石墨烯是一种广为人知的二维碳同素异形体,与地球上发现的任何材料一样,用途广泛。它作为最轻、最坚固的材料,其惊人的性能,与它比其他任何东西都更能导热和导电的能力相比,意味着它可以集成到大量的应用中。起初这意味着石墨烯用于帮助改善当前的材料和物质的性能和效率,但在未来还将开发与其他二维(2 d)晶体创造一些更神奇的化合物,以适应一个更广泛的应用。要了解石墨烯的潜在应用,首先必须了解材料的基本特性。
第一次人工合成石墨烯;科学家们真的把一片石墨一层一层地解剖,直到只剩下一层。这个过程被称为机械剥落。由此产生的石墨单层(称为石墨烯)只有1个原子厚,因此是最薄的材料,当它对元素(温度、空气等)开放时不会变得不稳定。因为石墨烯是只有一个原子厚度,可以创建其他材料由不合时宜的插入石墨烯层与其他化合物(例如,石墨烯的一层,一层的另一个化合物,其次是另一层石墨烯,等等),有效地使用石墨烯作为原子脚手架的设计的其他材料。这些新创造的化合物也可能是顶级材料,就像石墨烯一样,但可能有更多的应用。
在石墨烯的发展和其特殊性质的发现之后,人们对其他二维晶体的兴趣大大增加,这并不奇怪。这些其他二维晶体(如氮化硼、二烯化铌和硫化钽)可以与其他二维晶体结合使用,应用范围几乎是无限的。所以,举个例子,如果你用复合二硼化镁(MgB2),它被认为是一种相对高效的超导体,然后在它的硼镁交替原子层中加入单独的石墨烯层,它作为超导体的效率就会提高。或者,另一个例子是在结合矿物辉钼矿(监理),它可以用作半导体,与石墨烯层(石墨烯是一个奇妙的导体)在创建NAND闪存,开发闪存小得多,比现有技术更灵活,(以一组研究人员已经证明在洛桑联邦理工(EPFL)在瑞士)。
石墨烯唯一的问题是,高质量的石墨烯是一种没有带隙(无法关闭)的伟大导体。因此,为了在未来的纳米电子器件中使用石墨烯,需要在石墨烯中设计一个带隙,从而将其电子迁移率降低到目前在应变硅薄膜中看到的水平。这本质上意味着未来需要进行研究和开发,以便石墨烯在未来取代硅用于电力系统。然而,最近几个研究小组已经表明,这不仅是可能的,而且是可能的,我们正在看几个月,而不是几年,直到这至少在基本水平上实现。有些人说,这类研究应该避免,因为它类似于把石墨烯变成它不是的东西。
无论如何,这两个例子只是一个研究领域的冰山一角,而石墨烯是一种可以应用于许多学科的材料,包括但不限于:生物工程、复合材料、能源技术和纳米技术。
生物工程必将是石墨烯在未来成为重要组成部分的领域;尽管在使用它之前有些障碍需要克服。目前的估计表明,它不会是直到2030年,当我们将开始看到石墨烯广泛应用于生物应用程序作为我们仍然需要了解其生物相容性(和它必须经历许多安全、临床试验和监管,简单地说,将会花费很长的时间)。然而,它所显示的特性表明,它可能在许多方面给这一领域带来革命性的变化。石墨烯具有较大的表面积、高导电性、薄度和强度,将成为开发快速高效的生物电传感设备的良好候选材料,能够监测葡萄糖水平、血红蛋白水平、胆固醇甚至DNA测序。最终,我们甚至可能看到经过设计的“有毒”石墨烯,它可以用作抗生素甚至抗癌治疗。此外,由于其分子组成和潜在的生物相容性,它可以用于组织再生过程中。
我们将很快开始看到石墨烯用于商业规模的一个特殊领域是光电子领域;特别是触摸屏、液晶显示器(LCD)和有机发光二极管(oled)。的材料可以用于光电应用程序,它必须能够传输超过90%的光和也提供电子导电性能超过1 x 106Ω1m1因此低电阻。石墨烯是一种几乎完全透明的材料,能够通过光学传输高达977%的光。正如我们之前提到的,它的导电性也很高,因此它在智能手机、平板电脑、台式电脑和电视的液晶触摸屏等光电子应用中非常好用。
