浅谈计算思维和计算过程的大学计算机课程认知体系论文?

浅谈计算思维和计算过程的大学计算机课程认知体系论文?,第1张

如何构建以计算思维为核心的大学计算机课程认知体系,以适应不同层次学校和不同专业学生的需求,已成为新一轮大学计算机课程改革的关键。以下是我为大家精心准备的:浅谈计算思维和计算过程的大学计算机课程认知体系相关论文。内容仅供参考,欢迎阅读!

 浅谈计算思维和计算过程的大学计算机课程认知体系全文如下:

近年来,以计算思维为核心的大学计算机课程教学改革正在许多高校进行,课程应该“讲什么、如何讲”是改革的关键,也是一线教师最为关切的问题。不同层次的高校和不同的专业对大学计算机课程的培养目标和专业需求不尽相同,因此,如果能够构建一个大学计算机课程认知体系的最小集,在此基础上让一线教师在培养目标框架内按照一定的思路进行扩充套件,不仅能解决“讲什么”的问题,还能解决“如何讲”的问题。

文中提到的大学计算机课程是指通识教育中的大学计算机基础,最小集是指不同层次、不同专业学生所需掌握的知识、能力和思维的最低要求,这样写的目的是试图构建起大学计算机基础教学稳定的、核心的认知体系,让大学计算机基础的课程教学像大学数学、大学物理一样,成为传授知识、培养应用能力、训练计算思维的大学通识教育课程。

1 对计算思维的再认识

关于计算思维,许多文章都引用美国卡内基·梅隆大学计算机科学系主任周以真教授在2006 年给出的定义:计算思维是运用电脑科学的基础概念进行问题求解、系统设计以及人类行为理解的思维活动。很显然,运用电脑科学的基础概念很容易使人认为计算思维是建立在电脑科学基础上的只有计算机学科才有的一种新的思维形式。事实上,计算思维和其他的思维形式一样,是伴随人的思维活动而存在和发展的,如中国古代《易经》中的八卦将自然现象中的阴阳用符号表达形式化表示,然后按一定的规则或演算法推算计算出其他的自然现象,这是一个典型的古人运用计算思维解决问题的例子,充分说明计算思维是古已有之的一种思维形式。另外,该定义还容易使人认为计算过程只能由计算机执行。事实上,《易经》中的“运算”是由人执行的;图灵的计算模型出现在计算机之前,计算过程自然由人执行。

因此,周教授在2010 年又重新给出定义:计算思维是与形式化问题及其解决方案相关的一个思维过程,其解决问题的表示形式应该能有效地被资讯处理代理执行。该定义清晰明了、简单易懂,同时使计算思维的培养具有了一定的可操作性。

周以真教授重新定义的计算思维,有4 个递进式要点:①形式化问题;②形式化问题的解决方案;③解决方案的形式化表示;④解决方案的形式化表示能够被有效执行。这4 个递进式要点是对一个问题解决的过程性描述,指明了用计算思维解决问题的方法、步骤和要求。

基于上述认识,笔者认为对于计算思维的定义应该引用周教授2010 年的定义较为合适。此外,我们还应当认识到计算思维在人的思维活动中是一个复合的思维形式,以“形式化、程式化、机械化”为主要特征。在“形式化问题”得以解决的过程中,必然伴随其他思维形式,而计算思维起到“统领”的作用,如问题的形式化表示和“解决方案”的设计必然会涉及抽象思维、逻辑思维等数学思维形式,也会涉及构造等工程思维形式,因此“计算思维是数学和工程思维的互补与融合”;从周以真教授2010 年的定义中不难看出,计算思维以“形式化、程式化演算法、机械化机械地执行程式”为主要特征,因此教师在培养学生计算思维的同时还要完善其他思维形式的培养,这样才能建立起由计算思维“统领”的综合思维能力。

 2 对计算本质的再认识

英国数学家图灵认为,计算是计算者人或机器对一条两端可无限延长的纸带上的一串符号来自有限符号集执行指令,一步一步地改变纸带上的符号,经过有限步骤最后得到一个满足预先规定的符号串的变换过程。简单地说,计算就是按照一定的规则进行的资料符号串变换,计算过程是人或机器对规则的执行过程。如果把资讯来自自然界或人类社会的符号化过程和资料的资讯化过程也作为计算过程的一部分。

