散值 数据与连续值数据之间的相互转换,数据值的分组分类,数据项之间的计算组合等)、数据缩减(减少数据量)。如果KDD的对象是数据仓 库,那么这些工作往往在生成数据仓库时已经准备妥当。数据准备是KDD 的第一个步骤,也是比较重要的一个步骤。数据准备是否做好将影 响到数据挖掘的效率和准确度以及最终模式的有效性。
2、数据挖掘
数据挖掘是KDD最关键的步骤,也是技术难点所在。研究KDD的人员中大部分都在研究数据挖掘技术,采用较多的技术有决策树、分类、 聚类、粗糙集、关联规则、神经网络、遗传算法等。数据挖掘根据KDD的目标,选取相应算法的参数,分析数据,得到可能形成知识的模式 模型。
3、评估、解释模式模型
上面得到的模式模型,有可能是没有实际意义或没有实用价值的,也有可能是其不能准确反映数据的真实意义,甚至在某些情况下是与事 实相反的,因此需要评估,确定哪些是有效的、有用的模式。评估可以根据用户多年的经验,有些模式也可以直接用数据来检验其准确性。 这个步骤还包括把模式以易于理解的方式呈现给用户。
4、巩固知识
用户理解的、并被认为是符合实际和有价值的模式模型形成了知识。同时还要注意对知识做一
致性检查,解决与以前得到的知识互相冲 突、矛盾的地方,使知识得到巩固。
5、运用知识
发现知识是为了运用,如何使知识能被运用也是KDD的步骤之一。运用知识有两种方法:一种是只需看知识本身所描述的关系或结果,就 可以对决策提供支持;另一种是要求对新的数据运用知识,由此可能产生新的问题,而需要对知识做进一步的优化
三、数据挖掘的特点及功能
31、数据挖掘的特点
数据挖掘具有如下几个特点,当然,这些特点与数据挖掘要处理的数据和目的是密切相关的。
1、处理的数据规模十分巨大。
2、查询一般是决策制定者(用户)提出的即时随机查询,往往不能形成精确的查询要求。
3、由于数据变化迅速并可能很快过时,因此需要对动态数据作出快速反应,以提供决策支持。
4、主要基于大样本的统计规律,其发现的规则不一定适用于所有数据
32、数据挖掘的功能
数据挖掘所能发现的知识有如下几种:
广义型知识,反映同类事物共同性质的知识;
特征型知识,反映事物各方面的特征知识;
差异型知识,反映不同事物之间属性差别的知识 ;关联型知识,反映事物之间依赖或关联的知识;
预测型知识,根据历史的和当前的数据推测未来数据;偏离型知识,揭示事物偏离常规的异常现象。
所有这些知识都可以在不同的概念层次上被发现,随着概念树的提升,从微观到中观再到宏观,以满足不同用户、不同层次决策的需要。例如,从一家超市的数据仓库中,可以发现的一条典型关联规则可能是”买面包和黄油的顾客十有八九也买牛奶”,也可能是”买食品的顾客几乎都用信用卡”,这种规则对于商家开发和实施客户化的销售计划和策略是非常有用的。至于发现工具和方法,常用的有分类、聚类、减维、模式识别、可视化、决策树、遗传算法、不确定性处理等。归纳起来,数据挖掘有如下几个功能:
预测/验证功能:预测/验证功能指用数据库的若干已知字段预测或验证其他未知字段值。预测方法有统计分析方法、关联规则和决策树预测方法、回归树预测方法等。
描述功能:描述功能指找到描述数据的可理解模式。描述方法包括以下几种:数据分类、回归分析、簇聚、概括、构造依赖模式、变化和偏差分析、模式发现、路径发现等。
四、数据挖掘的模式
数据挖掘的任务是从数据中发现模式。模式是一个用语言L来表示的一个表达式E,它可用来描述数据集F中数据的特性,E 所描述的数据是集 合F的一个子集FE。E作为一个模式要求它比列举数据子集FE中所有元素的描述方法简单。例如,“如果成绩在81 ~90之间,则成绩优良”可称 为一个模式,而“如果成绩为81、82、83、84、85、86、87、88、89 或90,则成绩优良”就不能称之为一个模式。
模式有很多种,按功能可分有两大类:预测型(Predictive)模式和描述型(Descriptive)模式。
预测型模式是可以根据数据项的值精确确定某种结果的模式。挖掘预测型模式所使用的数据也都是可以明确知道结果的。例如,根据各种 动物的资料,可以建立这样的模式:凡是胎生的动物都是哺乳类动物。当有新的动物资料时,就可以根据这个模式判别此动物是否是哺乳动物。
