自然语言处理有哪些商用进展

自然语言处理有哪些商用进展,第1张

自然语言处理(NLP)有多种商用用途。

语音识别:在智能语音助手、智能音箱、智能家居控制等场景中,语音识别技术可以帮助用户通过语音与设备进行交互。

语音合成:可以用于语音助手、智能家居、汽车导航系统等场景,帮助用户通过语音控制和了解信息。

自然语言理解:可以用于问答系统、智能客服、搜索引擎、智能家居等场景,帮助用户理解自然语言语境,并自动提取信息。

机器翻译:在移动应用、网站和跨境电商中广泛应用,帮助用户翻译文本和语音,提高多语言交流的效率。

文本分类和情感分析:可用于新闻聚合、社交媒体监测、客户反馈分析等场景,帮助企业了解客户的需求和情绪,改善客户体验。

总之,自然语言处理技术在商业领域有着广泛的应用,包括语音识别、语音合成、自然语言理解、机器翻译、文本分类和情感分析等,能够帮助用户更好地理解和使用自然语言,并帮助企业更好地了解客户需求和情绪,提高客户体验。

运用了自然语言处理、情感识别、语音识别、机器学习等多种技术手段。根据相关信息查询显示:心心相融,爱达未来是一款基于人工智能技术的情感交互产品,它运用了自然语言处理、情感识别、语音识别、机器学习等多种技术手段。具体来说,它通过自然语言处理技术,能够对用户的语音进行识别和理解,从而实现与用户的交互。

自然语言处理(NLP)在去去几年中已经有了惊人的进展,未来的前景也非常广阔。下面是一些可能的发展方向:

更智能的虚拟助手:随着技术的进步,虚拟助手将变得更加智能化,能够更好地理解和响应人类语言,为用户提供更加精准的服务。

2 情感分析和情感识别:情感分析和情感识别能够帮助企业了解用户的情感状态,从而更好地理解他们的需求,为用户提供更加个性化的服务。

3 机器翻译:机器翻译是NLP领域的重要领域之一,未来的机器翻译技术将变得更加智能化,能够更好地理解上下文,从而实现更加准确的翻译。 

4 自然语言生成:自然语言生成是指让计算机自动生成自然语言文本,未来的自然语言生成技术将变得更加智能化,能够生成更加流畅、清晰、自然的文本。

总而言之,随着技术的不断进步,自然语言处理在未来的发展前景非常广阔,将为人们的生活和工作带来更多的便利和创新。

写周报

查文献

聊食谱

码代码

写作文

写小说

自然语言处理(NLP)在旅游领域具有广泛的应用,其中之一是情感分析。情感分析是指通过计算机程序来识别文本中的情感倾向,分析人们对旅游目的地、酒店、餐厅、交通工具等的评价。这种技术可以帮助旅游公司、酒店、餐厅等机构了解消费者的需求和喜好,改善服务质量和提高客户满意度。

一个典型的旅游情感分析应用是在线评论分析。在线评论是消费者对旅游目的地、酒店、餐厅等的反馈,通过使用 NLP 技术,旅游公司和酒店等机构可以分析这些评论,了解消费者对服务质量、位置、价格、餐饮等的看法。这些信息可以帮助他们改善服务质量、提高客户满意度。

另一个应用是社交媒体情感分析。社交媒体是消费者展示旅游经历的主要渠道,通过使用 NLP 技术,旅游公司和酒店等机构可以分析消费者在社交媒体上发布的文本、和视频,了解消费者对旅游目的地、酒店、餐厅等的感受。这些信息可以帮助他们改善服务质量、提高客户满意度、扩大品牌知名度。

                                   

此外,NLP还可以用于预测未来趋势,通过分析历史数据来预测旅游需求、价格趋势等,进而帮助旅游公司和酒店等机构调量、提高客户满意度。

NLP技术还可以用于语音识别和语音合成,在旅游领域中应用于语音导航、语音查询等场景。例如,旅游公司可以开发一款语音导航应用,让游客在旅游中使用语音命令来获取信息和导航。

总之,NLP在旅游领域有着广泛的应用,它可以帮助旅游公司、酒店、餐厅等机构了解消费者的需求和喜好,改善服务质量和提高客户满意度。通过使用NLP技术,旅游行业可以更好地了解客户,并提供更好的服务和体验。

推荐九芯电子的Nrk2201:NRK2202-A01模块是专用于物联网交互及控制领域的智能MCU模块。

推荐使用YQ5969,5米内本地识别率93%以上,云端识别率97%。YQ5969的语音识别遥控器在预处理阶段得到能够表征语音信号本质特征的特征参数,能够将这些特征参数进行匹配进行识别率高的语音识别。