其中,从资料到新资料的计算是一种狭义的计算,以数学计算为代表;从资讯到新资讯的计算是一种广义的计算,以计算机资讯处理为代表,如数值计算、符号计算、神经计算、自然计算、社会计算、情感计算、云端计算等,都只是计算的物件资料或资讯不同而已,计算的本质和过程都是一样的,其中体现的思维形式也是一样的。与狭义计算和广义计算相对应,计算过程也可分为狭义计算过程和广义计算过程,本文所说的计算过程是指广义计算过程。

3 计算过程与计算思维培养

电脑科学有两大基本问题:一是自动化计算的实现,二是基于计算机的问题求解。第一个问题的解决过程涉及资讯的符号化表示、资料编码、计算机器的构造、计算规则演算法和程式的制订和执行等一系列电脑科学最基本的概念、原理和方法;第二个问题的解决过程少了机器的构造这一环节,是各学科领域在计算机基础上的问题求解。显然,第二个问题以第一个问题为基础,两个问题的解决都以“图灵计算”为指导,以计算过程为思路;而计算思维正是在问题求解的整个计算过程中所体现的思维形式。以计算过程为主线思路构建大学计算机课程的认知体系,不仅能让学生学到电脑科学最基本的概念、原理和方法,而且可以让学生学到问题求解的基本思路,体会科学家的思维过程,从而有效地培养学生的计算思维。

4 大学计算机课程认知体系的最小集

计算思维的培养需要根据培养目标选择合适的知识载体,构建合适的认知体系,选择恰当的教学方法。对非计算机专业的学生而言,由于大学计算机课程的“通识性”和“基础性”以及学时的局限,很有必要选择一些“大众化”的内容构建一个最小的认知体系。

以计算思维的培养为核心、以计算过程为主线构建一个大学计算机认知体系的最小集,是指按计算过程所承载的电脑科学最基本的概念、原理和方法选择内容及内容的呈现次序。计算过程包括自动化计算的实现过程、基于计算机的问题求解过程、基于应用软体的问题求解过程以及异地资料环境的网路计算过程。该思路不仅体现电脑科学的两大基本问题,而且体现人们的认知过程和思维过程,具体内容如下。

1计算与计算机概述:资讯与资料;什么是计算;什么是计算机;前人对计算机的探索历程和思维过程。

2基础理论:资讯符号化包括进位计数制和资讯编码;逻辑运算;算术运算与逻辑运算的统一;计算的物理实现。

3自动计算的实现:指令和程式;冯·诺依曼计算机;储存器;中央处理器;指令和程式的执行过程。

4现代计算机系统:现代计算机硬体系统;现代计算机软体系统。

5基于计算机的问题求解:问题求解基础;演算法基础;演算法设计;演算法实现——程式设计语言和视觉化计算工具raptor。

6基于应用软体的问题求解——以办公自动化应用为例:文书处理;文稿演示;资料处理。

7计算机网路:什么是计算机网路;网路通讯基础;计算机组网与连线;计算机网路传输过程;网路应用;资讯与网路安全。

 5 需要说明的问题

  上述第1 到第4 部分内容主要是“如何实现自动化计算”,该部分以计算过程为主线参照计算过程示意图,围绕“如何实现自动化计算”这一基本问题展开。第5 部分内容主要是基于计算机器无应用软体进行问题求解,也以计算过程为主线,同时按计算思维定义的4 个要点思考问题,注意该部分主要是演算法而不是程式设计,演算法的执行可以用raptor 实现。第6 部分内容可以看做是基于计算机器有应用软体的问题求解,按问题求解的思路展开,侧重问题案例的设计和解决过程中遇到的较为稳定和本质不因介面改变而变化的知识讲解,如文书处理中的字元、段落、页面、目录、页首页尾和其他物件的属性及其关系等;文稿演示中的幻灯片和物件表演方式及其控制等;资料处理中的公式、函式和资料分析等。第7 部分内容主要是计算环境变化后异地计算机之间的资料交换问题,围绕“如何连线、如何交换”这一基本问题展开。