描述型模式是对数据中存在的规则做一种描述,或者根据数据的相似性把数据分组。描述型模式不能直接用于预测。例如,在地球上,70 %的表面被水覆盖,30 %是土地。
在实际应用中,往往根据模式的实际作用细分为以下6 种:
1、分类模式
分类模式是一个分类函数( 分 类 器),能够把数据集中的数据项映射到某个给定的类上。分类模式往往表现为一棵分类树,根据数据的 值从树根开始搜索,沿着数据满足的分支往上走,走到树叶就能确定类别。
2、回归模式
回归模式的函数定义与分类模式相似,它们的差别在于分类模式的预测值是离散的,回归模式的预测值是连续的。如给出某种动物的特征,可以用分类模式判定这种动物是哺乳动物还是鸟类;给出某个人的教育情况、工作经验,可以用回归模式判定这个人的年工资在哪个范围内,是在6000元以下,还是在6000元到1万元之间,还是在1万元以上。
3、时间序列模式
时间序列模式根据数据随时间变化的趋势预测将来的值。这里要考虑到时间的特殊性质,像一些周期性的时间定义如星期、月、季节、年 等,不同的日子如节假日可能造成的影响,日期本身的计算方法,还有一些需要特殊考虑的地方如时间前后的相关性(过去的事情对将来有 多大的影响力)等。只有充分考虑时间因素,利用现有数据随时间变化的一系列的值,才能更好地预测将来的值。
4、聚类模式
聚类模式把数据划分到不同的组中,组之间的差别尽可能大,组内的差别尽可能小。与分类模式不同,进行聚类前并不知道将要划分成几 个组和什么样的组,也不知道根据哪一(几)个数据项来定义组。一般来说,业务知识丰富的人应该可以理解这些组的含义,如果产生的模式无法理解或不可用,则该模式可能是无意义的,需要回到上阶段重新组织数据。
5、关联模式
关联模式是数据项之间的关联规则。关联规则是如下形式的一种规则:“在无力偿还贷款的人当中,60%的人的月收入在3000元以下。”
6、序列模式
序列模式与关联模式相仿,而把数据之间的关联性与时间联系起来。为了发现序列模式,不仅需要知道事件是否发生,而且需要确定事件 发生的时间。例如,在购买彩电的人们当中,60%的人会在3个月内购买影碟机
五、数据挖掘的发现任务
数据挖掘涉及的学科领域和方法很多,有多种分类法。根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP 方法,另外还有面向属性的归纳方法。
从挖掘任务和挖掘方法的角度而言有数据总结、分类发现、聚类和关联规则发现四种非常重要的发现任务。
51、数据总结
数据总结目的是对数据进行浓缩,给出它的紧凑描述。传统的也是最简单的数据总结方法是计算出数据库的各个字段上的求和值、平均值、方差值等统计值,或者用直方图、饼状图等图形方式表示。数据挖掘主要关心从数据泛化的角度来讨论数据总结。数据泛化是一种把数据库中的有关数据从低层次抽象到高层次上的过程。由于数据库上的数据或对象所包含的信息总是最原始、基本的信息(这是为了不遗漏任何可能有用的数据信息)。人们有时希望能从较高层次的视图上处理或浏览数据,因此需要对数据进行不同层次上的泛化以适应各种查询要求。数据泛化目前主要有两种技术:多维数据分析方法和面向属性的归纳方法。
1、多维数据分析方法是一种数据仓库技术,也称作联机分析处理(OLAP)。数据仓库是面向决策支持的、集成的、稳定的、不同时间的历史数据集合。决策的前提是数据分析。在数据分析中经常要用到诸如求和、总计、平均、最大、最小等汇集操作,这类操作的计算量特别大。因此一种很自然的想法是,把汇集操作结果预先计算并存储起来,以便于决策支持系统使用。存储汇集操作结果的地方称作多维数据库。多维数据分析技术已经在决策支持系统中获得了成功的应用,如着名的SAS数据分析软件包、Business Object公司的决策支持系统Business Object,以及IBM公司的决策分析工具都使用了多维数据分析技术。
采用多维数据分析方法进行数据总结,它针对的是数据仓库,数据仓库存储的是脱机的历史数据。