推荐使用YQ5969,该模组系列可以支持1--8个咪头,该语音芯片可以根据客户具体需求提供单核--4核32bitARM核心的不同方案,可以支持本地和云端识别不同需求。5米内本地识别率93%以上,云端识别率97%。

深耕声音领域二十余年,对声音的研究有着独家的优势,推出的众多智能语音平台已经被国内外众多一线品牌采用,市场口碑都非常不错,高要求客户的实战才是炬芯多年来产品优秀的基础。推荐全新智能语音芯片平台ATS3607(D)。

让机器说话,用的是语音合成技术;让机器听懂人说话,用的是语音识别技术。此外,语音技术还包括语音编码、音色转换、口语评测、语音消噪和增强等技术,有着广阔应用空间。

推荐使用YQ5969,这个语音识别遥控器可以支持本地和云端识别不同需求。YQ5969语音识别遥控器对训练文本数据库进行语法、语义分析,经过基于统计模型训练得到语言模型。

声发射出来的信号可粗略分为两类声波信号和声纹信号。

声波信号和声纹信号的区别

1物理特性不同

声波信号是一种机械波,具有频率、振幅和波长等物理量;而声纹信号则是人类声音中所包含的个体特征,如声调、音色、语速、语调等。

2应用领域不同

声波信号在通信、音乐、语音识别等领域有着广泛的应用;而声纹信号则主要用于身份识别、语音识别、情感识别等领域。

3识别方式不同

声波信号的识别主要依靠声音的高低、响度、音色等特征;而声纹信号的识别则主要依靠声调、音色、语速、语调等个体特征。

4技术难度不同

声波信号的识别技术相对成熟,已经有了很多应用;而声纹信号的识别技术相对较新,还需要进一步的研究和发展。

5声波信号

声波信号是指声音在空气、水、固体等介质中传播时所产生的机械波。声波信号的特点是具有频率、振幅和波长等物理量,可以通过声音的高低、响度、音色等特征来进行识别和分析。声波信号在通信、音乐、语音识别等领域有着广泛的应用。

6声纹信号

声纹信号是指人类声音中所包含的个体特征,如声调、音色、语速、语调等。声纹信号可以用于身份识别、语音识别、情感识别等领域。与传统的密码、指纹等身份识别方式相比,声纹识别具有非接触、非侵入性、易于使用等优点,因此在安全领域有着广泛的应用。

7知识拓展:

声发射法适用于实时动态监控检测,且只显示和记录扩展的缺陷,这意味着与缺陷尺寸无关。而是显示正在扩展的最危险缺陷。这样,应用声发射检验方法时可以对缺陷不按尺寸分类,而按其危险程度分类。

按这样分类,构件在承载时可能出现工件中应力较小的部位尺寸大的缺陷不划为危险缺陷,而应力集中的部位按规范和标准要求允许存在的缺陷因扩展而被判为危险缺陷。声发射法的这一特点原则上可以按新的方式确定缺陷的危险性。

一、计算机视觉

计算机视觉是指用摄像机和电脑代替人眼对目标进行识别、跟踪和测量,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。

作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取“信息”的人工智能系统。计算机视觉目前还主要停留在图像信息表达和物体识别阶段,人工智能更强调推理和决策。目前计算机视觉主要应用在安防摄像头、交通摄像头、无人驾驶、无人机、金融、医疗等方面。

二、语音识别

语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。

语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。语音识别目前主要应用在车联网、智能翻译、智能家居、自动驾驶方面。

三、自然语言处理

自然语言处理大体包括了自然语言理解和自然语言生成两个部分,实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等,前者称为自然语言理解,后者称为自然语言生成。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。

针对一定应用,具有相当自然语言处理能力的实用系统已经出现,典型的例子有:多语种数据库和专家系统的自然语言接口、各种机器翻译系统、全文信息检索系统、自动文摘系统等。

四、机器学习

机器学习就是让机器具备人一样学习的能力,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心。

机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

五、大数据

大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。大数据是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。

传统的人机交互,主要通过键盘、鼠标、屏幕等方式进行,只追求便利和准确,无法理解和适应人的情绪或心境。而如果缺乏这种情感理解和表达能力,就很难指望计算机具有类似人一样的智能,也很难期望人机交互做到真正的和谐与自然。由于人类之间的沟通与交流是自然而富有感情的,因此,在人机交互的过程中,人们也很自然地期望计算机具有情感能力。情感计算(Affective Computting)就是要赋予计算机类似于人一样的观察、理解和生成各种情感特征的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。 有关人类情感的深入研究,早在19世纪末就进行了。然而,除了科幻小说当中,过去极少有人将“感情”和无生命的机器联系在一起。只有到了现代,随着数字信息技术的发展,人们才开始设想让机器(计算机)也具备“感情”。从感知信号中提取情感特征,分析人的情感与各种感知信号的关联,是国际上近几年刚刚兴起的研究方向(图1)。