6 结语

一线教师只有充分认识计算和计算思维的深刻内涵,才能在培养计算思维的教学中有所作为,才能有效组织和展示教学内容,达到最佳的计算思维培养效果。上述研究只是在充分认识计算和计算思维的前提下,以计算过程为主线对现有大学计算机知识体系的一次重构,重构的知识体系只是相对稳定的最小 。由于学校层次不同、学生专业差异以及技术发展日新月异,因此对认知体系深度和广度进行扩充套件也是必要的,至于怎样扩充套件、遵循什么原则等还需要进一步研究。  

传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。

人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。

随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。

在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。

科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。

目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。

目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。

在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。

为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:

情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。

它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。

情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。

在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。

在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在远程教育平台中,情感计算技术的应用能增加教学效果。

利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。

情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:

更加细致和准确的情感信息获取、描述及参数化建模。

多模态的情感识别、理解和表达(图像、语音、生理特征等)。

自然场景对生理和行为特征的影响。

更加适用的机器学习算法。

海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。

事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。

脑连接组学是一门快速发展的神经科学子学科,可以用来从宏观尺度上检查不同脑区之间的功能和结构连接关系。研究表明,功能性磁共振成像中常见的规范脑连接网络实际上植根于电生理过程。电生理学研究将为分层大脑网络中的信息整合提供可测试的机制模型。总之,电生理学包含一组交叉科学技术和方法,可提供对大脑系统神经动力学的探索。原则上,它们可以就功能通信如何在大脑网络中以生物学方式实现提供独特的见解,从而在广泛的时间范围内实现复杂的行为 。 此综述的目标是解释电生理学方法与连接组学研究之间的相关性。

1  简介

脑连接是神经科学中一个年轻而快速发展的分支学科,它已经改变了人类的大脑图谱。 连接组研究起源于21世纪初的核磁共振,在图论等数学工具的推动下,旨在提供对健康和疾病中大脑结构和功能的综合分析 。 电生理功能连通性可以定义为一组描述“跨低级别网络的高级别耦合”的指标。低水平网络是由相互连接的细胞组成,分布在1厘米或更大的皮质上--这种空间尺度在整个大脑中随局部细胞密度、区域深度和该区域内电流的主要方向而变化。因为这种局部回路在功能上是相对同质的,所以我们把它们称为“大脑区域”。高水平的耦合构成了这些局部区域之间的信号相互作用。这些相互作用的区域相隔的距离基本上大于网络中每个区域的空间范围,它们构成了本文提及的高级网络。

电生理技术是历史上第一个测量大脑活动的技术,在基础(人类和动物研究)和临床神经科学中仍然是最容易获得和发表最多的技术。它们由非常多样化的方法组合而成,这些方法随着几十年来传感和计算技术的进步而演变。 它们的特殊优势是:1) 直接评估神经活动的能力,对比间接代谢信号;2) 毫秒级的时间分辨率;3) 从单个细胞到整个大脑的多空间尺度记录;4) 通过神经刺激确定因果效应;以及5) 便携式、可移动仪器的可用性、成本效益和数据质量的日益增长 。

总而言之,电生理学包括一套交叉的科学技术和方法,为研究大脑系统的神经动力学提供了独特的途径。原则上,它们可以对大脑网络中如何在生物学上实现功能性通信提供独特的见解,从而在广泛的时间范围内实现复杂的行为分析 。 我们在这里的目标是解释为什么这些独特的特性使电生理方法特别适用于脑连接组研究。

2 电生理连接的度量

21 电生理数据类型

大脑区域之间的电生理高级连接的测量必须提供 1)高保真度,即足够的信噪比(SNR),以准确表征来自不同大脑区域的信号之间的统计依赖性;2) 足够的空间分辨率,以确保区域之间的连通性估计不会因从一个区域到另一个区域的虚假信号交互(“泄漏”或“串扰”)而显着降低。考虑到这两点,电生理测量可以分为两类:

(1)    非侵入性方法 包括脑电图 (EEG) 和脑磁图 (EMG)。前者测量大脑中波动电流产生的头皮表面的电位差,后者测量相同电流波动产生的相应磁感应。

(2)    侵入性测量 通常统称为颅内脑电图 (iEEG),范围从皮层电图 (ECoG)到更深结构的深度电极。电极参考位置的选择通常决定了进行测量的神经元群体的大小。测量结果通常反映了来自皮层锥体细胞 (类似于MEG/EEG) 的 LFP,这些细胞总和超过了数千个神经元。