2、为了处理联机数据,研究人员提出了一种面向属性的归纳方法。它的思路是直接对用户感兴趣的数据视图(用一般的SQL查询语言即可获得)进行泛化,而不是像多维数据分析方法那样预先就存储好了泛化数据。方法的提出者对这种数据泛化技术称之为面向属性的归纳方法。原始关系经过泛化操作后得到的是一个泛化关系,它从较高的层次上总结了在低层次上的原始关系。有了泛化关系后,就可以对它进行各种深入的操作而生成满足用户需要的知识,如在泛化关系基础上生成特性规则、判别规则、分类规则,以及关联规则等。
52、分类发现
分类在数据挖掘中是一项非常重要的任务,目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类和回归都可用于预测。预测的目的是从利用历史数据纪录中自动推导出对给定数据的推广描述,从而能对未来数据进行预测。和回归方法不同的是,分类的输出是离散的类别值,而回归的输出则是连续数值。
要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可为:( v1, v2, …, vn; c );其中vi表示字段值,c表示类别。
分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。统计方法包括贝叶斯法和非参数法(近邻学习或基于事例的学习),对应的知识表示则为判别函数和原型事例。机器学习方法包括决策树法和规则归纳法,前者对应的表示为决策树或判别树,后者则一般为产生式规则。神经网络方法主要是BP算法,它的模型表示是前向反馈神经网络模型(由代表神经元的节点和代表联接权值的边组成的一种体系结构),BP算法本质上是一种非线性判别函数。另外,最近又兴起了一种新的方法:粗糙集(rough set),其知识表示是产生式规则。
不同的分类器有不同的特点。有三种分类器评价或比较尺度:1 预测准确度;2 计算复杂度;3 模型描述的简洁度。预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用,而神经网络方法产生的结果就难以理解。
另外要注意的是,分类的效果一般和数据的特点有关,有的数据噪声大,有的有缺值, 有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。目前普遍认为不存在某种方法能适合于各种特点的数据。
53、聚类
聚类是把一组个体按照相似性归成若干类别,即”物以类聚”。它的目的是使得属于同一类别的个体之间的距离尽可能的小,而不同类别上的个体间的距离尽可能的大。聚类方法包括统计方法、机器学习方法、神经网络方法和面向数据库的方法。
在统计方法中,聚类称聚类分析,它是多元数据分析的三大方法之一(其它两种是回归分析和判别分析)。它主要研究基于几何距离的聚类,如欧式距离、明考斯基距离等。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。这种聚类方法是一种基于全局比较的聚类,它需要考察所有的个体才能决定类的划分;因此它要求所有的数据必须预先给定,而不能动态增加新的数据对象。聚类分析方法不具有线性的计算复杂度,难以适用于数据库非常大的情况。
在机器学习中聚类称作无监督或无教师归纳;因为和分类学习相比,分类学习的例子或数据对象有类别标记,而要聚类的例子则没有标记,需要由聚类学习算法来自动确定。很多人工智能文献中,聚类也称概念聚类;因为这里的距离不再是统计方法中的几何距离 ,而是根据概念的描述来确定的。当聚类对象可以动态增加时,概念聚类则称是概念形成。
在神经网络中,有一类无监督学习方法:自组织神经网络方法;如Kohonen自组织特征映射网络、竞争学习网络等等。在数据挖掘领域里,见报道的神经网络聚类方法主要是自组织特征映射方法,IBM在其发布的数据挖掘白皮书中就特别提到了使用此方法进行数据库聚类分割。
54、关联规则发现
关联规则是形式如下的一种规则,”在购买面包和黄油的顾客中,有90%的人同时也买了牛奶”(面包+黄油 ( 牛奶 )。用于关联规则发现的主要对象是事务型数据库,其中针对的应用则是售货数据,也称货篮数据。一个事务一般由如下几个部分组成:事务处理时间 ,一组顾客购买的物品,有时也有顾客标识号(如信用卡号)。
