深度学习目前的应用领域很多,主要是计算机视觉和自然语言处理,以及各种预测等。对于计算机视觉,可以做图像分类、目标检测、视频中的目标检测等,对于自然语言处理,可以做语音识别、语音合成、对话系统、机器翻译、文章摘要、情感分析等。
对于刚入行深度学习,想从事人工智能工业应用和研发的小白来说,选择一个适合自己的深度学习框架显得尤为重要。那么在选择深度学习框架的时候,要注意哪些内容呢
通常我们在选择框架时要考虑易用性、性能、社区、平台支持等问题。初学者应该考虑容易上手的框架,偏工业应用的开发者可以考虑使用稳定性高、性能好的框架,偏研究性的开发者,一般选择易用而且有领先的模型基线的框架。
目前这个阶段,TensorFlow因为背靠谷歌公司这座靠山,再加上拥有庞大的开发者群体,而且采用了称为“可执行的伪代码”的Python语言,成为最受欢迎的主流框架之一。一些外围的第三方库(如Keras、TFLearn)也基于它实现了很多成果,Keras还得到TensorFlow官方的支持。TensorFlow支持的上层语言也在逐渐扩大,对于不同工程背景的人转入的门槛正在降低。
因此,对于刚入行深度学习的小白,TensorFlow是一个非常好的选择,掌握TensorFlow对以后的求职发展很有帮助。
预测股票市场是机器学习算法的一个常见应用场景之一。下面是一些常见的利用机器学习算法进行股票市场预测的方法:
基于技术指标的预测:技术指标是反映市场情况的量化指标,如均线、MACD等。可以通过机器学习算法对这些指标进行分析,从而预测股票价格的走势。
基于基本面的预测:基本面是指股票所属公司的财务状况、行业发展情况等方面的信息。可以通过机器学习算法对这些基本面进行分析,从而预测股票价格的走势。
基于情感分析的预测:情感分析是指通过对股票相关新闻、社交媒体等信息的情感判断,预测股票价格的走势。
基于深度学习的预测:深度学习算法可以自动学习股票市场中的规律和趋势,通过对历史数据进行训练,预测未来股票价格的走势。
需要注意的是,股票市场是一个复杂的系统,预测股票价格的走势需要考虑多种因素,包括宏观经济环境、政策因素、行业发展趋势等,因此机器学习算法的预测结果并不是完全准确的,投资者需要在风险控制的基础上进行决策。
豆瓣网文本评论的情感分析论文多。因为豆瓣网是一个内容丰富的文化社区,用户在这里可以发表对**、书籍、音乐等内容的评论和评分,这些评论数据对情感分析研究来说是非常有价值的。在学术界和工业界,已经有很多研究者和公司使用豆瓣网的评论数据进行情感分析研究和应用开发。这些研究涵盖了各种情感分析算法和技术,如基于词典的情感分析、基于机器学习的情感分析、基于深度学习的情感分析等。同时,也有很多论文对豆瓣网评论数据进行了情感分析,这些论文主要关注情感分析算法的优化和应用场景的拓展。
国际学术会议是一种学术影响度较高的会议,它具有国际性、权威性、高知识性、高互动性等特点,其参会者一般为科学家、学者、教师等。具有高学历的研究人员把它作为一种科研学术的交流方式,够为科研成果的发表和对科研学术论文的研讨提供一种途径 ;同时也能促进科研学术理论水平的提高。针对自然语言处理方向比较重要的几个会议有:ACL、EMNLP、NACAL、CoNLL、IJCNLP、CoNLL、IJCNLP、COLING、ICLR、AAAI、NLPCC等
会议链接地址: ACL
它是自然语言处理与计算语言学领域 最高级别 的学术会议,由计算语言学协会主办,每年一届。主要涉及对话(Dialogue)、篇章(Discourse)、评测( Eval)、信息抽取( IE)、信息检索( IR)、语言生成(LanguageGen)、语言资源(LanguageRes)、机器翻译(MT)、多模态(Multimodal)音韵学/ 形态学( Phon/ Morph)、自动问答(QA)、语义(Semantics)、情感(Sentiment)、语音(Speech)、统计机器学习(Stat ML)、文摘(Summarisation)、句法(Syntax)等多个方面。
ACL 成立于1962年, 每年举办一次 。这个学会主办了 NLP/CL 领域最权威的国际会议,即ACL年会。1982年和1999年,ACL分别成立了欧洲分会([EACL)和北美分会(NAACL)两个区域性分会。近年来,亚太地区在自然语言处理方面的研究进步显著,2018年7月15日,第56届ACL年会在澳大利亚墨尔本举行。开幕仪式上,ACL主席Marti Hearst正式宣布成立国际计算语言学学会亚太地区分会( AACL ,The Asia-Pacific Chapter of Association for Computational Linguistics)。此次成立ACL亚太分会,将进一步促进亚太地区NLP相关技术和研究的发展。据悉,首届AACL会议预计在2020年举行,此后将每两年举行一次。
会议链接地址: EMNLP
EMNLP涉及多个研究方向,其中包括:信息提取、信息检索和问答系统,语言和视觉,语言理论和心理语言学,机器学习,机器翻译和多语言,分割、标记和语法 分析,语义学,情感分析和观点挖掘,社交媒体和计算社交科学,口语处理,概述,生成,论述和对话,文本挖掘和自然语言分析。
EMNLP也是由ACL主办的,其中ACL学会下设多个特殊兴趣小组(Special Interest Groups ),SIGs聚集了NLP/CL不同子领域的学者,性质类似一个大学校园的兴趣社团。其中比较有名的诸如 SIGDAT(Special Interest Group on Linguistic Data & Corpus-based Approaches to Natural Language Processing)、SIGNLL(Special Interest Group on Natural Language Learning)等。这些 SIGs 也会召开一些国际学术会议,其中比较有名的就是 SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL(Conference on Computational Natural Language Learning), 均为每年举办一次 。