由于颅外传感器远离脑源,脑磁图和脑电图具有较低的信噪比(尤其是在高频下)。与EEG相比,MEG提供更高的空间精度,因为它对头部组织的几何形状和电导不太敏感。MEG也不太容易受到生物伪影的影响。然而,MEG 的购买和运营成本也更高,因此更难获得。传感技术的重大进步有望提供新的、更灵活和负担得起的 MEG 仪器,这些仪器最近被证明对连通性测量有效。

22 电生理信号连通性评估方法

从广义上讲,电生理连接指标可以分为两类,频带内和频带间。目前流行的两类频带内连通性度量:固定相位关系和幅度相关度量。这些不同的技术被认为可以深入了解两种不同的功能连接模式。对于频带间测量,存在三种典型的技术系列:相位-相位、幅度-幅度和相位幅度耦合,后者是最常用的 。 图1中展示了常规的基于生理电信号的脑连接构造步骤。     

图1处理电生理数据以得出电生理连接组测量的基本方法

与所有类型的生物信号分析一样,对电生理连接的最大威胁源于数据质量的固有限制,最值得注意的是空间分辨率和信号泄漏有关——尤其是对于 MEG/EEG。近年来,已经引入了可靠且稳健的方法来减轻泄漏。其中大多数依赖于这样的想法,即泄漏必然表现为具有零时滞的信号之间的关系。在探测信号之间的固定相位关系时,可以轻松消除这种零滞后效应——例如,仅采用相干计算的虚部,或通过使用相位滞后指数。除了上面定义的一类指标,研究者还开发了许多有向指标,例如格兰杰因果、部分定向相干性和动态因果建模。 这些指标利用电生理测量的高时间分辨率来推断两个区域之间信息流的平均(在某个时间窗口内)方向。

23 面向动态时序连接

上述连接性度量通常应用于许多分钟或几个小时的数据,并且被称为“静态”连接体。事实上,情况并非如此,因为大脑必须在快速(毫秒)的时间尺度上持续形成和分解网络,以回应不断变化的认知和行为需求。

231 滑动窗方法

在最简单的层面上,动态连接可以通过“滑动”窗口计算。一个关键点是这种技术提供的效用取决于窗口的长度。反过来,这取决于人们在多大程度上可以在短时间内获得可靠的连通性度量,而这本身取决于信号中自由度的数量。一个信号的时间自由度 n  = 2 Bw D ,其中 Bw 是信号带宽, D 是窗口的时间宽度。虽然fMRI信号的带宽为~ 025 Hz,但电生理信号的名义带宽至少为100 Hz。这意味着,在电生理学中,基于滑动窗口的连接测量的时间窗口比fMRI短约400倍。这反过来又使电生理学成为动态功能连接测量的首选技术。在实践中,电生理信号在不同波段包含不同的特征,人们通常会考虑计算窄带信号(如alpha、beta、gamma波段)的连通性。这意味着fMRI在时间分辨率上的改善并没有那么显著。然而,即使对于最窄的波段(例如8-13 Hz alpha波段),带宽仍然保持在5 Hz,在时间分辨率上比fMRI至少提高20倍。

然而,尽管电生理信号的带宽很高,滑动窗口宽度的选择仍然是一个有趣问题。人们真的希望窗口宽度与大脑中网络波动的时间尺度相匹配。然而,在实践中,这几乎肯定是未知的,并且可能在实验过程中发生变化。同样,对于不同的网络,它可能是不同的,随着年龄或参与者的病理状态而变化。也有可能,连通性波动的时间尺度可能太短,无法有效测量窗口内的连通性(例如,对于alpha波段,1秒的窗口,与认知加工相比仍然很长,只包含10个自由度)。由于这些原因,虽然滑动窗口仍然是一个有用的和概念上直接的工具,但很可能其他方法可以更好地利用电生理学提供的高时间分辨率。