由于条形码技术的发展,零售部门可以利用前端收款机收集存储大量的售货数据。因此,如果对这些历史事务数据进行分析,则可对顾客的购买行为提供极有价值的信息。例如,可以帮助如何摆放货架上的商品(如把顾客经常同时买的商品放在一起),帮助如何规划市场(怎样相互搭配进货)。由此可见,从事务数据中发现关联规则,对于改进零售业等商业活动的决策非常重要。
如果不考虑关联规则的支持度和可信度,那么在事务数据库中存在无穷多的关联规则。事实上,人们一般只对满足一定的支持度和可信度的关联规则感兴趣。在文献中,一般称满足一定要求的(如较大的支持度和可信度)的规则为强规则。因此,为了发现出有意义的关联规则,需要给定两个阈值:最小支持度和最小可信度。前者即用户规定的关联规则必须满足的最小支持度,它表示了一组物品集在统计意义上的需满足的最低程度;后者即用户规定的关联规则必须满足的最小可信度,它反应了关联规则的最低可靠度。
在实际情况下,一种更有用的关联规则是泛化关联规则。因为物品概念间存在一种层次关系,如夹克衫、滑雪衫属于外套类,外套、衬衣又属于衣服类。有了层次关系后,可以帮助发现一些更多的有意义的规则。例如,”买外套,买鞋子”(此处,外套和鞋子是较高层次上的物品或概念,因而该规则是一种泛化的关联规则)。由于商店或超市中有成千上万种物品,平均来讲,每种物品(如滑雪衫)的支持度很低,因此有时难以发现有用规则;但如果考虑到较高层次的物品(如外套),则其支持度就较高,从而可能发现有用的规则。另外,关联规则发现的思路还可以用于序列模式发现。用户在购买物品时,除了具有上述关联规律,还有时间上或序列上的规律,因为,很多时候顾客会这次买这些东西,下次买同上次有关的一些东西,接着又买有关的某些东西。
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘的流程是:
定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
一、走进大数据世界
大数据的特征(4V):
1 数据的规模性
2 数据结构多样性
3 数据传播高速性
4 大数据的真实性、价值性、易变性;
结构化数据、半结构化数据、非结构化数据
大数据处理的基本流程图
大数据关键技术:
1 大数据采集
2 大数据预处理
3 大数据存储及管理
4 大数据安全技术
5 大数据分析与挖掘
6 大数据展现与应用
二、大数据营销概论
Target 百货客户怀孕预测案例
大数据营销的特点:
1 多样化、平台化数据采集: 多平台包括互联网、移动互联网、广电网、智能电视等
2 强调时效性: 在网民需求点最高时及时进行营销
3 个性化营销: 广告理念已从媒体导向转为受众导向
4 性价比高: 让广告可根据时效性的效果反馈,进行调整
5 关联性: 网民关注的广告与广告之间的关联性
大数据运营方式:
1 基础运营方式
2 数据租赁运营方式
3 数据购买运营方式
大数据营销的应用
1 价格策略和优化定价
2 客户分析
3 提升客户关系管理
4 客户相应能力和洞察力
5 智能嵌入的情景营销
6 长期的营销战略
三、产品预测与规划
整体产品概念与整体产品五层次
整体产品概念: 狭义的产品: 具有某种特定物质形态和用途的物体。
产品整体概念(广义):向市场提供的能够满足人们某种需要的
一切物品和服务。
整体产品包含:有形产品和无形的服务
整体产品五层次:潜在产品、延伸产品、期望产品、形式产品、核心产品
大数据新产品开发模型:
1 需求信息收集及新产品立项阶段
2 新产品设计及生产调试阶段
3 小规模试销及反馈修改阶段
4 新产品量产上市及评估阶段
产品生命周期模型
传统产品生命周期划分法:
(1)销售增长率分析法
销售增长率=(当年销售额-上年销售额)/上年销售额×100%
销售增长率小于10%且不稳定时为导入期;
销售增长率大于10%时为成长期;
销售增长率小于10%且稳定时为成熟期;
销售增长率小于0时为衰退期。
(2)产品普及率分析法
产品普及率小于5%时为投入期;
普及率在5%—50%时为成长期;
普及率在50%—90%时为成熟期;
普及率在90%以上时为衰退期。
大数据对产品组合进行动态优化
产品组合
