撤销不利刺激导致适应性行为增强的做法属于

撤销不利刺激导致适应性行为增强的做法属于,第1张

撤销不利刺激导致适应性行为增强的做法属于负强化。

一、什么是负强化?

1、负强化(Negative Reinforcement)是指一个行动被施加了不愉快且有害的后果,以减少这个行动的概率。

2、负强化是通过让智能体对错误的操作产生痛苦反馈,借此能有效帮助智能体通过试错来提升自身的学习效率和精度,在真实环境下不断地优化和改进其模型表现。

3、在增强学习中,经常采用负强化的方式来训练智能体,在每次执行某个动作时,系统会根据这个动作的结果给出一个“奖励”或“惩罚”。

4、从而让智能体逐步“学习”正确的行为方式。然而,当错误的策略被采用时,智能体将会受到一定的惩罚,帮助其避免重蹈覆辙。

二、负强化和正强化的区别

1、负强化和正强化是增强学习中的两种主要方式,它们的区别在于智能体所接收到的奖励信号。

2、在正强化中,每个正确的行为都会获得一定的奖励,而在负强化中,则是将错误的行为罚款惩罚,并从犯错过程中吸取教训。

3、当训练集中包含正反馈和负反馈样本时,学习算法可以更快速地学习到正确的策略,同时也能避免不正确的决策,这样就能在最短时间内实现预期的目标。

三、应用场景

1、自动驾驶:在道路中,驾驶员可以通过车辆上的感应器得知当前车速、转向等运动状态,这些状态可以被录制下来成为数据集用于机器学习模型的训练。

2、汽车驾驶员的错误操作导致了交通事故的发生,因此通过对错误操作进行负强化可以帮助机器学习系统学会更稳定的驾驶方法,从而降低事故率。

3、游戏设计:人工游戏设计员可以利用负强化技术来训练机器学习系统通过最小化损失函数来调整游戏策略和难度。例如,给予玩家额外的生命作为奖励或者减少玩家所剩生命值作为惩罚,以此来增强游戏体验。

4、电商评论情感分析:电商平台可以利用负强化技术来增强评论情感分析系统的能力。例如:对于高质量的营销评论和消极的低质量评论,给予奖励或惩罚,以此来帮助模型学会识别差异化,提高准确率和鲁棒性。

电商分析数据方法如下:

一、依据用户画像,洞察需求

用户画像即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。

二、依据渠道数据分析用户来源

对电商卖家来说,分析“访客数”最重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。

这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和关键词排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。

三、店内转化率的数据分析

当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:

1、销售转化率 ——已购买的用户和全部来到店铺的用户比值。

2、平均订单价值 —— 用户下单的平均金额。

3、放弃购物车率—— 在所有产生的订单中,未完成订单的占比。

四、提高营销推广的ROI

对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。

五、产品数据分析

1、产品数据分分析

①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后最终下单的人数。

②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。

2、销量数据分析

我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况最佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。

六、用户留存数据分析

聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。

七、用户推荐数据分析

对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友推荐,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。

分析和研究人的情感是一个复杂的过程,需要结合多个因素和方法。以下是一些常见的方法和技巧:

观察非语言表达:情感通常通过非语言表达来展示,包括面部表情、姿势、手势、眼神等。观察这些非语言信号可以提供关于一个人情感状态的线索。

倾听和观察语言表达:人们在语言中常常流露出情感,包括词语的选择、语调、语速等。倾听和观察一个人的语言表达可以帮助你了解他们的情感体验。

提问和探索:与他人进行深入的对话,提出开放性的问题,探索他们的情感体验和内心感受。通过主动与他人交流,你可以更好地了解他们的情感世界。

了解背景和经历:一个人的情感体验通常受到他们的背景和经历的影响。了解一个人的背景故事、家庭环境、教育背景等,可以提供更多的背景信息来理解他们的情感。

使用情感分析工具:一些科学研究和心理学领域的专业人士使用情感分析工具来研究和测量情感。这些工具可能包括问卷调查、心理测量仪器、脑部扫描等,通过客观的数据来分析和研究情感。

学习心理学和情感科学知识:深入学习心理学和情感科学领域的知识可以提供更多的理论框架和研究成果,帮助你理解情感的本质和影响因素。

需要注意的是,分析和研究他人的情感是一项复杂的任务,需要综合考虑多个因素,并且要尊重他人的隐私和个人边界。在进行情感分析时,保持尊重、开放和理解的态度非常重要。

监督学习

目前,基于监督学习的情感分析仍然是主流,除了(Li et al,2009)基于非负矩阵三分解(Non-negative Matrix Tri-factorization),(Abbasi et al,2008)基于遗传算法(Genetic Algorithm)的情感分析之外,使用的最多的监督学习算法是朴素贝叶斯,k最近邻(k-Nearest Neighbor,k-NN),最大熵和支持向量机的。而对于算法的改进主要在对文本的预处理阶段。

