情感分析文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断

情感分析文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断,第1张

关于情感分析文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断回答如下:

情感分析,文本相似性和语句推断等都属于常见中文分词应用中的语句关系判断如下情感分析、文本相似性和语句推断都是中文自然语言处理中的常见任务,需要进行语句关系判断。

其中,分词是中文自然语言处理中的基础步骤,可以将句子切分成有意义的词语,为后续任务提供基础。

在情感分析任务中,需要对文本的情感进行分类,通常采用机器学习算法,对文本进行特征提取和分类。文本相似性任务是指比较两个文本之间的相似度,通常采用词向量模型进行特征提取和相似度计算。

语句推断任务是指给定前提和假设,判断假设是否可以从前提中推出,通常需要进行逻辑推理和语义理解。这些任务都需要进行语句关系判断,对中文自然语言处理具有重要意义。

资料扩展:

情感分析是指通过文本来挖掘人们对于产品、服务、组织、个人、事件等的观点、情感倾向、态度等。情感分析是随着互联网发展而产生的,早期主要用于对网上销售商品的用户评语的分析,

以便判断用户对其所购商品是“喜欢”还是“不喜欢”。后期随着自媒体的流行,情感分析技术更多地用于识别话题发起者、参与者的情感趋向,

从中判断或挖掘话题中的价值,由此来分析相关舆情。情感分析的应用十分广泛,其研究领域涉及自然语言处理、信息检索、机器学习、人工智能等。

领域依赖是指文本情感分析的模型对某一领域的文本数据非常有效,但是将其应用于其他领域的时候,会使得分类模型的性能严重下降。

面试前搜集往年面试常考题目属于使用信息检索和分析技术来解决问题。

信息检索和分析技术已经成为许多领域中不可或缺的工具,在面试前搜集往年面试常考题目时,我们需要了解这些技术的基本概念和应用。同时,人工智能技术的发展也为信息检索和分析带来了新的机遇和挑战。

1、什么是信息检索技术?

信息检索技术是指在大规模数据集合中自动地查找、筛选、排序相关信息的过程。它通常包括了关键字查询、文本预处理、索引构建、查询优化和结果排序等环节。

2、信息检索技术在哪些领域有应用?

信息检索技术已经应用到了广泛的领域中,比如搜索引擎、文本挖掘、情感分析、舆情监测、知识图谱构建等。

3、如何构建一个高效的搜索引擎?

构建高效的搜索引擎需要先进行数据抓取、清洗和存储,然后利用信息检索技术对数据进行索引构建和查询优化,最后利用机器学习算法对用户偏好进行分析和个性化推荐。

4、什么是文本挖掘?

文本挖掘是一种从非结构化或半结构化数据中发现有用信息的过程。它通常包括了文本分类、命名实体识别、主题识别、情感分析等任务。

5、如何进行文本分类?

文本分类可以使用传统的基于规则或机器学习的方法,比如朴素贝叶斯、决策树、支持向量机等算法,也可以使用深度学习模型,如卷积神经网络、循环神经网络等。

6、什么是情感分析?

情感分析是指对文本中的情感倾向进行自动化识别和分类的过程。它通常涉及到情感词典构建、特征提取、分类器训练等步骤。

7、如何应用情感分析?

情感分析可以应用到广泛的领域中,比如商品评论分析、社交媒体分析、政治舆情分析等。在这些场景中,情感分析可以帮助人们更好地理解消费者需求、维护品牌形象、精准预测选举结果等。

文本数据挖掘 是一种利用计算机处理技术从文本数据中抽取有价值的信息和知识的应用驱动型学科。(文本挖掘是抽取有效、新颖、有用、可理解的、散布在文本文件中的有价值知识,并且利用这些知识更好地组织信息的过程)

文本数据挖掘处理的数据类型是文本数据, 属于数据挖据的一个分支 ,与机器学习、自然语言处理、数理统计等学科具有紧密联系。

文本挖掘在很多应用中都扮演重要角色,例如智能商务(例如客户关系管理)、信息检索(例如互联网搜索)等。

文本数据挖掘需要从三个层面进行理解:

自然语言处理(NLP) 关注的是人类的自然语言与计算机设备之间的相互关系。NLP是计算机语言学的重要方面之一,它同样也属于计算机科学和人工智能领域。而 文本挖掘 NLP 的存在领域类似,它关注的是识别文本数据中有趣并且重要的模式。

但是,这二者仍有不同。首先,这两个概念并没有明确的界定(就像“数据挖掘”和“数据科学”一样),并且在不同程度上二者相互交叉。

如果原始文本是数据,那么 文本挖掘就是信息 , NLP就是知识 ,也就是语法和语义的关系。

文本挖掘利用智能算法,如神经网络、基于案例的推理、可能性推理等,并结合文字处理技术,分析大量的非结构化文本源(如文档、电子表格、客户电子邮件、问题查询、网页等),抽取或标记关键字概念、文字间的关系,并按照内容对文档进行分类,获取有用的知识和信息。