销售对象、销售渠道等方面比较接近的一系列产品项目被称为产品线。产品组合是指一个企业所经营的不同产品线和产品项目的组合方式,它可以通过宽度、长度、深度和关联度四个维度反映出来
四、产品定价与策略
大数据定价的基本步骤:
1 获取大数据
2 选择定价方法
3 分析影响定价因素的主要指标
4 建立指标体系表
5 构建定价模型
6 选择定价策略
定价的3C模式:成本导向法、竞争导向法、需求导向法
影响定价的主要指标与指标体系表的建立
影响定价因素的主要指标:
1 个人统计信息:家庭出生、教育背景、所在地区、年龄、感情状况、家庭关系等。
2 工作状况:行业、岗位、收入水平、发展空间等
3 兴趣:健身与养生、运动和户外活动、娱乐、科技、购物和时尚等
4 消费行为:消费心理、购买动机等。
定价策略:
精算定价: 保险、期货等对风险计算要求很高的行业
差异定价: 平台利用大数据对客户建立标签,分析对产品的使用习惯、需求判断客户的忠诚度,对不同客户进行差别定价
动态定价: 即根据顾客认可的产品、服务的价值或者根据供需状况动态调整服务价格,通过价格控制供需关系。动态定价在提高消费者价格感知和企业盈利能力方面起着至关重要的作用。
价格自动化 :根据商品成本、市场供需情况、竞争产品价格变动、促销活动、市场调查投票、网上协商、预订周期长短等因素决定自身产品价格
用户感知定价 :顾客所能感知到的利益与其在获取产品或服务中所付出的成本进行权衡后对产品或服务效用所做出的整体评价。
协同定价: 是大数据时代企业双边平台多边协同定价策略
价格歧视:
一级 :就是每一单位产品都有不同的价格,即商家完全掌握消费者的消费意愿,对每个消费者将商品价格定为其能够承受的最高出价;
二级 :商家按照客户的购买数量,对相同场景提供的、同质商品进行差别定价;
三级 :可视为市场细分后的定价结果,根据客户所处的地域、会员等级等个人属性进行差别定价,但是对于同一细分市场的客户定价一致。
五、销售促进与管理
促销组合设计概念
大数据促销组合设计流程
精准广告设计与投放
[if !supportLists]l [endif] 广告设计5M:任务(Mission),预算(Money),信息(Message),媒体(Media),测量(Measurement)。
通过用户画像的进一步挖掘分析,企业可以找出其目标消费群体的广告偏好,如平面广告的配色偏好,构图偏好,视频广告的情节偏好,配乐偏好,人物偏好等,企业可以根据这些偏好设计出符合目标消费群体审美的广告创意,选择消费者喜欢的广告代言人,做出能在目标消费群体中迅速传播开来的广告。
在媒体决策方面,利用大数据综合考虑其广告目的、目标受众覆盖率、广告信息传播要求、购买决策的时间和地点、媒体成本等因素后,有重点地采用媒体工具。企业可以在确定前述影响变量后,通过大数据的决策模型,确定相对最优的媒体组合。
六、客户管理
大数据在客户管理中的作用
1 增强客户粘性
2 挖掘潜在客户
3 建立客户分类
客户管理中数据的分类、收集及清洗
数据分类:
描述性数据: 这类数据是客户的基本信息。
如果是个人客户,涵盖了客户的姓名、年龄、地域分布、婚姻状况、学历、所在行业、职业角色、职位层级、收入水平、住房情况、购车情况等;
如果是企业客户,则包含了企业的名称、规模、联系人和法人代表等。
促销性数据: 企业曾经为客户提供的产品和服务的历史数据。
包括:用户产品使用情况调查的数据、促销活动记录数据、客服人员的建议数据和广告数据等
交易性数据: 这类数据是反映客户对企业做出的回馈的数据。
包括历史购买记录数据、投诉数据、请求提供咨询及其他服务的相关数据、客户建议数据等。
收集:
清洗:
首先,数据营销人需要凭借经验对收集的客户质量进行评估
其次,通过相关字段的对比了解数据真实度
最后,通过测试工具对已经确认格式和逻辑正确数据进行测试
客户分层模型
客户分层模型 是大数据在客户管理中最常见的分析模型之一,客户分层与大数据运营的本质是密切相关的。在客户管理中,出于一对一的精准营销要求针对不同层级的客户进行区别对待,而客户分层则是区别对待的基础。
RFM客户价值分析模型
时间(Rencency):
客户离现在上一次的购买时间。
频率(Frequency):
客户在一定时间段内的消费次数。