232   除滑动窗方法之外

许多技术试图“时刻”检查连通性,即在电生理时间过程中获得每个样本的功能连通性估计。一种可用的技术是相位差导数 (PDD)。简而言之,PDD探测固定相位关系的存在,采集来自远端区域的信号的瞬时相位,并随时间测量它们之间的差异。如果差分导数为零,则暗示瞬态固定相位关系。近年来,基于隐马尔可夫开发的一种技术能够回避窗口问题。该方法假设电生理数据由一系列相互排斥的隐藏“状态”控制。这意味着在任何一个时间点,大脑都可以说是处于一种特定的状态。在未平均或静止状态中,PDD和类似指标往往是不稳定的,并且最终会在时间窗口上取平均值,这最终导致滑动窗口面临同样的问题。然而,在基于任务的研究中,假设相同的实验范式重复多次,PDD 可以在试验中平均。

一种基于隐马尔可夫建模的技术(HMM)能够回避窗口问题。迄今为止,该技术主要应用于MEG,但最近的论文已将其用于EEG和fMRI。HMM假设电生理数据由一系列相互排斥的隐藏“状态”控制。这意味着在任何一个时间点,大脑都可以说是处于一种特定的状态。在最简单的形式中,HMM可以描述单个电生理时间过程中的状态。每个状态都可以用电生理数据的高斯分布来描述。使用这种无监督的方法,大脑何时进入或离开特定状态的识别是自动化的。因为 HMM以数据驱动的方式自动选择时间窗口。

3  利用正在进行的电生理活动来定义电生理连接组

许多常见的电生理分析本身无法提供对大脑行为关系的全面机制理解。电生理测量通常重复多次,并且在试验中对数据进行平均,以检测相对于“基线”参考期的可能影响 。 在大多数电生理研究中,基线被丢弃,将持续的大脑动力学视为“噪音”。在这里,我们主张充分利用,而不是“纠正”,正在进行的神经过程及其空间组织对电生理记录的贡献。与任务相关的连通性变化通常将正在进行的电生理过程视为“噪音”。 同样重要的是,研究少数与任务相关的传感器的选择方法忽略了电生理数据的分布式空间组织 。 31小节详细阐述了正在进行的电生理活动的空间组织(即跨区域对的连接强度的全脑模式),并讨论其行为意义。32小节简要回顾了有关正在进行的活动动态的最新证据。

31  持续的电生理活动具有内在的时空组织

311 颅内电生理学中的内在空间组织

尽管颅内研究通常缺乏全面描述内在连接网络所需的全脑覆盖,但个别研究证实了特定内在连接网络的存在 。 一项研究报告表明,在所有规范频带中,组级 fMRI 连接组与汇集的全脑ECoG连接组之间存在适度的关联。值得注意的是,尽管许多寻求与 fMRI 衍生的功能连接相似性的研究都集中在高伽马功率的缓慢共波上,但上述研究扩展到其他振荡频率的幅度耦合以及振荡相位的测量。总之,人类 iEEG 研究提供了关于存在跨振荡频率和连接测量的持续电生理连接的内在空间组织的信心,并且还为 fMRI 中经常报告的空间网络组织提供支持。

图2 电生理数据中内在的全脑连接组织。A)在源空间MEG幅度耦合中通过基于种子的连接观察到的感觉和运动的内在脑连接。光谱图(右)表明alpha和beta波段振荡对这些内在网络的贡献很大;B) MEG中特定频带的振荡幅度的内在脑连接(显示了四个作为示例),包括感觉/运动以及高阶网络;C)连接强度在 fMRI 和颅内电生理学(ECoG 幅度耦合)之间存在空间关联。对于所有频段,这种相关性的强度约为 035;D)在 fMRI 和同时记录的头皮脑电图(相位耦合)之间观察到类似的连接强度的空间关联。左侧散点图显示了 beta 波段的示例,其中每个数据点来自连接组的一个区域对,平均跨受试者中以相似的效应大小重现。

312 颅外电生理信号的内在空间组织

有了对内在空间组织建立的信心,我们转向全脑连接组的MEG和 EEG 源空间研究。许多 MEG 幅度耦合研究为使用基于种子的相关性提供了感觉和运动趋同的证据。虽然其中一些研究使用宽带信号,但那些专注于不同频段的研究通常报告 α 和β 频段在反映 内在脑连接方面占主导地位。此外,虽然幅度耦合一直是MEG 静息状态连接组研究中更常用的连接模式,但 MEG 相位耦合显示出由内在脑连接锚定的类似空间分布。 尽管与 MEG 相比,EEG 对体积传导的敏感性更强,但 EEG 同样有力地反映了连接组的内在空间组织 。