目前应用最广泛的材料是氧化铟锡(ITO),在过去几十年ITO制造技术的发展,使得ITO材料能够很好地应用于这一领域。然而,最近的测试表明,石墨烯有潜力与ITO的性能相匹配,即使是在当前(相对不发达的)状态下。此外,最近的研究表明,通过调整费米能级可以改变石墨烯的光学吸收。虽然这听起来不像是对ITO的很大改进,但石墨烯显示出了额外的性能,通过用石墨烯取代ITO,可以在光电子领域开发出非常聪明的技术。高质量石墨烯具有很高的抗拉强度和柔性(弯曲半径小于可滚动电子纸所需的5-10mm),这一事实几乎不可避免地使其很快将被用于上述应用。
就潜在的实际电子应用而言,我们最终有望看到基于石墨烯的电子纸等设备能够显示交互式和可更新的信息,以及包括便携式电脑和电视在内的柔性电子设备。
“石墨烯是一种可用于多种学科的材料,包括但不限于:生物工程,复合材料,能源技术和纳米技术。”
石墨烯的另一个突出特性是,虽然它允许水通过它,但它几乎完全不受液体和气体(即使是相对较小的氦分子)的影响。这意味着石墨烯可以用作超滤介质,作为两种物质之间的屏障。使用石墨烯的好处是它只有1个单原子厚度,并且还可以作为屏障开发,以电子方式测量2种物质之间的应变和压力(在许多其他变量中)。哥伦比亚大学的一组研究人员设法制造了孔径小至5nm的单层石墨烯过滤器(目前,先进的纳米多孔膜的孔径为30-40nm)。虽然这些孔径非常小,但由于石墨烯很薄,因此超滤过程中的压力降低。联合目前,石墨烯比氧化铝强得多且不易碎(目前用于低于100nm的过滤应用)。这是什么意思?嗯,这可能意味着石墨烯被开发用于水过滤系统,海水淡化系统以及高效且经济上更可行的生物燃料创造。
石墨烯坚固,坚硬,非常轻盈。目前,航空航天工程师正在将碳纤维纳入飞机的生产中,因为它也非常坚固和轻便。然而,石墨烯更强,同时也更轻。最终,预计石墨烯被利用(可能集成到塑料中,如环氧树脂),以创造一种材料,可以取代飞机结构中的钢材,提高燃料效率,范围和减轻重量。由于其导电性,它甚至可以用于涂覆飞机表面材料,以防止雷击造成的电气损坏。在该示例中,相同的石墨烯涂层也可用于测量应变率,通知飞行员飞机机翼所处的应力水平的任何变化。
提供非常低的光吸收水平(约为白光的27%)同时还提供高电子迁移率意味着石墨烯可用作光伏电池制造中硅或ITO的替代物。硅目前广泛用于光伏电池的生产,但是虽然硅电池的生产成本非常高,但基于石墨烯的电池可能要少得多。当诸如硅的材料将光转化为电能时,它会为每个产生的电子产生光子,这意味着许多潜在的能量会因热量而损失。最近发表的研究证明,当石墨烯吸收光子时,它实际上会产生多个电子。此外,虽然硅能够从某些波长的光带发电,但石墨烯能够在所有波长上工作,这意味着石墨烯具有与硅,ITO或(也广泛使用的)砷化镓一样高效的潜力。柔韧薄,意味着石墨烯基光伏电池可用于服装; 帮助为手机充电,甚至用作复古光伏窗户或窗帘,为家庭供电。
正在进行高度研究的一个研究领域是储能。虽然过去几十年来电子产品的所有领域都在以非常快的速度发展(参考摩尔定律,该法律规定电子电路中使用的晶体管数量将每两年增加一倍),但问题始终是存储能量不使用时,请使用电池和电容器。这些能量存储解决方案的发展速度要慢得多。问题在于:电池可能会占用大量能量,但充电可能需要很长时间,另一方面,电容器可以非常快速地充电,但不能保持那么多能量(相对来说) )。
