爱立信企业形象系列广告,以“电信沟通,心意互通”为主题,包括父子篇“沟通就是关怀”、教师篇“沟通就是感激”、爱情篇“沟通就是爱”和代沟篇“沟通就是理解”4则广告片构成,通过讲述“老百姓的故事”的形式,表达了爱立信对电信业的理解和信念,给人一种清新、独特的感受。
被选作广告题材的是一些最基本的社会性问题,诸如工作、爱情、价值观、代沟和家庭问题。每个广告片都被处理得十分富有人情味,沟通在这里已经不是单纯的打电话、互通信息这样简单,沟通更是友谊、关怀、尊敬、忠诚、信赖、理解,是探讨、挖掘、思考,使人真正的一种内心需要。“电讯沟通,心意互通”表明了爱立信对责任感、信誉以及对人际交流之中最人性化的需求有着深刻的理解。
与其他的人工智能技术相比,情感分析(Sentiment Analysis)显得有些特殊,因为其他的领域都是根据客观的数据来进行分析和预测,但情感分析则带有强烈的个人主观因素。情感分析的目标是从文本中分析出人们对于实体及其属性所表达的情感倾向以及观点,这项技术最早的研究始于2003年Nasukawa和Yi两位学者的关于商品评论的论文。
随着推特等社交媒体以及电商平台的发展而产生大量带有观点的内容,给情感分析提供了所需的数据基础。时至今日,情感识别已经在多个领域被广泛的应用。例如在商品零售领域,用户的评价对于零售商和生产商都是非常重要的反馈信息,通过对海量用户的评价进行情感分析,可以量化用户对产品及其竞品的褒贬程度,从而了解用户对于产品的诉求以及自己产品与竞品的对比优劣。在社会舆情领域,通过分析大众对于社会热点事件的点评可以有效的掌握舆论的走向。在企业舆情方面,利用情感分析可以快速了解社会对企业的评价,为企业的战略规划提供决策依据,提升企业在市场中的竞争力。在金融交易领域,分析交易者对于股票及其他金融衍生品的态度,为行情交易提供辅助依据。
目前,绝大多数的人工智能开放平台都具备情感分析的能力,如图所示是玻森中文语义开放平台的情感分析功能演示,可以看出除了通用领域的情感分析外,还有汽车、厨具、餐饮、新闻和微博几个特定领域的分析。
那么到底什么是情感分析呢?从自然语言处理技术的角度来看,情感分析的任务是从评论的文本中提取出评论的实体,以及评论者对该实体所表达的情感倾向,自然语言所有的核心技术问题,例如:词汇语义,指代消解,此役小气,信息抽取,语义分析等都会在情感分析中用到。因此,情感分析被认为是一个自然语言处理的子任务,我们可以将人们对于某个实体目标的情感统一用一个五元组的格式来表示:(e,a,s,h,t)
以图为例,e是指某餐厅,a为该餐厅的性价比属性,s是对该餐厅的性价比表示了褒义的评价,h为发表评论者本人,t是19年7月27日。所以这条评论的情感分析可以表示为五元组(某餐厅,性价比,正向褒义,评论者,19年7月27日)。
情感分析根据处理文本颗粒度的不同,大致可以分为三个级别的任务,分别是篇章级、句子级和属性级。我们分别来看一下。
1 篇章级情感分析
篇章级情感分析的目标是判断整篇文档表达的是褒义还是贬义的情感,例如一篇书评,或者对某一个热点时事新闻发表的评论,只要待分析的文本超过了一句话的范畴,即可视为是篇章级的情感分析。
对于篇章级的情感分析而言有一个前提假设,那就是全篇章所表达的观点仅针对一个单独的实体e,且只包含一个观点持有者h的观点。这种做法将整个文档视为一个整体,不对篇章中包含的具体实体和实体属性进行研究,使得篇章级的情感分析在实际应用中比较局限,无法对一段文本中的多个实体进行单独分析,对于文本中多个观点持有者的观点也无法辨别。
例如评价的文本是:“我觉得这款手机很棒。”评价者表达的是对手机整体的褒义评价,但如果是:“我觉得这款手机拍照功能很不错,但信号不是很好”这样的句子,在同一个评论中出现了褒义词又出现了贬义词,篇章级的分析是无法分辨出来的,只能将其作为一个整体进行分析。