文本挖掘是一个多学科混杂的领域,涵盖了多种技术,

信息检索 是指文献等信息资源的整理和搜索,其主要目的可以概括为:按照用户的具体需要,采用一些检索方法,把所有相关的文献都检索出来,同时摒弃掉那些看似相关实则不符合要求的文档。

我们能否为文本数据的处理制作一个高效并且通用的框架呢?我们发现,处理文本和处理其他非文本的任务很相似

以下就是处理文本任务的几大主要步骤:

1 数据收集

获取或创建语料库,来源可以是邮箱、英文维基百科文章或者公司财报,甚至是莎士比亚的作品等等任何资料。

2 数据预处理

在原始文本语料上进行预处理,为文本挖掘或NLP任务做准备

数据预处理分为好几步,其中有些步骤可能适用于给定的任务,也可能不适用。但通常都是标记化、归一化和替代的其中一种。

文本挖掘预处理 :文本挖掘是从数据挖掘发展而来,但并不意味着简单地将数据挖掘技术运用到大量文本的集合上就可以实现文本挖掘,还需要做很多准备工作。

文本挖掘的准备工作 由 文本收集 、 文本分析 和 特征修剪 三个步骤组成

文本分析 是指对文本的表示及其特征项的选取;文本分析是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。文本(text)与 讯息(message)的意义大致相同,指的是由一定的符号或符码组成的信息 结构体 ,这种结构体可采用不同的表现形态,如语言的、文字的、影像的等等。文本是由特定的人制作的,文本的语义不可避免地会反映人的特定立场、观点、价值和利益。因此,由文本内容分析,可以推断文本提供者的 意图 和目的。

特征选择

将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。

目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为 文本的特征或特征项 。特征项必须具备一定的特性:

在中文文本中可以采用 字、词或短语 作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算 。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。

特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是 特征选择(Feature Selection)

特征选取方式

常见的有4种:

随着网络知识组织、人工智能等学科的发展,文本特征提取将向着数字化、智能化、语义化的方向深入发展,在社会知识管理方面发挥更大的作用。

努力消除歧义 是文本预处理很重要的一个方面,我们希望保留原本的含义,同时消除噪音。为此,我们需要了解:

3数据挖掘和可视化

无论我们的数据类型是什么,挖掘和可视化是探寻规律的重要步骤

常见任务可能包括可视化字数和分布,生成wordclouds并进行距离测量

4模型搭建

这是文本挖掘和NLP任务进行的主要部分,包括训练和测试。在适当的时候还会进行特征选择和工程设计

语言模型 :有限状态机、马尔可夫模型、词义的向量空间建模

机器学习分类器 :朴素贝叶斯、逻辑回归、决策树、支持向量机、神经网络

序列模型 :隐藏马尔可夫模型、循环神经网络(RNN)、长短期记忆神经网络(LSTMs)

5 模型评估

评价模型是否达到预期?其度量标准将随文本挖掘或NLP任务的类型而变化。

来源 | 雪晴数据网

利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy PJurka开发的情感分析以及更一般的文本挖掘包已经得到了很好的发展。你可以查看下sentiment包以及梦幻般的RTextTools包。实际上,Timothy还写了一个针对低内存下多元Logistic回归(也称最大熵)的R包maxtent。

然而,RTextTools包中不包含朴素贝叶斯方法。e1071包可以很好的执行朴素贝叶斯方法。e1071是TU Wien(维也纳科技大学)统计系的一门课程。这个包的主要开发者是David Meyer。

我们仍然有必要了解文本分析方面的知识。用R语言来处理文本分析已经是公认的事实(详见R语言中的自然语言处理)。tm包算是其中成功的一部分:它是R语言在文本挖掘应用中的一个框架。它在文本清洗(词干提取,删除停用词等)以及将文本转换为词条-文档矩阵(dtm)方面做得很好。这里是对它的一个介绍。文本分析最重要的部分就是得到每个文档的特征向量,其中词语特征最重要的。当然,你也可以将单个词语特征扩展为双词组,三连词,n-连词等。在本篇文章,我们以单个词语特征为例做演示。

注意,在R中用ngram包来处理n-连词。在过去,Rweka包提供了函数来处理它,感兴趣的可以查看这个案例。现在,你可以设置RTextTools包中create_matrix函数的参数ngramLength来实现它。

第一步是读取数据:

创建词条-文档矩阵:

现在,我们可以用这个数据集来训练朴素贝叶斯模型。注意,e1071要求响应变量是数值型或因子型的。我们用下面的方法将字符串型数据转换成因子型:

测试结果准确度:

显然,这个结果跟python得到的结果是相同的(这篇文章是用python得到的结果)。

其它机器学习方法怎样呢?

下面我们使用RTextTools包来处理它。

首先,指定相应的数据:

其次,用多种机器学习算法训练模型:

现在,我们可以使用训练过的模型做测试集分类:

准确性如何呢?