人的情绪与心境状态的变化总是伴随着某些生理特征或行为特征的起伏,它受到所处环境、文化背景、人的个性等一系列因素的影响。要让机器处理情感,我们首先必须探讨人与人之间的交互过程。那么人是如何表达情感,又如何精确地觉察到它们的呢?人们通过一系列的面部表情、肢体动作和语音来表达情感,又通过视觉、听觉、触觉来感知情感的变化。视觉察觉则主要通过面部表情、姿态来进行;语音、音乐则是主要的听觉途径;触觉则包括对爱抚、冲击、汗液分泌、心跳等现象的处理。

情感计算研究的重点就在于通过各种传感器获取由人的情感所引起的生理及行为特征信号,建立“情感模型”,从而创建感知、识别和理解人类情感的能力,并能针对用户的情感做出智能、灵敏、友好反应的个人计算系统,缩短人机之间的距离,营造真正和谐的人机环境(图2)。 在生活中,人们很难保持一种僵硬的脸部表情,通过脸部表情来体现情感是人们常用的较自然的表现方式,其情感表现区域主要包括嘴、脸颊、眼睛、眉毛和前额等。人在表达情感时,只稍许改变一下面部的局部特征(譬如皱一下眉毛),便能反映一种心态。在1972年,著名的学者Ekman提出了脸部情感的表达方法(脸部运动编码系统FACS)。通过不同编码和运动单元的组合,即可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。该成果已经被大多数研究人员所接受,并被应用在人脸表情的自动识别与合成(图3)。

随着计算机技术的飞速发展,为了满足通信的需要,人们进一步将人脸识别和合成的工作融入到通信编码中。最典型的便是MPEG4 V2视觉标准,其中定义了3个重要的参数集:人脸定义参数、人脸内插变换和人脸动画参数。表情参数中具体数值的大小代表人激动的程度,可以组合多种表情以模拟混合表情。

在目前的人脸表情处理技术中,多侧重于对三维图像的更加细致的描述和建模。通常采用复杂的纹理和较细致的图形变换算法,达到生动的情感表达效果。在此基础上,不同的算法形成了不同水平的应用系统(图4,图5) 人的姿态一般伴随着交互过程而发生变化,它们表达着一些信息。例如手势的加强通常反映一种强调的心态,身体某一部位不停地摆动,则通常具有情绪紧张的倾向。相对于语音和人脸表情变化来说,姿态变化的规律性较难获取,但由于人的姿态变化会使表述更加生动,因而人们依然对其表示了强烈的关注。

科学家针对肢体运动,专门设计了一系列运动和身体信息捕获设备,例如运动捕获仪、数据手套、智能座椅等。国外一些著名的大学和跨国公司,例如麻省理工学院、IBM等则在这些设备的基础上构筑了智能空间。同时也有人将智能座椅应用于汽车的驾座上,用于动态监测驾驶人员的情绪状态,并提出适时警告。意大利的一些科学家还通过一系列的姿态分析,对办公室的工作人员进行情感自动分析,设计出更舒适的办公环境。 在人类的交互过程中,语音是人们最直接的交流通道,人们通过语音能够明显地感受到对方的情绪变化,例如通过特殊的语气词、语调发生变化等等。在人们通电话时,虽然彼此看不到,但能从语气中感觉到对方的情绪变化。例如同样一句话“你真行”,在运用不同语气时,可以使之成为一句赞赏的话,也可以使之成为讽刺或妒忌的话。

目前,国际上对情感语音的研究主要侧重于情感的声学特征的分析这一方面。一般来说,语音中的情感特征往往通过语音韵律的变化表现出来。例如,当一个人发怒的时候,讲话的速率会变快,音量会变大,音调会变高等,同时一些音素特征(共振峰、声道截面函数等)也能反映情感的变化。中国科学院自动化研究所模式识别国家重点实验室的专家们针对语言中的焦点现象,首先提出了情感焦点生成模型。这为语音合成中情感状态的自动预测提供了依据,结合高质量的声学模型,使得情感语音合成和识别率先达到了实际应用水平。 虽然人脸、姿态和语音等均能独立地表示一定的情感,但人在相互交流的过程中却总是通过上面信息的综合表现来进行的。所以,惟有实现多通道的人机界面,才是人与计算机最为自然的交互方式,它集自然语言、语音、手语、人脸、唇读、头势、体势等多种交流通道为一体,并对这些通道信息进行编码、压缩、集成和融合,集中处理图像、音频、视频、文本等多媒体信息。

目前,多模态技术本身也正在成为人机交互的研究热点,而情感计算融合多模态处理技术,则可以实现情感的多特征融合,能够有力地提高情感计算的研究深度,并促使出现高质量、更和谐的人机交互系统。