不过好在有很多的场景是不需要区分观点评价的实体和观点持有者,例如在商品评论的情感分析中,可以默认评论的对象是被评论的商品,评论的观点持有者也是评论者本人。当然,这个也需要看被评论的商品具体是什么东西,如果是亲子旅游这样的旅游服务,那么评论中就很有可能包含一个以上的观点持有者。
在实际工作中,篇章级的情感分析无法满足我们对于评价更细致,如果需要对评论进行更精确,更细致的分析,我们需要拆分篇章中的每一句话,这就是句子级的情感分析研究的问题。
2 句子级情感分析
与篇章级的情感分析类似,句子级的情感分析任务是判断一个句子表达的是褒义还是贬义的情感,虽然颗粒度到了句子层级,但是句子级分析与篇章级存在同样的前提假设是,那就是一个句子只表达了一个观点和一种情感,并且只有一个观点持有人。如果一个句子中包含了两种以上的评价或多个观点持有人的观点,句子级的分析是无法分辨的。好在现实生活中,绝大多数的句子都只表达了一种情感。
既然句子级的情感分析在局限性上与篇章级是一样的,那么进行句子级的情感分析意义何在呢?关于这个问题,需要先解释一下语言学上主观句与客观句的分别。在我们日常用语当中,根据语句中是否带有说话人的主观情感可以将句子分为主观句和客观句,例如:“我喜欢这款新手机。”就是一个主观句,表达了说话人内心的情感或观点,而:“这个APP昨天更新了新功能。”则是一个客观句,陈述的是一个客观事实性信息,并不包含说话人内心的主观情感。通过分辨一个句子是否是主观句,可以帮助我们过滤掉一部分不含情感的句子,让数据处理更有效率。
但是在实操过程中,我们会发现这样的分类方法似乎并不是特别准确,因为一个主观句也可能没有表达任何的情感信息,知识表达了期望或者猜测,例如:“我觉得他现在已经在回家的路上了。”这句话是一个主观句,表达了说话人的猜测,但是并没有表达出任何的情感。而客观句也有可能包含情感信息,表明说话者并不希望这个事实发生,例如:“昨天刚买的新车就被人刮花了。”这句话是一个客观句,但结合常识我们会发现,这句话中其实是包含了说话人的负面情感。
所以,仅仅对句子进行主客观的分类还不足以达到对数据进行过滤的要求,我们需要的是对句子是否含有情感信息进行分类,如果一个句子直接表达或隐含了情感信息,则认为这个句子是含有情感观点的,对于不含情感观点的句子则可以进行过滤。目前对于句子是否含有情感信息的分类技术大多都是采用有监督的学习算法,这种方法需要大量的人工标注数据,基于句子特征来对句子进行分类。
总之,我们可以将句子级的情感分析分成两步,第一步是判断待分析的句子是否含有观点信息,第二步则是针对这些含有观点信息的句子进行情感分析,发现其中情感的倾向性,判断是褒义还是贬义。关于分析情感倾向性的方法与篇章级类似,依然是可以采用监督学习或根据情感词词典的方法来处理,我们会在后续的小节详细讲解。
句子级的情感分析相较于篇章级而言,颗粒度更加细分,但同样只能判断整体的情感,忽略了对于被评价实体的属性。同时它也无法判断比较型的情感观点,例如:“A产品的用户体验比B产品好多了。”对于这样一句话中表达了多个情感的句子,我们不能将其简单的归类为褒义或贬义的情感,而是需要更进一步的细化颗粒度,对评价实体的属性进行抽取,并将属性与相关实体之间进行关联,这就是属性级情感分析。
3 属性级情感分析
上文介绍的篇章级和句子级的情感分析,都无法确切的知道评价者喜欢和不喜欢的具体是什么东西,同时也无法区分对某一个被评价实体的A属性持褒义倾向,对B属性却持贬义倾向的情况。但在实际的语言表达中,一个句子中可能包含了多个不同情感倾向的观点,例如:“我喜欢这家餐厅的装修风格,但菜的味道却很一般。”类似于这样的句子,很难通过篇章级和句子级的情感分析了解到对象的属性层面。