得到模型的结果摘要(特别是结果的有效性):

结果的交叉验证:

结果可在我的Rpub页面找到。可以看到,maxent的准确性跟朴素贝叶斯是一样的,其它方法的结果准确性更差。这是可以理解的,因为我们给的是一个非常小的数据集。扩大训练集后,利用更复杂的方法我们对推文做的情感分析可以得到一个更好的结果。示例演示如下:

推文情感分析

数据来自victornep。victorneo展示的是用python对推文做情感分析。这里,我们用R来处理它:

读取数据:

首先,尝试下朴素贝叶斯

然后,尝试其他方法:

这里,我们也希望得到正式的测试结果。包括:

1analytics@algorithm_summary:包括精确度,召回率,准确率,F-scores的摘要

2analytics@label_summary:类标签摘要

3analytics@document_summary:所有数据和得分的原摘要

4analytics@ensemble_summary:所有 精确度/覆盖度 比值的摘要

现在让我们看看结果:

与朴素贝叶斯方法相比,其它算法的结果更好,召回精度高于095。结果可在Rpub查看

原文链接:http://wwwxueqingcc/cms/article/107

在人工智能出现之前,机器智能处理结构化的数据(例如 Excel 里的数据)。但是网络中大部分的数据都是非结构化的,例如:文章、、音频、视频…

在非结构数据中,文本的数量是最多的,他虽然没有和视频占用的空间大,但是他的信息量是最大的。

为了能够分析和利用这些文本信息,我们就需要利用 NLP 技术,让机器理解这些文本信息,并加以利用。

每种动物都有自己的语言,机器也是!

自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。

人类通过语言来交流,狗通过汪汪叫来交流。机器也有自己的交流方式,那就是数字信息。

不同的语言之间是无法沟通的,比如说人类就无法听懂狗叫,甚至不同语言的人类之间都无法直接交流,需要翻译才能交流。

而计算机更是如此,为了让计算机之间互相交流,人们让所有计算机都遵守一些规则,计算机的这些规则就是计算机之间的语言。

既然不同人类语言之间可以有翻译,那么人类和机器之间是否可以通过“翻译”的方式来直接交流呢?

NLP 就是人类和机器之间沟通的桥梁!

为什么是“自然语言”处理?

自然语言就是大家平时在生活中常用的表达方式,大家平时说的「讲人话」就是这个意思。

NLP 有2个核心的任务:

自然语言理解就是希望机器像人一样,具备正常人的语言理解能力,由于自然语言在理解上有很多难点(下面详细说明),所以 NLU 是至今还远不如人类的表现。

自然语言理解的5个难点:

想要深入了解NLU,可以看看这篇文章《一文看懂自然语言理解-NLU(基本概念+实际应用+3种实现方式)》

NLG 是为了跨越人类和机器之间的沟通鸿沟,将非语言格式的数据转换成人类可以理解的语言格式,如文章、报告等。

NLG 的6个步骤:

想要深入了解NLG,可以看看这篇文章《一文看懂自然语言生成 – NLG(6个实现步骤+3个典型应用)》

情感 分析

互联网上有大量的文本信息,这些信息想要表达的内容是五花八门的,但是他们抒发的 情感 是一致的:正面/积极的 – 负面/消极的。

通过 情感 分析,可以快速了解用户的舆情情况。

聊天机器人

过去只有 Siri、小冰这些机器人,大家使用的动力并不强,只是当做一个 娱乐 的方式。但是最近几年智能音箱的快速发展让大家感受到了聊天机器人的价值。

而且未来随着智能家居,智能 汽车 的发展,聊天机器人会有更大的使用价值。

语音识别

语音识别已经成为了全民级的引用,微信里可以语音转文字, 汽车 中使用导航可以直接说目的地,老年人使用输入法也可以直接语音而不用学习拼音…

机器翻译

目前的机器翻译准确率已经很高了,大家使用 Google 翻译完全可以看懂文章的大意。传统的人肉翻译未来很可能会失业。

NLP 可以使用传统的机器学习方法来处理,也可以使用深度学习的方法来处理。2 种不同的途径也对应着不同的处理步骤。详情如下:

方式 1:传统机器学习的 NLP 流程

方式 2:深度学习的 NLP 流程

英文 NLP 语料预处理的 6 个步骤

中文 NLP 语料预处理的 4 个步骤

自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。

NLP的2个核心任务:

NLP 的5个难点:

NLP 的4个典型应用:

NLP 的6个实现步骤:

版本

自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。

自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。

维基百科版本

自然语言处理(NLP)是计算机科学,信息工程和人工智能的子领域,涉及计算机与人类(自然)语言之间的交互,特别是如何对计算机进行编程以处理和分析大量自然语言数据。自然语言处理中的挑战通常涉及语音识别,自然语言理解和自然语言生成。

既然你已经学到了数据分析,那么基本的语法应该大都知道了吧。

这无非就是筛选数据的问题,先搞清楚什么是“无意义的评论”,它满足什么条件,再遍历评论,如果满足这个“无意义”的条件,那么就删除掉就是了。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/756207.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-09
下一篇2023-07-09

发表评论

登录后才能评论

评论列表(0条)

    保存