图3 功能网络的毫秒动态。A)应用于静息状态MEG的隐马尔可夫模型(HMM)提取数据。每个状态都由特定的地形决定。这些状态图类似于fMRI通常观察到的典型内在连接网络 (ICN)。B)与 HMM 状态相关的时间尺度显示在面板A中;C)“重放”是大脑自发地重新审视最近获得的信息以例如巩固记忆的过程。这些重播事件与特定 HMM 状态发生概率的改变有关。左图显示了“重放”事件期间 HMM 状态发生概率的变化。右侧的地图显示了在回放期间更有可能表达的四个大脑网络,其中包括默认模式和顶叶阿尔法网络。

313 跨认知状态的内在电生理连接组的稳定性

大规模连通性的内在空间组织的一个关键特征是其认知上下文的相对独立性。这种对认知环境的不敏感性在fMRI中得到了很好的量化,表明大脑的fMRI 衍生的时间平均连接组组织的特定任务变化很小。然而,与 BOLD 信号的非周期性慢速波动相比,基于振荡的功能连接可以很好地支持认知过程所需的数十到数百毫秒的快速时间尺度上的远程通信。这种能力是否会导致认知环境对电生理 FC 组织进行更强的重构?诸如上述讨论的电生理连接组研究通常侧重于无任务静息状态,很少有电生理连接组研究定量比较认知状态。

一项这样的研究分析了不同唤醒水平和日常活动的一天 iEEG 记录。源自 100秒和更长周期的幅度和相位耦合在昼夜循环中显示出一致的空间组织。一项使用传感器级脑电图的相关研究确定了振幅和相位耦合组织在不同睡眠阶段和觉醒的高度空间相关性。源空间中的EEG研究表明,在对不同任务(静止状态、视频观看和闪烁光栅)进行几分钟计算时,相位耦合在空间上是一致的,并且跨频带具有相似的模块化组织。相位和幅度耦合揭示了跨认知状态的高度相似、很大程度上与状态无关的空间分量。这种空间组织在所有频带之间共享。

总的来说,这些研究表明,功能连接的空间组织在认知状态(包括觉醒水平、静息清醒和具有不同认知需求的任务期)上基本稳定,即它本质上主要是内在的。该组织在很大程度上也是跨频段共享的。因此,电生理连接组的动态变化,包括那些自发发生的、由任务环境引发的或由刺激引起的变化,应该根据相对稳定的内在组织的信息偏离来研究 。

32 持续的活动在快速的时间尺度上动态变化

连接性随时间变化的现象已得到充分证实。虽然连接的静止状态波动很明显,但有时很难(甚至不可能)将这些波动与行为联系起来 。 奥尼尔等人使用滑动窗口来演示电生理连接如何随着运动任务而变化。这项工作采用了一种基于典型相关性的方法,能够检测感觉运动系统中的“子网络”。Neill 等人使用 6 秒滑动窗口测量了完整的连接组矩阵,并展示了 Sternberg 工作记忆任务期间网络的形成和分解。 这些研究开始表明,功能连接的完整动态方法为任务诱发动力学提供了新的见解 。

使用隐马尔可夫模型可能会消除滑动窗口(和类似)方法的局限性 。 在 Baker 等人的早期论文中,这种方法被用来揭示大脑状态的复发,这些状态被证明存在于几百毫秒的时间尺度上。Vidaurre 等人表明可以从正在进行的电生理数据中提取规范的 ICN(运动、视觉、默认模式)。重要的是,这些网络再次被证明可以在快速(<100ms)的时间尺度上进行调制。这些研究表明,规范ICN的表达可能会在比以前想象的更快的时间尺度上发展。

测量网络动力学毫秒波动的能力引出了一个问题,即是否可以使用相同的方法来理解电生理数据的持续时空特征如何与任务相交 。 Higgins 及其同事最近的工作解决了这个问题。作者使用 HMM 来模拟自发记忆“重放”期间的网络波动。回放是与特定项目相关的神经活动自发启动以巩固记忆的过程。回放事件通常在默认模式和顶叶 alpha 网络的激活期间选择性地发生——这两个网络已知与内向注意力相关。 这些发现提供了迄今为止最清晰的指示,表明正在进行的电生理网络活动如何被动态和选择性地调节以支持认知处理 。

综上所述,电生理学为以毫秒级时间和高空间精度标测动态连接体提供了最佳途径。结合对神经生理学相互作用的有意义的测量,它有助于更好地表征静息状态无任务数据。此外,电生理学还有助于更深入地理解任务诱发事件与正在进行的大脑活动之间的关系 。

4  有意义的电生理信号的频率带宽是多少?