为了在句子级分析的基础上更加细化,我们需要从文本中发现或抽取评价的对象主体信息,并根据文本的上下文判断评价者针对每一个属性所表达的是褒义还是贬义的情感,这种就称之为属性级的情感分析。属性级的情感分析关注的是被评价实体及其属性,包括评价者以及评价时间,目标是挖掘与发现评论在实体及其属性上的观点信息,使之能够生成有关目标实体及其属性完整的五元组观点摘要。具体到技术层面来看,属性级的情感分析可以分为以下6个步骤:
关于文本中的实体抽取和指代消解问题,我们已经在知识图谱的相关章节中做了介绍,这里就不再赘述。针对篇章级、句子级、属性级这三种类型的情感分析任务,人们做了大量的研究并提出了很多分类的方法,这些方法大致可以分为基于词典和基于机器学习两种,下面我们进行详细的讲解。
做情感分析离不开情感词,情感词是承载情感信息最基本的单元,除了基本的词之外,一些包含了情感含义的短语和成语我们也将其统称为情感词。基于情感词典的情感分析方法,主要是基于一个包含了已标注的情感词和短语的词典,在这个词典中包括了情感词的情感倾向以及情感强度,一般将褒义的情感标注为正数,贬义的情感标注为负数。
具体的步骤如图所示,首先将待分析的文本先进行分词,并对分词后的结果做去除停用词和无用词等文本数据的预处理。然后将分词的结果与情感词典中的词进行匹配,并根据词典标注的情感分对文本进行加法计算,最终的计算结果如果为正则是褒义情感,如果为负则是贬义情感,如果为0或情感倾向不明显的得分则为中性情感或无情感。
情感词典是整个分析流程的核心,情感词标注数据的好坏直接决定了情感分类的结果,在这方面可以直接采用已有的开源情感词典,例如BosonNLP基于微博、新闻、论坛等数据来源构建的情感词典,知网(Hownet)情感词典,台湾大学简体中文情感极性词典(NTSUSD),snownlp框架的词典等,同时还可以使用哈工大整理的同义词词林拓展词典作为辅助,通过这个词典可以找到情感词的同义词,拓展情感词典的范围。
当然,我们也可以根据业务的需要来自己训练情感词典,目前主流的情感词词典有三种构建方法:人工方法、基于字典的方法和基于语料库的方法。对于情感词的情感赋值,最简单的方法是将所有的褒义情感词赋值为+1,贬义的情感词赋值为-1,最后进行相加得出情感分析的结果。
但是这种赋值方式显然不符合实际的需求,在实际的语言表达中,存在着非常多的表达方式可以改变情感的强度,最典型的就是程度副词。程度副词分为两种,一种是可以加强情感词原本的情感,这种称之为情感加强词,例如“很好”相较于“好”的情感程度会更强烈,“非常好”又比“很好”更强。另外一种是情感减弱词,例如“没那么好”虽然也是褒义倾向,但情感强度相较于“好”会弱很多。如果出现了增强词,则需要在原来的赋值基础上增加情感得分,如果出现了减弱词则需要减少相应的情感得分。
另一种需要注意的情况是否定词,否定词的出现一般会改变情感词原本的情感倾向,变为相反的情感,例如“不好”就是在“好”前面加上了否定词“不”,使之变成了贬义词。早期的研究会将否定词搭配的情感词直接取相反数,即如果“好”的情感倾向是+1,那么“不好”的情感倾向就是-1。但是这种简单粗暴的规则无法对应上真实的表达情感,例如“太好”是一个比“好”褒义倾向更强的词,如果“好”的值为+1,那么“太好”可以赋值为+3,加上否定词的“不太好”变成-3则显然有点过于贬义了,将其赋值为-1或者-05可能更合适。
基于这种情况,我们可以对否定词也添加上程度的赋值而不是简单的取相反数,对于表达强烈否定的词例如“不那么”赋值为±4,当遇到与褒义词的组合时褒义词则取负数,与贬义词的组合则取正数,例如贬义词“难听”的赋值是-3,加上否定词变成“不那么难听”的情感得分就会是(-3+4=1)。
第三种需要注意的情况是条件词,如果一个条件词出现在句子中,则这个句子很可能不适合用来做情感分析,例如“如果我明天可以去旅行,那么我一定会非常开心。”,在这句话中有明显的褒义情感词,但是因为存在条件词“如果”,使得这个句子的并没有表达观点持有者的真实情感,而是一种假设。