基于规则/无监督学习

和基于监督学习的情感分析相比,基于规则和无监督学习方面的研究不是很多。除了(Turney,2002)之外,(朱嫣岚 et al,2002)利用HowNet对中文词语语义的进行了情感倾向计算。(娄德成 et al,2006)利用句法结构和依存关系对中文句子语义进行了情感分析,(Hiroshi et al,2004)通过改造一个基于规则的机器翻译器实现日文短语级情感分析,(Zagibalov et al,2008)在(Turney,2002)的SO-PMI算法的基础上通过对于中文文本特征的深入分析以及引入迭代机制从而在很大程度上提高了无监督学习情感分析的准确率。

跨领域情感分析

跨领域情感分析在情感分析中是一个新兴的领域,目前在这方面的研究不是很多,主要原因是目前的研究还没有很好的解决如何寻找两个领域之间的一种映射关系,或者说如何寻找两个领域之间特征权值之间的平衡关系。对于跨领域情感分析的研究开始于(Blitzer et al,2007)将结构对应学习(Structural Correspondence Learning,SCL)引入跨领域情感分析,SCL是一种应用范围很广的跨领域文本分析算法,SCL的目的是将训练集上的特征尽量对应到测试集中。(Tan et al,2009)将SCL引入了中文跨领域情感分析中。(Tan2 et al,2009)提出将朴素贝叶斯和EM算法的一种半监督学习方法应用到了跨领域的情感分析中。(Wu et al,2009)将基于EM的思想将图排序(Graph Ranking)算法应用到跨领域的情感分析中,图排序算法可以认为是一种迭代的k-NN

2014年是阿里巴巴集团移动电商业务快速发展的一年,例如2014双11大促中移动端成交占比达到426%,超过240亿元。相比PC时代,移动端网络的访问是随时随地的,具有更丰富的场景数据,比如用户的位置信息、用户访问的时间规律等。

通过数据分析,能够挖掘数据背后丰富的内涵,为移动用户在合适的时间、合适的地点精准推荐合适的内容。

本案例的目标是从该数据进行随机抽样,并用mysql进行分析,提高自己对电商指标体系的认识。

1、字段说明

1、提出问题:

1)分析用户购物过程中的常见监控指标,了解运营现状,查看各环节的漏斗转化情况,并找到需要改进的节点;

2)研究用户在不同维度下的行为规律,了解用户行为特征,优化运营策略;

3)利用RFM模型对用户进行分类,指导运营针对不同价值用户进行精细化运营;

4)了解用户生命周期,针对不同周期的用户采取不同的运营策略。

2、指标和字段解读

通过用户和用户行为路径可以分析PV、UV、PV/UV、跳失率、总订单量等运营指标;

通过用户行为和时间可以分析用户的购物行为特征;

通过用户和商品、商品类别可以分析用户的购买商品偏好;用户和时间可以分析用户的购买时间偏好,便于对不同商品和时间偏好的用户采取个性化时间推荐(push、短信等推送);

通过商品类别和用户行为可以分析不同商品类别受欢迎程度,指导运营进行商品的上新或下架;

通过商品类别和时间可以分析不同商品类别的热销时间段,便于做活动的推广;

结合AARRR模型,可以分析用户的生命周期,划分不同用户所处的周期阶段,采用差异化运营;

通过时间和用户的生命周期字段,结合RFM模型可以给用户做价值分类,对客户进行差异化管理。

(查看数据清洗流程: https://wwwjianshucom/p/adb82624df14 )

将csv导入mysql的方法:

切换命令行菜单: https://jingyanbaiducom/article/f00622280752dbfbd3f0c815html

导入数据: https://blogcsdnnet/qq_25504271/article/details/78911151

1)选择子集

导入之前已选择好

2)列名重命名

无需更改列名

3)数据类型转换

可以在设计表菜单栏更好数据类型

4)数据去重

存在重复值,但由于同一用户同一个行为在一小时内是可能存在多次的,因此这里不做去重处理。

5)缺失值处理

经查询,无缺失值

6)关联数据

由于只有一个表格,无需做表关联(如果需要关联,可以到分析过程中有需要时进行关联,这样会提高MySQL的性能。

7)异常值处理

无需处理异常值

8)数据标准化整理

日期数据整理:

为方便后续的分析,将日期数据分为日期和时间两个维度

行为数据整理:

将用户行为数据进行替换: 1:pv 2:fav 3:cart 4:buy

以上就完成了数据的整理工作。

1)流量指标:

计算页面访客数(pv)、独立访客数(uv)、人均点击数(uv/pv)

页面访客:987911次、独立访客数:8474位、人均点击次数11658次。

95/30≈389次,日人均点击次数大概为389次/人/天

2)每日流量指标变化趋势

通过Navicat导出数据进行可视化处理:

pv、uv指标呈正相关性;

三个指标在大部分时间走势平稳,由于双十二的影响,从2014-12-11开始上升,到2014-12-12达到峰值,2014-12-13结束回到正常水平。

1)按照页面访客计算漏斗转化率

由于在购物环节中,收藏和加入购物车行为没有严格的先后之分,可将两个个步骤作为同一步,最终得到用户购物行为各环节转化率,如下:

从整体转化率来看: 浏览- 收藏/加购转化率仅为5%,总体购买转化率为1%,说明有大部分的用户在浏览后未进行下一步操作,平时“逛街看看”成为一种习惯;

从节点转化率来看: 浏览-加购/收藏环节转化率很低,收藏/加购-购买的转化率也只有20%,说明有相当一部分用户是喜欢“囤货”,可能是为了等节假日购买?由于整体的节点并不是最细的不可分割节点,整体的数据比较粗糙,如果需要进一步的深入分析,需要有更细的转化率数据(由于操作路径每个环节都会损失一部分,因此如果能近量的较少客户购买时所需要的操作步骤,对提升整体转化率应该会有很好的提高)。

2)独立访客计算漏斗转化率

用户每个环节的转化率差不多,需要更多数据才能发现用户流失原因。

3)、跳失率

浏览页跳失率: = 只访问一次就离开的人数/总用户数

只加收藏、购物车人数

1)总成交量和人均购买次数:

2)每日总成交和人均成交情况:

1)总体复购率

复购率=复购人数/购买人数=2295/4330=53%

2)商品品类销量排名(商品复购率)

如果有更多数据,可根据商品品类属性进行研究和下钻,优化商品结果,但这里因为数据脱敏无法进行下钻分析

3)用户复购排名

以上用户对平台的忠诚度比较高,对平台的销售贡献度也高(利润贡献情况还需要具体分析),对不同的客户可以收集相应的用户画像,并对用户进行分层管理和营销,从而达到精细化运营

1)、按日期维度

用户活跃度与总体点击数是正相关的,走势平稳,不过在双十二电商大促这天各项指标暴增,且当天点击数占比有所下降(用户的点击更有针对性,前期已经选好商品,就等双十二当天直接购买的客户数量比较多?), 成交数占比大幅上升。

2)、周维度

一周中的大部分时间用户活跃度都比较平稳,周五比较特殊,出现了增长( 查看数据发现双十二正好是周五,属于特殊活动日,如果进行详细分析时应该将双十二的日期排除分析有更有意义)。

3)、小时维度

晚间用户较为活跃,但用户行为倾向于浏览;白天尤其是中午左右的时段,购买行为的比率相对一天中最高,此时购买的目的性最强(浏览数占比与购买数占比进行关联分析得出结论)。

按照商品品类区分( 矩阵分析 ),根据点击次数和购买次数两个维度将所有商品划分到四个象限:

点击数高,购买数高。说明此类产品刚需比较强,品牌多且种类丰富,用户在较高的需求下有很多的选择;

点击数低购买数高。用户的购买决策十分果断,且对于该类产品的需求量也是很大的,说明该类产品选择性比较小,可能形成几个品牌垄断的情况,或者产品的差异性较小,用户不愿花费过多的精力去挑选。

点击数低购买数低,绝大多数产品都集中在这个象限,这种产品存在很多的替代品,用户很难集中在某个子类进行大量购买,而是跳跃式选购。

点击数高购买数低,这类产品的需求弹性较大,用户购买存在随机性。

用户购买商品分为以下几类过程:

直接购买

浏览后购买

加购物车购买

浏览加购物车购买

收藏购买

浏览收藏购买

结果显示,直接够买的用户远远多于浏览后加购或者收藏再购买的用户,说明大部分购买者都是喜欢直接购买商品的,这个跟周围朋友的习惯也是符合的,基本上都是在浏览的阶段都不会马上购买,而是等到过段时间想买的时候就直接下单,几个步骤之间相当于是分开的。

用户的购买次数大部分集中在5次以内,购买频率都还挺高的

众所周知,电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多。

一、时间维度

从时间维度上来看,除了显示分析周期的数据,最常用的分析方式是同比和环比,时间区间可以是年、季和月,甚至是周,不过周相对用的少。

二、商品类别、价格维度

本次分析我主要是从商品类别、价格等多角度来进行商品数据分析,先是商品总的数据预览,如图(图表在BDP个人版上制作的):

