这就说明人家男孩想放弃这个女孩了呀,不是因为一些原因分开了吗?这个女孩也没有回头的意思人家等不起啊,所以他就这样跟女孩说,两个人以后就不再是男女朋友了,不是吗?如果女儿还想复合的话,那就主动告诉人家呀,人家也许还会复合的呢,不知道你们到底因为什么原因导致分手的。
情感分类是与情绪情感有关问题的归类;情感分析是对情感情绪问题的见解与认识。
《计算机科学》 2010年07期
情感分析与认知 李维杰
摘要:分析了情感分析的3个主要步骤,包括文本情感获取与表达、文本情感分类与计算以及文本情感分析的应用。情感分析得到的结论主要是对相关观点的摘要、对相关事件态度的预测或者统计等,但这些结论都没有发挥文本情感在认知中的作用。为了将情感分析应用于认知科学,提出了情感由情感信号和情感实体组成的观点。情感信号主要是指情感的一些形式载体,比如心跳加速、脸红等这些人体内外的某些表现,表达情感的文字、、声音等这类媒体。情感实体主要是指人类对情感形成的一种共识,比如爱、恨、憎恶、高兴、羞愧、嫉妒、内疚、恐惧、焦虑等与人的意识相关联的部分。同时提出了在人工智能中利用情感信息的设想。这对于模拟情感对认知的影响具有一定的意义。
--------粘贴内容,其他未知,抱歉。
1、大数据情感分析是指利用大数据技术和自然语言处理技术,对海量的文本数据进行分析和挖掘,从中提取出文本中所包含的情感信息,
2、情感分析的主要目的是通过计算机技术和语言学知识,帮助人们更好地理解和分析大量的文本数据,并从中挖掘出有用的信息。
情感是人对客观事物的一种特殊的反映形式,是人对客观事物是否符合人的需要而产生的态度和体验。
情感是在社会历史发展过程中,在人的实践活动中产生和发展的,是人所特有的同人的需要、与人的意识紧密联系的一种心理现象。情感具有较大的稳定性和深刻性,对人的行为起着积极的或消极的作用。例如,情感沟通和交流往往能形成良好的心理相容的家庭气氛,有利于家庭的和睦相处。
心理测试系统认为,情感与人的认识过程有密切联系,它伴随着感觉而发生,反映人们对客观事物个别属性所抱的主观态度;人们对客观事物的知觉,对过去经验的记忆,也会引起情感的产生、变化;人的思维也往往伴随着各种各样的情感。
可见,情感的产生,是由干周围环境的刺激物对人发生信号作用,且具有一定意义而引起的。随着人们对客观事物认识的发展变化,情感也相应地发生变化。情感对人的行为有着直接的、重要的影响,可以促使人的行为积极,也可以促使人的行为消极。
情感分析(Sentiment Analysis)
第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。
英文已经有伟大词典资源:SentiWordNet 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。
但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。
中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。
第二步,就是识别一个句子是积极还是消极,是主观还是客观。
有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。
但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。
如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。
分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。
中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。
另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。
到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。
这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。
这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。
分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。
接下来还可以对比不同产品的评价,并且可视化出来。如图。
这一步的主要在于准确挖掘产品属性(一般用关联规则),并准确分析对应的情感倾向和情感强度。因此这需要情感分析作为基础。首先要找到评论里面的主观句子,再找主观句子里的产品属性,再计算属性对应的情感分。所以前面基础不牢固,后面要准确分析就有难度。
中文这个领域的研究其实很完善了,技术也很成熟。但需要完善前期情感分析的准确度。
总的来说,就是中文词典资源不好,工作做得不是很细很准。前期的一些基础不牢固,后面要得到准确的分析效果就不容易了。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)