除了条件句之外,还有一种语言表达也是需要在数据预处理阶段进行排除的,那就是疑问句。例如“这个餐厅真的有你说的那么好吗?”,虽然句子中出现了很强烈的褒义情感词“那么好”,但依然不能将它分类为褒义句。疑问句通常会有固定的结尾词,例如“……吗?”或者“……么?”,但是也有的疑问句会省略掉结尾词,直接使用标点符号“?”,例如“你今天是不是不开心?”,这个句子中含有否定词和褒义词组成的“不开心”,但不能将其分类为贬义情感。
最后一种需要注意的情况是转折词,典型词是“但是”,出现在转折词之前的情感倾向通常与转折词之后的情感倾向相反,例如:“我上次在这家酒店的住宿体验非常好,但是这次却让我很失望。”在这个转折句中,转折词之前的“非常好”是一个很强的褒义词,但真实的情感表达却是转折词之后的“很失望”,最终应该将其分类为贬义情感。当然,也存在出现了转折词,但语句本身的情感并没有发生改变的情况,例如“你这次考试比上次有了很大的进步,但是我觉得你可以做得更好”,这里的转折词没有转折含义,而是一种递进含义。在实际操作中,我们所以需要先判断转折句真实的情感表达到底是哪个,才能进行正确的分析计算。
构建情感词典是一件比较耗费人工的事情,除了上述需要注意的问题外,还存在精准度不高,新词和网络用语难以快速收录进词典等问题。同时基于词典的分析方法也存在很多的局限性,例如一个句子可能出现了情感词,但并没有表达情感。或者一个句子不含任何情感词,但却蕴含了说话人的情感。以及部分情感词的含义会随着上下文语境的变化而变化的问题,例如“精明”这个词可以作为褒义词夸奖他人,也可以作为贬义词批评他人。
尽管目前存在诸多问题,但基于字典的情感分析方法也有着不可取代的优势,那就是这种分析方法通用性较强,大多数情况下无需特别的领域数据标注就可以分析文本所表达的情感,对于通用领域的情感分析可以将其作为首选的方案。
我们在机器学习算法的章节介绍过很多分类算法,例如逻辑回归、朴素贝叶斯、KNN等,这些算法都可以用于情感识别。具体的做法与机器学习一样需要分为两个步骤,第一步是根据训练数据构建算法模型,第二步是将测试数据输入到算法模型中输出对应的结果,接下来做具体的讲解。
首先,我们需要准备一些训练用的文本数据,并人工给这些数据做好情感分类的标注,通常的做法下,如果是褒义和贬义的两分类,则褒义标注为1,贬义标注为0,如果是褒义、贬义和中性三分类,则褒义标注为1,中性标注为0,贬义标注为-1
在这一环节中如果用纯人工方法来进行标注,可能会因为个人主观因素对标注的结果造成一定影响,为了避免人的因素带来的影响,也为了提高标注的效率,有一些其他取巧的方法来对数据进行自动标注。比如在电商领域中,商品的评论除了文本数据之外通常还会带有一个5星的等级评分,我们可以根据用户的5星评分作为标注依据,如果是1-2星则标注为贬义,如果是3星标注为中性,4-5星标注为褒义。又比如在社区领域中,很多社区会对帖子有赞和踩的功能,这一数据也可以作为情感标注的参考依据。
第二步是将标注好情感倾向的文本进行分词,并进行数据的预处理,前文已经对分词有了很多的介绍,这里就不再过多的赘述。第三步是从分词的结果中标注出具备情感特征的词,这里特别说一下,如果是对情感进行分类,可以参考情感词典进行标注,也可以采用TF-IDF算法自动抽取出文档的特征词进行标注。如果分析的是某个特定领域的,还需要标注出特定领域的词,例如做商品评价的情感分析,需要标注出商品名称,品类名称,属性名称等。第四步根据分词统计词频构建词袋模型,形成特征词矩阵,如表所示。在这一步可以根据业务需要给每个特征词赋予权重,并通过词频乘以权重得到特征词分数。最后一步就是根据分类算法,将特征词矩阵作为输入数据,得到最终的分类模型。