目前,科学家正致力于提高锂离子电池的性能(通过将石墨烯作为阳极),以提供更高的存储容量,并具有更好的寿命和充电速率。此外,正在研究和开发石墨烯以用于制造超级电容器,其能够非常快速地充电,并且还能够存储大量电力。基于石墨烯的微超级电容器可能会被开发用于智能电话和便携式计算设备等低能耗应用,并且可能在未来5到10年内在商业上可用。石墨烯增强型锂离子电池可以用于更高能耗的应用,例如电动车辆,或者它们可以用作智能手机中的锂离子电池,
文章转载自公众号:石墨烯雷达
一般没有副作用,具体要看个人体质。出现副作用首先要看个人的体质,如果是敏感肌肤,长期食用可能会引起副作用。皮肤如果出现瘙痒或者是红肿时,可以涂抹消炎止痛的药物并缓解,它通常来说具有抗衰老、美容养颜的作用,在长期使用之后,可能会对皮肤得到一定的改善,皮肤会出现光泽有亮度。
建议可以百搭使用
①用于洁面,爽肤水之后1—2粒即可涂抹全脸增强肌肤修复能力
②搭配面膜
面膜前涂抹1—2粒,补水提亮击退黯③搭配水乳霜,爽肤水/乳液中加1—2粒提升水油修护力让养分吸收
按照烯炔命名法命名:
1、写的时候先写烯再写炔。
2、尽量使烯炔的编号总数最小,总数相同,那么以烯小的那种为正确。
3、如果烯是在第一位,那么不论炔在哪个位置,都从烯烃那头开始算。
扩展资料:
单烯烃和单炔烃的命名
单烯烃的系统命名可按下列步骤进行:
(1)先找出含双键的最长碳链,把它作为主链,并按主链中所含碳原子数把该化合物命名为某烯。如主链含有四个碳原子,即叫做丁烯。十个碳以上用汉字数字,再加上碳字,如十二碳烯。
(2)从主链靠近双键的一端开始,依次将主链的碳原子编号,使双键的碳原子编号较小。
(3)把双键碳原子的最小编号写在烯的名称的前面。取代基所在碳原子的编号写在取代基之前,取代基也写在某烯之前。
(4)若分子中两个双键碳原子均与不同的基团相连,这时会产生两个立体异构体,可以采用Z-E构型来标示这两个立体异构体。即按顺序规则,两个双键碳原子上的两个顺序在前的原子(或基团)同在双键一侧的为Z构型(Z configuration)(德文,Zusammen,在一起的意思),在两侧的为E构型(E configuration)(德文,Entgcgen,相反的意思)。
(5)按名称格式写出全名。
单炔烃的系统命名方法与单烯烃相同,但不存在确定Z-E构型的问题。
多烯烃或多炔烃的系统命名
多烯烃的系统命名按下列步骤进行。
(1)取含双键最多的最长碳链作为主链,称为某几稀,这是该化合物的母体名称。主链碳原子的编号,从离双键较近的一端开始,双键的位置由小到大排列,写在母体名称前,并用一短线相连。
(2)取代基的位置由与它连接的主链上的碳原子的位次确定,写在取代基的名称前,用一短线与取代基的名称相连。
(3)写名称时,取代基在前,母体在后,如果是顺、反异构体,则要在整个名称前标明双键的Z-E构型。
多炔烃的系统命名方法与多烯烃相同。
-命名法
抚顺小乙烯全称是抚顺乙烯化工有限公司。抚顺乙烯化工有限公司成立于1995年3月10日,法定代表人为杨宝善,注册资本为20000万元人民币,所属行业为化学原料和化学制品制造业,经营范围包含聚乙烯、聚丙烯、环氧乙烷、乙二醇、BOPP薄膜、重包装膜制造。抚顺乙烯化工有限公司目前的经营状态为注销。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)