在多模态情感计算研究中,一个很重要的研究分支就是情感机器人和情感虚拟人的研究。美国麻省理工学院、日本东京科技大学、美国卡内基·梅隆大学均在此领域做出了较好的演示系统。目前中科院自动化所模式识别国家重点实验室已将情感处理融入到了他们已有的语音和人脸的多模态交互平台中,使其结合情感语音合成、人脸建模、视位模型等一系列前沿技术,构筑了栩栩如生的情感虚拟头像,并正在积极转向嵌入式平台和游戏平台等实际应用(图6)。 情感状态的识别和理解,则是赋予计算机理解情感并做出恰如其分反应的关键步骤。这个步骤通常包括从人的情感信息中提取用于识别的特征,例如从一张笑脸中辨别出眉毛等,接着让计算机学习这些特征以便日后能够准确地识别其情感。

为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类,提出了几类基本情感。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如:在情感语音的声学分析的基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等不同模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

不过,受到情感信息的捕获技术的影响,并缺乏大规模的情感数据资源,有关多特征融合的情感理解模型的研究还有待深入。随着未来的技术进展,还将提出更有效的机器学习机制。 情感计算与智能交互技术试图在人和计算机之间建立精确的自然交互方式,将会是计算技术向人类社会全面渗透的重要手段。未来随着技术的不断突破,情感计算的应用势在必行,其对未来日常生活的影响将是方方面面的,目前我们可以预见的有:

情感计算将有效地改变过去计算机呆板的交互服务,提高人机交互的亲切性和准确性。一个拥有情感能力的计算机,能够对人类的情感进行获取、分类、识别和响应,进而帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们便于理解自己和他人的情感世界。

它还能帮助我们增加使用设备的安全性(例如当采用此类技术的系统探测到司机精力不集中时可以及时改变车的状态和反应)、使经验人性化、使计算机作为媒介进行学习的功能达到最佳化,并从我们身上收集反馈信息。例如,一个研究项目在汽车中用电脑来测量驾车者感受到的压力水平,以帮助解决所谓驾驶者的“道路狂暴症”问题。

情感计算和相关研究还能够给涉及电子商务领域的企业带来实惠。已经有研究显示,不同的图像可以唤起人类不同的情感。例如,蛇、蜘蛛和枪的能引起恐惧,而有大量美元现金和金块的则可以使人产生非常强烈的积极反应。如果购物网站和股票交易网站在设计时研究和考虑这些因素的意义,将对客流量的上升产生非常积极的影响。

在信息家电和智能仪器中,增加自动感知人们的情绪状态的功能,可以提供更好的服务。

在信息检索应用中,通过情感分析的概念解析功能,可以提高智能信息检索的精度和效率。

在远程教育平台中,情感计算技术的应用能增加教学效果。

利用多模式的情感交互技术,可以构筑更贴近人们生活的智能空间或虚拟场景等等。

情感计算还能应用在机器人、智能玩具、游戏等相关产业中,以构筑更加拟人化的风格和更加逼真的场景。 由于缺乏较大规模的情感数据资源,情感计算的发展受到一定的限制,而且多局限在语音、身体语言等具体而零散的研究领域,仅仅依靠这些还难以准确地推断和生成一个人的情感状态,并进行有效的情感交互。目前,科学家们正在积极地探索多特征融合的情感计算理论模型。很多人认为,今后几年情感计算将在这些方面需要取得突破:

更加细致和准确的情感信息获取、描述及参数化建模。

多模态的情感识别、理解和表达(图像、语音、生理特征等)。

自然场景对生理和行为特征的影响。

更加适用的机器学习算法。

海量的情感数据资源库。 不久前,为了推动我国在这一领域的研究,探讨情感计算和智能交互技术的发展动态与趋势,促进我国科研人员在此领域的交流与合作,中国科学院自动化研究所、中国自动化学会、中国计算机学会、中国图象图形学会、中国中文信息学会、国家自然科学基金委员会和国家863计划计算机软硬件技术主题作为主办单位,在北京主办了第一届中国情感计算与智能交互学术会议。

事实证明,情感计算的概念尽管诞生不久,但已受到学术界和产业界的高度重视,相关领域的研究和应用正方兴未艾,国家自然科学基金委也将其列入重点项目的指南中。值得注意的是,近几年来,与情感计算有密切关系的普适计算和可穿戴式计算机的研究也已获得了蓬勃发展,并同样得到了国家的大力支持。这为情感信息的实时获取提供了极大的便利条件,也为情感计算在国内的发展提供了更好的发展平台。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/811689.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-09
下一篇2023-07-09

发表评论

登录后才能评论

评论列表(0条)

    保存