货币价值(MonetaryValue):
客户在一定的时间内购买企业产品的金额。
七、 跨界营销
利用大数据跨界营销成功的关键点
1 价值落地
2 杠杠传播
3 深度融合
4 数据打通
八、精准营销
精准营销的四大特点
1 可量化
2 可调控
3 保持企业和客户的互动沟通
4 简化过程
精准营销的步骤
1 确定目标
2 搜集数据
3 分析与建模
4 制定战略
九、商品关联营销
商品关联营销的概念及应用
关联营销:
关联营销是一种建立在双方互利互益的基础上的营销,在交叉营销的基础上,将事物、产品、品牌等所要营销的东西上寻找关联性,来实现深层次的多面引导。
关联营销也是一种新的、低成本的、企业在网站上用来提高收入的营销方法。
关联分析的概念与定义
最早的关联分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顾客购买行为的规律,发现连带购买商品,为制定合理的方便顾客选取的货架摆放方案提供依据。该分析称为购物篮分析。
电子商务领域: 关联分析可帮助经营者发现顾客的消费偏好,定位顾客消费需求,制定合理的交叉销售方案, 实现商品的精准推荐 ;
保险公司业务: 关联分析可帮助企业分析保险索赔的原因,及时甄别欺诈行为;
电信行业: 关联分析可帮助企业发现不同增值业务间的关联性及对客户流失的影响等
简单关联规则及其表达式
事务:简单关联分析的分析对象
项目:事务中涉及的对象
项集:若干个项目的集合
简单关联规则 的一般表示形式是:前项→后项(支持度=s%,置信度=c%)
或表达为:X→Y(S=s%,C=c%)
例如:面包->牛奶(S=85%,C=90%)
性别(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)
支持度、置信度、频繁项集、强关联规则、购物篮分析模型
置信度和支持度
support(X→Y)= P(X∩Y)
confidence(X→Y)= P(Y|X)
十、评论文本数据的情感分析
商品品论文本数据挖掘目标
电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。评论信息中蕴含着消费者对特定产品和服务的主观感受,反映了人们的态度、立场和意见,具有非常宝贵的研究价值。
针对电子商务平台上的商品评论进行文本数据挖掘的目标一般如下:
分析商品的用户情感倾向,了解用户的需求、意见、购买原因;
从评论文本中挖掘商品的优点与不足,提出改善产品的建议;
提炼不同品牌的商品卖点。
商品评论文本分析的步骤和流程
商品评论文本的数据采集、预处理与模型构建
数据采集:
1、“易用型”:八爪鱼、火车采集器
2、利用R语言、Python语言的强大程序编写来抓取数据
预处理:
1文本去重
检查是否是默认文本
是否是评论人重复复制黏贴的内容
是否引用了其他人的评论
2机械压缩去词
例如: “好好好好好好好好好好”->“好”
3短句删除
原本过短的评论文本 例如:很“好好好好好好好好好好”->“好”
机械压缩去词后过短的评论文本 例如:“好好好好好好好好好好”->“好”
4评论分词
文本模型构建包括三方面:情感倾向分析、语义网络分析、基于LDA模型的主体分析
情感倾向分析:
基于情感词进行情感匹配
对情感词的倾向进行修正
对情感分析结果进行检验
语义网络分析:
基于LDA模型的主体分析
十一、大数据营销中的伦理与责任
大数据的安全与隐私保护
数据安全:一是保证用户的数据不损坏、不丢失;二是要保证数据不会被泄露或者盗用
大数据营销中的伦理风险:用户隐私、信息不对称下的消费者弱势群体、大数据“杀熟”
大数据伦理困境的成因:
用户隐私意识淡薄
用户未能清晰认知数据价值
企业利益驱使
] 管理机制不够完善
大数据伦理构建的必要性:企业社会责任、用户与社会群体的维系
这些是我按照老师讲的课本上的内容结合PPT总结出来的《大数据营销》的重点。
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘流程:
定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)