会议链接地址: NACAL
NACAL会议主要涉及对话,篇章,评测,信息抽取,信息检索,语言生成,语言资源,机器翻译,多模态,音韵学/ 形态学,自动问答,语义,情感,语音,统计机器学习,文摘,句法等多个方面。
NACAL是 ACL 的的北美分会,当然也是由 ACL 主办。这里把 NAACL 单独列出来是因为相比于 ACL 的欧洲分会 EACL(之前是 每三年举办一次 ,过去存在感不太强,据说从2020年开始将改为每年举办,相信会逐渐被大家重视起来),NAACL 是 每年举办一次 ,就目前而言,大家对它的认可度比 EACL 高。ACL、EMNLP、NAACL 均为每年举办一次。因为是同一学术组织举办,所以会有些有意思的潜规则。例如 ACL、EMNLP 会在各大洲轮流举办,而每当ACL在北美举办时,当年NAACL就停办一次(同理,当ACL在欧洲举办时,当年EACL就停办一次)。
会议链接地址: CoNLL
SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL( Conference on Computational Natural Language Learning),均为每年举办一次。其中CoNLL的主要涉及的方向有:对话与互动系统、信息提取、信息检索,问题回答、从认知角度研究学习方法(如机器学习、生物启发、主动学习、混合模型)、语言模型、分割、词汇语义和成分语义、语言理论与资源、用于NLP的机器学习、机器翻译、语言学中的归纳法和类比法、词法分析、词性标注和序列标注等。
会议链接地址: COLING
COLING会议主要涵盖的方向有:信息提取、信息检索和问答系统;机器学习;机器翻译;分割、标记和语法 分析;语义学;情感分析和观点挖掘;社交媒体和计算社交科 学;口语处理;对话生成;文本挖掘等。
COLING 全称 International Conference on Computational Linguistics,1965年开办,它是由老牌 NLP/CL 学术组织 ICCL(The International Committee on Computational Linguistics) 组织的, 每两年举办一次 。不过可能由于不是每年举行,感觉最近几次会议的质量起伏比较大,从认可度上也确有被EMNLP赶超的趋势。
会议链接地址: ICLR
ICLR主要发表深度学习各方面的前沿研究,其中涵盖人工智能、统计学和数据科学以及机器视觉、计算生物学、语音识别、文本理解、游戏和机器人等重要应用领域。
ICLR由Yann LeCun 和 Yoshua Bengio 等大牛发起,会议开创了公开评议机制(open review),但在今年取消了公开评议,改为双盲评审。它是一个很年轻的会议,今年举办到第6届,但已经成为深度学习领域不容忽视的重要会议,甚至有深度学习顶会“无冕之王”之称。ICLR也是世界上发展最快的人工智能会议之一,今年将有4000多名参会者。
会议链接地址: AAAI
AAAI是人工智能领域的主要学术会议,由美国人工智能促进协会主办。AAAI 成立于 1979 年,最初名为 “美国人工智能协会” (American Association for Artificial Intelligence),2007 年才正式更名为 “人工智能促进协会”(Association for the Advancement of Artificial Intelligence )。致力于促进对思维和智能行为机制及其在机器中的体现的科学理解。AAAI旨在促进人工智能的研究和负责任的使用。AAAI还旨在提高公众对人工智能的理解,改善人工智能从业者的教学和培训,并就当前人工智能发展的重要性和潜力以及未来方向为研究规划者和资助者提供指导
近年的 AAAI 会议不乏中国学者的身影,据统计 AAAI 2018 接收的 910 多篇论文中有1/3以上一作是华人名字。此外,2019 年 AAAI 程序主席是南京大学周志华教授,另一位程序主席是密歇根大学教授 Pascal Van Hentenryck。
会议链接地址: NLPCC
NLPCC主要涉及的方向有:分词和命名实体识别、句法分析、语义分析、语篇分析、面向少数民族和低资源语言的NLP、自然语言处理的应用、数字出版、文档工程、OCR和字体计算、用于移动计算的NLP、机器翻译和多语言信息访问、NLP的机器学习、Web/文本挖掘与大数据、信息检索与提取、知识表示与获取、个性化与推荐、用于搜索和广告的NLP等
作为自然语言处理和汉语计算领域的国际领先会议,NLPCC最近被CCF确认为C类会议。它为来自学术界、工业界和政府的研究人员和实践者提供了一个主要论坛,以分享他们的想法、研究成果和经验,并促进他们在该领域的研究和技术创新。NLPCC历届会议分别在北京(2012)、重庆(2013)、深圳(2014)、南昌(2015)、昆明(2016)、大连(2017)、呼和浩特(2018)、甘肃(2019)成功举办。
ACL、EMNLP、NAACL 和 COLING 可以说是 NLP 领域的四大顶会。其中 ACL、EMNLP、NAACL都是一家的(均由 ACL 举办)。ACL 、AAAI是 CCF 推荐A类国际学术会议,EMNLP 和 COLING 是B类,NAACL 、CoNLL、NLPCC则是C类。
更多自然语言处理、pytorch相关知识,还请关注 AINLPer 公众号,极品干货即刻送达。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)