当训练好分类模型之后,就可以对测试集进行分类了,具体的流程与建模流程类似,先对测试的文本数据进行分词并做数据预处理,然后根据特征词矩阵抽取测试文本的特征词构建词袋矩阵,并将词袋矩阵的词频数据作为输入数据代入之前训练好的模型进行分类,得到分类的结果。
采用基于机器学习的方法进行情感分析有以下几个不足之处,第一是每一个应用领域之间的语言描述差异导致了训练得到的分类模型不能应用与其他的领域,需要单独构建。第二是最终的分类效果取决于训练文本的选择以及正确的情感标注,而人对于情感的理解带有主观性,如果标注出现偏差就会对最终的结果产生影响。
除了基于词典和基于机器学习的方法,也有一些学者将两者结合起来使用,弥补两种方法的缺点,比单独采用一种方法的分类效果要更好,另外,也有学者尝试使用基于LSTM等深度学习的方法对情感进行分析,相信在未来,情感分析会应用在更多的产品中,帮助我们更好的理解用户需求,提升用户使用智能产品的体验。
随着深度神经网络等算法的应用,情感分析的研究方向已经有了非常大的进展,但依然存在着一些难题是目前尚未解决的,在实操过程中需特别注意以下几种类型数据:
情绪轮在用户体验设计上被广泛的应用,很多情感化设计都是基于情绪轮进行的。但是在人工智能领域,将情绪进行多分类比情感分析的三分类任务要难得多,目前大多数分类方法的结果准确性都不到50%。这是因为情绪本身包含了太多的类别,而且不同的类别之间又可能具有相似性,一个情绪词在不同的语境下有可能表达的是不同的情绪类别,算法很难对其进行分类。即使是人工对文本进行情绪类别标注也往往效果不佳,因为情绪是非常主观性的,不同的人对不同的文本可能产生不同的理解,这使得人工标注情绪类比的过程异常困难。如何让机器可以理解真实的情绪目前还是一个未能攻克的难题。
首先弄明白以下问题:
1他作为你的上司,怕你辞职的原因是什么?是你给他带来了经济效益,还是他创业初期,招到合适的员工不容易,亦或者是你在事业上对他有特别的帮助。如果是因为工作的原因,他有没有给予你和劳动对等的报酬?如果没有的话,又和你暧昧不清,你要想明白自己是否被利用情感。
2他既不给于你明确在一起的回应,又和你保持一种暧昧的状态,同时还说不管以什么样的身份一起走下去,这明显是不正常的男女交往方式。所以你要弄明白其背后的原因是什么?他是单身吗?他不愿意答应当你男朋友的原因是什么?
3他对你的诉求是什么?每个人在每一段人际关系中都会有自己的诉求。那么他“吊着你”的目的是什么?是想让你帮他工作,还是感情空白找一个寄托,又或者是他不想负责任只想找一个临时伴侣。相信你弄明白以上原因后,你在内心便已经对他的行为有了进一步判定。也明白自己应该怎样面对他了。
我们再来分析一下你的情感诉求:
1明确自己的需求
你需要一份关系明朗的感情,从你的论述中可以明确看出来,你希望你们之间能够明朗化,你很不喜欢这种暧昧不清,不远不近的关系,你也并不认可这种以除正是恋人关系以外的其他关系发展下去的相处方式。否则你就不会苦恼了,所以你需要明确的是究竟能否与他发展成为你理想中的伴侣关系,如果不能那就该放手时需放手,不然只是浪费时间,徒增苦恼。
2明确对方是否值得自己争取
你放不开他的原因究竟是什么?他有哪些地方吸引你?是他的魅力?还是他和你聊天,在你空虚的时候给予相应的陪伴?他是否是值得再去争取一下,进一步发展的那个人?如果你对他的感情深,也非常喜欢他,那么不妨再努力试试。毕竟在幸福面前面子不重要,女生也可以追男生,试试能否通过自己的努力,达到对方对伴侣需求的标准,让他正是接纳你。
3你情感的诉求是否非他不可
问问自己如果不是他,换成别人,陪你聊天,关心你,照顾你,你是否愿意尝试给别人机会成为你的伴侣。如果可以的话,不妨多去考虑一下那些真正在乎你,想要和你成为情侣的男士。毕竟人类那么多,如果不是非他不可的话,为什么要如此委屈自己,和一个不愿意和自己又未来的人陷入感情纠葛呢?
