互联网舆情管理系统主要包含哪些技术?

互联网舆情管理系统主要包含哪些技术?,第1张

以新浪舆情通-政企舆情大数据监测系统为例,应用到了以下5大核心技术:

1)大数据采集、挖掘技术

网络舆情主要通过新闻、论坛、微博、公众号、博客等渠道形成和传播,网络舆情监测系统依靠强大的大数据计算能力实现了全网信息的实时收集、挖掘和智能检索,保障信息的及时性和完整性。

2)大数据处理技术

快速将数据去重、内容分类,噪音识别等,保障数据的精准度。

3)自然语言处理、图文智能分析等技术

通过词法分析、语义分析等先进技术,判断内容的情感属性,并优先展示涉及敏感的信息,让舆情监测系统在分析方式、分析对象、分析能力等方面更加“智能”,数据更加精准。

4)音视频处理技术

通过通过语音识别、视频处理等技术,将音视频信息转化为文本,实现对音视频信息的分析、分类与检索。对字幕和弹幕的提取和处理能更进一步了解用户的关注点以及情绪。

5)OCR 技术

通过 OCR 技术将中的信息识别为文本,实现对信息的分类与检索。用户只需要设置监测内容的关键词方案,即可实时获得相关的全网内容信息。

面试前搜集往年面试常考题目属于使用信息检索和分析技术来解决问题。

信息检索和分析技术已经成为许多领域中不可或缺的工具,在面试前搜集往年面试常考题目时,我们需要了解这些技术的基本概念和应用。同时,人工智能技术的发展也为信息检索和分析带来了新的机遇和挑战。

1、什么是信息检索技术?

信息检索技术是指在大规模数据集合中自动地查找、筛选、排序相关信息的过程。它通常包括了关键字查询、文本预处理、索引构建、查询优化和结果排序等环节。

2、信息检索技术在哪些领域有应用?

信息检索技术已经应用到了广泛的领域中,比如搜索引擎、文本挖掘、情感分析、舆情监测、知识图谱构建等。

3、如何构建一个高效的搜索引擎?

构建高效的搜索引擎需要先进行数据抓取、清洗和存储,然后利用信息检索技术对数据进行索引构建和查询优化,最后利用机器学习算法对用户偏好进行分析和个性化推荐。

4、什么是文本挖掘?

文本挖掘是一种从非结构化或半结构化数据中发现有用信息的过程。它通常包括了文本分类、命名实体识别、主题识别、情感分析等任务。

5、如何进行文本分类?

文本分类可以使用传统的基于规则或机器学习的方法,比如朴素贝叶斯、决策树、支持向量机等算法,也可以使用深度学习模型,如卷积神经网络、循环神经网络等。

6、什么是情感分析?

情感分析是指对文本中的情感倾向进行自动化识别和分类的过程。它通常涉及到情感词典构建、特征提取、分类器训练等步骤。

7、如何应用情感分析?

情感分析可以应用到广泛的领域中,比如商品评论分析、社交媒体分析、政治舆情分析等。在这些场景中,情感分析可以帮助人们更好地理解消费者需求、维护品牌形象、精准预测选举结果等。

一、走进大数据世界

大数据的特征(4V):

1  数据的规模性

2   数据结构多样性

3   数据传播高速性

4   大数据的真实性、价值性、易变性;

结构化数据、半结构化数据、非结构化数据

大数据处理的基本流程图

大数据关键技术:

1  大数据采集

2   大数据预处理

3  大数据存储及管理

4   大数据安全技术

5  大数据分析与挖掘

6   大数据展现与应用

二、大数据营销概论

Target 百货客户怀孕预测案例

大数据营销的特点:

1   多样化、平台化数据采集: 多平台包括互联网、移动互联网、广电网、智能电视等

2   强调时效性: 在网民需求点最高时及时进行营销

3   个性化营销: 广告理念已从媒体导向转为受众导向

4   性价比高: 让广告可根据时效性的效果反馈,进行调整

5   关联性: 网民关注的广告与广告之间的关联性

大数据运营方式:

1   基础运营方式

2   数据租赁运营方式

3   数据购买运营方式

大数据营销的应用

1   价格策略和优化定价

2   客户分析

3   提升客户关系管理

4   客户相应能力和洞察力

5 智能嵌入的情景营销

6   长期的营销战略

三、产品预测与规划

整体产品概念与整体产品五层次

整体产品概念: 狭义的产品: 具有某种特定物质形态和用途的物体。

产品整体概念(广义):向市场提供的能够满足人们某种需要的

                      一切物品和服务。

整体产品包含:有形产品和无形的服务                          

整体产品五层次:潜在产品、延伸产品、期望产品、形式产品、核心产品

 

大数据新产品开发模型:

1   需求信息收集及新产品立项阶段

2  新产品设计及生产调试阶段

3  小规模试销及反馈修改阶段

4   新产品量产上市及评估阶段

产品生命周期模型

传统产品生命周期划分法:

(1)销售增长率分析法

  销售增长率=(当年销售额-上年销售额)/上年销售额×100%

销售增长率小于10%且不稳定时为导入期;

销售增长率大于10%时为成长期;

销售增长率小于10%且稳定时为成熟期;

销售增长率小于0时为衰退期。

(2)产品普及率分析法

    产品普及率小于5%时为投入期;

    普及率在5%—50%时为成长期;

    普及率在50%—90%时为成熟期;

    普及率在90%以上时为衰退期。

大数据对产品组合进行动态优化

产品组合

       销售对象、销售渠道等方面比较接近的一系列产品项目被称为产品线。产品组合是指一个企业所经营的不同产品线和产品项目的组合方式,它可以通过宽度、长度、深度和关联度四个维度反映出来

四、产品定价与策略

大数据定价的基本步骤:

1   获取大数据

2   选择定价方法

3   分析影响定价因素的主要指标

4  建立指标体系表

5   构建定价模型

6  选择定价策略

定价的3C模式:成本导向法、竞争导向法、需求导向法

影响定价的主要指标与指标体系表的建立

影响定价因素的主要指标:

1  个人统计信息:家庭出生、教育背景、所在地区、年龄、感情状况、家庭关系等。

2   工作状况:行业、岗位、收入水平、发展空间等

3  兴趣:健身与养生、运动和户外活动、娱乐、科技、购物和时尚等

4 消费行为:消费心理、购买动机等。

定价策略:

精算定价: 保险、期货等对风险计算要求很高的行业

差异定价: 平台利用大数据对客户建立标签,分析对产品的使用习惯、需求判断客户的忠诚度,对不同客户进行差别定价

动态定价: 即根据顾客认可的产品、服务的价值或者根据供需状况动态调整服务价格,通过价格控制供需关系。动态定价在提高消费者价格感知和企业盈利能力方面起着至关重要的作用。

价格自动化 :根据商品成本、市场供需情况、竞争产品价格变动、促销活动、市场调查投票、网上协商、预订周期长短等因素决定自身产品价格

用户感知定价 :顾客所能感知到的利益与其在获取产品或服务中所付出的成本进行权衡后对产品或服务效用所做出的整体评价。

协同定价: 是大数据时代企业双边平台多边协同定价策略

价格歧视:

一级 :就是每一单位产品都有不同的价格,即商家完全掌握消费者的消费意愿,对每个消费者将商品价格定为其能够承受的最高出价;

二级 :商家按照客户的购买数量,对相同场景提供的、同质商品进行差别定价;

三级 :可视为市场细分后的定价结果,根据客户所处的地域、会员等级等个人属性进行差别定价,但是对于同一细分市场的客户定价一致。

五、销售促进与管理

    促销组合设计概念

大数据促销组合设计流程

精准广告设计与投放

[if !supportLists]l [endif] 广告设计5M:任务(Mission),预算(Money),信息(Message),媒体(Media),测量(Measurement)。

通过用户画像的进一步挖掘分析,企业可以找出其目标消费群体的广告偏好,如平面广告的配色偏好,构图偏好,视频广告的情节偏好,配乐偏好,人物偏好等,企业可以根据这些偏好设计出符合目标消费群体审美的广告创意,选择消费者喜欢的广告代言人,做出能在目标消费群体中迅速传播开来的广告。

在媒体决策方面,利用大数据综合考虑其广告目的、目标受众覆盖率、广告信息传播要求、购买决策的时间和地点、媒体成本等因素后,有重点地采用媒体工具。企业可以在确定前述影响变量后,通过大数据的决策模型,确定相对最优的媒体组合。

六、客户管理

    大数据在客户管理中的作用

1   增强客户粘性

2   挖掘潜在客户

3   建立客户分类

    客户管理中数据的分类、收集及清洗

数据分类:

描述性数据: 这类数据是客户的基本信息。

如果是个人客户,涵盖了客户的姓名、年龄、地域分布、婚姻状况、学历、所在行业、职业角色、职位层级、收入水平、住房情况、购车情况等;

如果是企业客户,则包含了企业的名称、规模、联系人和法人代表等。

促销性数据: 企业曾经为客户提供的产品和服务的历史数据。

包括:用户产品使用情况调查的数据、促销活动记录数据、客服人员的建议数据和广告数据等

交易性数据: 这类数据是反映客户对企业做出的回馈的数据。

包括历史购买记录数据、投诉数据、请求提供咨询及其他服务的相关数据、客户建议数据等。

收集:

清洗:

首先,数据营销人需要凭借经验对收集的客户质量进行评估

其次,通过相关字段的对比了解数据真实度

最后,通过测试工具对已经确认格式和逻辑正确数据进行测试

客户分层模型

客户分层模型 是大数据在客户管理中最常见的分析模型之一,客户分层与大数据运营的本质是密切相关的。在客户管理中,出于一对一的精准营销要求针对不同层级的客户进行区别对待,而客户分层则是区别对待的基础。

RFM客户价值分析模型

时间(Rencency):

     客户离现在上一次的购买时间。

频率(Frequency):

     客户在一定时间段内的消费次数。

货币价值(MonetaryValue):

    客户在一定的时间内购买企业产品的金额。

七、 跨界营销

利用大数据跨界营销成功的关键点

1   价值落地

2  杠杠传播

3   深度融合

4   数据打通

八、精准营销

    精准营销的四大特点

1   可量化

2   可调控

3  保持企业和客户的互动沟通

4  简化过程

精准营销的步骤

1  确定目标

2  搜集数据

3   分析与建模

4  制定战略

九、商品关联营销

       商品关联营销的概念及应用

关联营销:

关联营销是一种建立在双方互利互益的基础上的营销,在交叉营销的基础上,将事物、产品、品牌等所要营销的东西上寻找关联性,来实现深层次的多面引导。

关联营销也是一种新的、低成本的、企业在网站上用来提高收入的营销方法。

       关联分析的概念与定义

最早的关联分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顾客购买行为的规律,发现连带购买商品,为制定合理的方便顾客选取的货架摆放方案提供依据。该分析称为购物篮分析。

电子商务领域: 关联分析可帮助经营者发现顾客的消费偏好,定位顾客消费需求,制定合理的交叉销售方案, 实现商品的精准推荐 ;

保险公司业务: 关联分析可帮助企业分析保险索赔的原因,及时甄别欺诈行为;

电信行业: 关联分析可帮助企业发现不同增值业务间的关联性及对客户流失的影响等

简单关联规则及其表达式

事务:简单关联分析的分析对象

项目:事务中涉及的对象

项集:若干个项目的集合

简单关联规则 的一般表示形式是:前项→后项(支持度=s%,置信度=c%)

或表达为:X→Y(S=s%,C=c%)

例如:面包->牛奶(S=85%,C=90%)

            性别(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)

支持度、置信度、频繁项集、强关联规则、购物篮分析模型

置信度和支持度

support(X→Y)= P(X∩Y)                  

confidence(X→Y)= P(Y|X)

十、评论文本数据的情感分析

       商品品论文本数据挖掘目标

电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。评论信息中蕴含着消费者对特定产品和服务的主观感受,反映了人们的态度、立场和意见,具有非常宝贵的研究价值。

针对电子商务平台上的商品评论进行文本数据挖掘的目标一般如下:

分析商品的用户情感倾向,了解用户的需求、意见、购买原因;

从评论文本中挖掘商品的优点与不足,提出改善产品的建议;

提炼不同品牌的商品卖点。

商品评论文本分析的步骤和流程

商品评论文本的数据采集、预处理与模型构建

数据采集:

1、“易用型”:八爪鱼、火车采集器

2、利用R语言、Python语言的强大程序编写来抓取数据

预处理:

1文本去重

检查是否是默认文本

是否是评论人重复复制黏贴的内容

是否引用了其他人的评论

2机械压缩去词

例如: “好好好好好好好好好好”->“好”

3短句删除

原本过短的评论文本      例如:很“好好好好好好好好好好”->“好”

机械压缩去词后过短的评论文本   例如:“好好好好好好好好好好”->“好”

4评论分词

文本模型构建包括三方面:情感倾向分析、语义网络分析、基于LDA模型的主体分析

 

情感倾向分析:

基于情感词进行情感匹配

对情感词的倾向进行修正

对情感分析结果进行检验

语义网络分析:

基于LDA模型的主体分析

十一、大数据营销中的伦理与责任

       大数据的安全与隐私保护

数据安全:一是保证用户的数据不损坏、不丢失;二是要保证数据不会被泄露或者盗用

 

大数据营销中的伦理风险:用户隐私、信息不对称下的消费者弱势群体、大数据“杀熟”

大数据伦理困境的成因:

用户隐私意识淡薄

用户未能清晰认知数据价值

企业利益驱使

] 管理机制不够完善

大数据伦理构建的必要性:企业社会责任、用户与社会群体的维系

这些是我按照老师讲的课本上的内容结合PPT总结出来的《大数据营销》的重点。

《语文课程标准》关于阅读目标要求:欣赏文学作品,要有自己的情感体验,初步领悟作品内涵,从中获得对自然、社会、人生的有益启示。对作品的思想感情倾向,能联系文化背景做出自己的评价;对作品中感人的情境和形象,能说出自己的体验;品味作品中富于表现力的语言。要注重培养学生具有感受、理解、欣赏和评价的能力。那么,如何在七年级语文课堂上培养学生阅读和欣赏散文的能力?如何挖掘文本的教育教学价值呢?下面我就以人教版七年级《蝉》一文的教学为例,从以下几个方面谈谈自己在课堂上是如何利用文本,通过问题的设置,培养学生能力,挖掘文本的教育教学价值的。

一、尊重文本内涵,从文本出发,以问题的形式引导学生疏通文意,在把握文本基本内容的基础上,做最初层次的理解分析。

首先我用《钢铁是怎样炼成的》这部名著中的有关生命的意义的文段:人最宝贵的东西是生命生命对人来说只有一次因此,人的一生应当这样度过:当一个人回首往事时,不因虚度年华而悔恨,也不因碌碌无为而羞愧;这样,在他临死的时候,能够说,我把整个生命和全部精力都献给了人生最宝贵的事业——为人类的解放而奋斗作为课堂导入语,入题后,指导学生朗读并初步感知文意。思考:1、作者都写了蝉的哪些特点,从这些叙述中你能否读出作者对蝉的感情是怎样的?2、文章中有没有你觉得用语法现象无法解释的句子(或你认为的病句),如果有,请找出来共同分析。3、从这篇文章中,你明白了哪些道理?4、你认为作者写这篇文章仅仅只是在写蝉吗?如果不是,那还写了什么内容?在通过这些问题梳理之后,学生对于文章中的内容以及修辞都有了较好的理解,对文章的内涵也有了初步的感知。

二、重视文本情感挖掘,以情感带动学生思维。

有人说:“诗歌赏析时,诗中得有一个‘我’在”。我认为,在散文的阅读赏析中也应有一个“我”在。赏析散文不仅要赏析文章的语言,更重要的是在阅读中要有自我的情感体验,要有对社会、多人生的领悟。这就要求我们,在赏析文本时,要重视情感的分析和理解。《蝉》是一篇小散文,全文通过对蝉的生命过程的描述,重点要让学生从中感悟、认识生命的意义以及如何对待生命等问题。本节课的教学对象是七年级学生,他们的分析理解领悟能力还不够成熟。因此,在本文的教学中,我更侧重于让学生将情感融于全文,用自己的情感去揣度作者的情感。在这一环节中,我设计了最直白、浅显的问题:文章前后内容中,作者对蝉的感情态度一致吗?如果不一致,有什么变化?这一变化产生的原因是什么?这些问题的答案学生从课文中就能找到,一方面通过这些问题的解读,可以帮助学生更好地把握文章的情感和对人生的感悟,同时也帮助学生理解和掌握了“欲扬先抑”的写作手法,轻松完成了本文中有关表现手法的教学目标。

三、重视拓展延伸和课堂评价

课堂拓展、延伸的主要内容可以是相似的文本的相互解读,也可以是学生学完全文后的感悟,还可以让学生模仿文本内容和形式去搞一些小创作用于课堂交流。在本节课中,我设计了这样的拓展延伸任务:从蝉的身上,你得到了什么启示?试运用抑扬结合的手法,写一个动物、植物或人。

拓展延伸任务的完成是和学生的讨论交流分不开的, 在任务结果的展示过程中,学生对结果的讨论必不可少,此环节应是教学任务得以落实的过程。因此,整个交流讨论的环节中,教师要尽量尊重学生的个人体验,在保护学生积极性的同时,要作出正确的引导,要有明确的评价态度,不能一味肯定或含糊其辞,结果让学生满头雾水。讨论过程中出现的错误结果,教师评价时切忌不可打击学生课堂交流的积极性,可以把它当做讨论的话题,在课堂中继续交流进行进一步讨论,给学生留下充分的说话的机会,答错的同学可以说出自己理解的理由,其他同学参与其中交流答案的可存在性,不必太在意课程进度的问题,要真正做到让学生掌握正确的知识。课堂上运用的这些形式和方法,可以充分调动学生的阅读兴趣,因为问题的设计紧扣文本内容,学生只要认真阅读文本,就能比较轻松的找出答案,所以,学生的积极性会因回答问题产生的成就感而被调动,他们的阅读自信也就会因之建立 。

总之,文本的教育教学价值,不仅要有学生个人的感悟,更要有教师合适的引导。散文文本教育教学价值在课堂中能否得以体现,教师的正确有效的引导是至关重要的。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/3813409.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-18
下一篇2023-08-18

发表评论

登录后才能评论

评论列表(0条)

    保存