电生理信号的毫秒级分辨率是他们最大的神经科学资产。信息论的一个主要结果是,信号分量以采样频率的一半的速度演化,就可以传达有意义的内容。当前电生理学硬件的数字化采样率可以高达每通道几十kHz。这是否意味着高达10kHz的大规模大脑信号波动传达了对识别连接组相互作用有意义的信息位 。

在特定环境中测量特定生物系统的每一种仪器都容易受到噪声的影响。噪声表征经常被随便忽视,因为它具有挑战性或根本不切实际。在我们的领域中,MEG系统最适合仔细表征环境和仪器噪声条件。运行“空房间”测量确实被认为是一种很好的做法,即在每个实验会话周围没有参与者在 MEG 传感器阵列下的情况下,以捕获可能在会话之间发生变化的噪声条件的导数,此类“干”数据运行有助于表征技术本底噪声及其频谱时间结构。

对于EEG,“空房间”条件是不切实际的,因为电极信号需要直接接触导电介质,即头皮或精心制作的导电体模设置。因此,截止频率和采样率通常是特殊定义的,通常设置在数百赫兹的范围内。这既不完全严谨也不令人满意,而只是举例说明了实验神经科学的某些方面如何仍然受到实践的指导。

考虑1 kHz采样的数据,这是该领域常见的范围。因此,理论上可用于信号分析的最大频率为500 Hz,实际上约为 250-300 Hz,这通常由仪器的附加抗混叠硬件滤波器强加。一个 250Hz 的大脑信号频带代表了一个由慢到快波动的广阔领域,以表征 电生理连接 组。从电气工程的角度来看,电生理数据因此被认为是 宽带 信号。有经验证据表明,头皮和皮质记录可以捕获与复杂的人类行为或临床症状有意义相关的快速(高频)信号。例如,外部感觉信号的神经夹带是一种强大的实验方法,可以通过在高达100 Hz左右的快速频率下特别提高它们的信噪比。刺激事件也可以诱发100 Hz以上的高频振荡突发并且由癫痫脑自发产生。这种快速信号是否在大脑网络的区域间通信中发挥作用是一个积极研究的问题。

总之,宽带信号可以实现丰富多样的信息通道。这意味着神经信息位可以通过不同的信息通道(例如限制在窄频带内的振荡信号)和/或通过更复杂的信号编码形式(例如相位幅度、交叉频率)在区域之间并行传输互动或以上所有。这些考虑对于产生可测试的机械假设以理解定义功能连接组的电生理信号相互作用的性质具有深远的意义 。

5  总结

本文总结了跨电生理学和功能磁共振的连通性在空间和时间上的收敛,它们不受逆问题的影响。我们还强调了电生理连接与个体内部和个体之间的行为的关联,以及与认知过程(如记忆巩固)相关的快速时变连接动力学,这些进一步支持了源定位电生理连接的重要性。使用血流动力学信号在很大程度上无法获得如此快速的连接组状态变化。此外,电生理和功能磁共振连接可能反映部分不重叠的神经和生理现象。功能性磁共振被概念化为由血流动力学反应平滑的电生理活动。然而,经过优化以在快速或慢速时间尺度上进行通信的神经群体和神经束可能分别通过电生理和功能磁共振测量得到更大的权重,并且功能磁共振连接可能容易受到跨区域血管需求的影响 。

最后,我们认为全脑电生理连接组学是基础和临床神经科学研究的机会。我们希望当前的观点和立场能够激发人们的信念,以充分利用人类大脑的分布式持续电生理中未知的财富。

参考文献:

Connectomics of human electrophysiology

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/800011.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-09
下一篇2023-07-09

发表评论

登录后才能评论

评论列表(0条)

    保存