这是选取8月23日的数据,可以看出,整个平台的上架的商品量还有4372万,量还比较多;商品好评率为93%,是整个平台的平均值,那应该还算不错啦!本月的月销量还有12%,只有24-31日一共8天,完成剩下的12%应该问题不大,相当于这个超额完成销量啦,是不是平台近期上架了很多夏天商品,所以8月份超额完成也是正常,比如游泳三件套、风扇等等。还是这个月做了什么活动,让这个月的销量比预定的目标稍微好一些数据真实的反应是这样,至于原因还是需要自己去找哈。

自己平台上的上架商品的数量、价格分布情况,作为运营者应该很了解的,均价当然也要了解,均价可能直接影响到网站客单价,网站的价格定位甚至是主要人群定位都会很清晰。比如,某个网站均价5000,那可能可以属于轻奢侈品网站了,可能主要人群是年收入过10万的女白领等等,这个依不同网站而定。

以上只是简单分析商品的某些数据,商品还能进行关联性、TOP10、采购情况等分析,大家依据自己的网站实际情况进行分析。当然,电商平台除了商品分析,还有订单数据、用户行为等分析,有空再一起探讨!

技能不太清楚,主要还是看个人能力了,但它所涵盖的素养听多听重要的

  数据分析师的基本素质如下:

  一 态度严谨负责

  严谨负责是seo数据分析师的必备素质之一,只有本着严谨负责的态度,才能保证数据的客观、准确。在企业里,seo数据分析师可以说是企业的医生,他们通过企业运营数据的分析,为企业寻找症结以及问题。一名合格的seo数据分析师,应具有严谨、负责的态度,保持中立立场,客观评价企业发展过程中存在的问题,为决策层提供有效的参考依据;不应该受其他因素影响而更改数据,隐瞒企业存在的问题,这样做对企业发展是非常不利的,甚至会造成严重的后果。而且,对seo数据分析师自身来说,也是前途尽毁,从此以后做所做的数据分析结果都受到质疑,因为你已经不再是可信赖的人,在同事、领导、客户面前失去了信任。所以,作为一名seo数据分析师就必须有严谨负责的态度,这也是最基本的职业道德。

  二 好奇心强烈

  好奇心人皆有之,但是作为seo数据分析师,这份好奇心就应该更强烈,要积极主动地发现和挖掘隐藏在数据内部的真相。在seo数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果不是预期的那样等等。这一系列问题都要在进行数据分析时提出来,并且通过数据分析,给自己一个满意的答案。越是优秀的seo数据分析师,好奇心也越不容易满足,回答了一个问题,又会抛出一个新的问题,继续研究下去。只有拥有了这样一种刨根问底的精神,才会对数据和结论保持敏感,继而顺藤摸瓜,找出数据背后的真相。

  三 逻辑思维清晰

  除了一颗探索真相的好奇心,seo数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。我记得有位大师说过:结构为王。何谓结构,结构就是我们说的逻辑,不论说话还是写文章,都要有条理,有目的,不可眉毛胡子一把抓,不分主次。

  通常从事数据分析时所面对的商业问题都是较为复杂的,我们要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方想。这就需要我们对事实有足够的了解,同时也需要我们能真正厘清问题的整体以及局部的结构,在深度思考后,理清结构中相互的逻辑关系,只有这样才能真正客观地、科学地找到商业问题的答案。

  四 擅长模仿

  在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速地成长,因此,模仿也是提高学习成果的有效方法。这里说的模仿主要是参考他人优秀的分析思路和方法,而并不是说直接“照搬”。成果的模仿需要领会他人方法的精髓。理解其分析原理,透过表面达到实质。万变不离其宗,要善于将这些精华转化为自己的只是,否则,只能是“一直在模仿,从未超越过”。

  五 用于创新

  通过模仿可以借鉴他人的成功经验,但模仿的时间不宜太长,并且建议每次模仿后都要进行总结,提出可以改进的方法,甚至要有所创新。创新是一个优秀seo数据分析师应具备的精神,只有不断的创新,才能提高自己的分析水平,使自己站在更高的角度来分析问题,为整个研究领域乃至社会带来更多的价值。现在的分析方法和研究课题千变万化,墨守成规是无法很好的解决所面民的新问题的。

  这些素质能力不是说有就有的,需要慢慢培养形成,不能一蹴而就。

  希望可以解决你的问题。。。。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/634318.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-06
下一篇2023-07-06

发表评论

登录后才能评论

评论列表(0条)

    保存