综上所述:你之所以陷入这种不能进一步发展又放不下的状态,有两个主要原因,一是你喜欢对方,不愿意割舍这段感情,而是对方对你若即若离,不明确表态。面对这种局面,作为女生要当断则断,你可以在考虑清楚以上问题以后,和对方好好谈谈,如果对方的态度不能让你满意,那么离开他绝对是正确的选择。
最后提醒你,不要因为舍不得一段感情,而让自己陷入一段未有结果的情感纠葛,你要明白一点,一个爱你肯对你负责的男人是不会和你保持一种暧昧不清的关系的。你值得拥有一段专属于自己的感情,你的付出要给肯对你后半生负责的伴侣,而不是连一句认可你们关系的话都不肯说的人。
《存亡朗读》第一遍,堕泪;第二遍,寻思;第三遍,意会。
大概这部影片有着綦重沉重的二战背景和关于人性的思索,但早上,我只想谈谈这部影戏的所展示的——爱情。
在影片麦克和汉娜去远足,麦克的独白便是:
Theonlythingthatcanmakelifecomplete,thatislove
是的,凡间,让生命完备的,唯有爱。
大概开始汉娜并不真的爱比她小20岁的少年,但当光阴荏苒,她因对文盲这个身份无与伦比的自卑,而为纳粹背上罪名入狱终身,当再次收到当年那个“KID”为她寄来的灌音带,她大概真的明白到了“爱”这个字,即便麦克当时只是为了排解本身感情生存的虚无,想通过朗读这种方法再次创建与汉娜的某种接洽,但,每次在狱中收到来自麦克的朗读带,她脸上所泛出的少女般的光芒,真实的写着“爱”,为了爱,她可以降服种种困难,在近五十岁的时间开始重拾铅笔,一个字一个字的通过灌音带开始识字,在非常费力的环境下认字学习,不是为了爱,她完全不必要这么做。
但当汉娜经心全意的认字,给麦克写信,多么猛烈地渴望麦克可以给她回一封信,一次次盼望,又一次次扫兴,直到末了与麦克的见面,麦克问她是否还记得过去,不因此前他们共度的韶光,而是盼望她记得本身犯下的恶行,这种审判彻底粉碎了她的心,她终于明显确白的知道,麦克早已不再爱她。
20年的监狱生存,是对爱的希冀让她没有放弃本身,而末了几年,监狱长说:她开始放弃本身了。大概是年复一年寄出的信得不到覆信让她一步一步迈向扫兴的深渊,大概由于学会了识字,她也渐渐相识本身当初由于服从所谓的纳粹职责而犯下的错误,让她不再爱惜本身。
无论怎样,是麦克末了击碎了她重新活下去的勇气,原来漫漫20年在狱中以为麦克对她的爱都是虚无,没有爱的生存,又有何迷恋?大概,结束,才是最好的结果。
这部戏最虐心的地方是:当麦克经心全意爱着汉娜的时间,汉娜更多的是盼望细听他的朗读,餍足本身固然是文盲却猛烈的求知欲望,但她也并没有让麦克由于本身抛荒了学业,阔别了朋侪,这是汉娜对麦克非常好的地方,也是麦克之以是其后学业顺利的缘故起因;而当汉娜在狱中开始对麦克孕育产生真爱的时间,麦克此时却不再爱着汉娜,二心田深处不肯意承认和汉娜的感情,甘心汉娜被判重刑也不肯意站出来,其后为了排解心田感情的荒废,渴望与汉娜再次创建某种接洽而选择了朗读这种方法,但却拒绝双向雷同,拒绝交换,直到毁灭汉娜唯一的生的盼望。
当我爱着你的时间,便是最好的时间,大概是上天错开了时间,但爱过,便是生命的完备。
愿你和我都爱惜爱着的时时候刻,不要悔恨,不要遗憾,由于,这,肯定是老天的恩赐。
1、感性诉求
采用感性说服方法的形式,又称情感诉求。它通过诉求消费者的感情或情绪来达到宣传商品和促进的目的,也可以叫作兴趣或诱导性。感性诉求的不作功能、价格等理性化指标的介绍,而是把商品的特点、能给消费者提供的利益点,用富有情感的语言、画面、音乐等手段表现出来。
2、理性诉求
采用理性说服方法的形式,通过诉求消费者的理智来传达内容,从而达到促进的目的,也称说明性。这种说理性强,常常利用可靠的论证数据揭示商品的特点,以获得消费者理性的承认。它既能给消费者传授一定的商品知识,提高其判断商品的能力,又会激起消费者对产品的兴趣,从而提高活动的经济效益。
信息选择困难和导致相关公共关系调研的效果大打折扣。化妆品广告中含有情感诉求可以与消费者产生共鸣,激发消费者的购买欲,但广告中夸大虚假的信息会使一些市场相关调查的效果大打折扣,产品特点不明确,也使一些具有选择困难的客户不知该如何选择,影响消费者的购买体验。广告的形式有报刊、广播、电视、**、路牌、橱窗、印刷品、霓虹灯等。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)