一、一般处理流程
语料获取 -> 文本预处理 -> 特征工程 -> 特征选择
1、语料获取
即需要处理的数据及用于模型训练的语料。
数据源可能来自网上爬取、资料积累、语料转换、OCR转换等,格式可能比较混乱。需要将url、时间、符号等无意义内容去除,留下质量相对较高的非结构化数据。
2、文本预处理
将含杂质、无序、不标准的自然语言文本转化为规则、易处理、标准的结构化文本。
①处理标点符号
可通过正则判定、现有工具(zhon包)等方式筛选清理标点符号。
②分词
将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列的过程。
一般看来英文较容易可通过空格符号分词,中文相对复杂,参考结巴分词、盘古分词、Ansj等工具。
常见的分词算法有:基于字符串匹配的分词方法、基于理解的分词方法、基于统计的分词方法和基于规则的分词方法,每种方法下面对应许多具体的算法。
③词性标注
为自然语言文本中的每个词汇赋予一个词性的过程,如名词、动词、副词等。可以把每个单词(和它周围的一些额外的单词用于上下文)输入预先训练的词性分类模型。
常用隐马尔科夫模型、N 元模型、决策树
④stop word
英文中含大量 a、the、and,中文含大量 的、是、了、啊,这些语气词、助词没有明显的实际意义,反而容易造成识别偏差,可适当进行过滤。
⑤词形还原
偏向于英文中,单数/复数,主动/被动,现在进行时/过去时/将来时等,还原为原型。
⑥统计词频
因为一些频率过高/过低的词是无效的,对模型帮助很小,还会被当做噪声,做个词频统计用于停用词表。
⑦给单词赋予id
给每一个单词一个id,用于构建词典,并将原来的句子替换成id的表现形式
⑧依存句法分析
通过分析句子中词与词之间的依存关系,从而捕捉到词语的句法结构信息(如主谓、动宾、定中等结构关系),并使用树状结构来表示句子的句法结构信息(如主谓宾、定状补等)。
3、特征工程
做完语料预处理之后,接下来需要考虑如何把分词之后的字和词语表示成计算机能够计算的类型。
如果要计算我们至少需要把中文分词的字符串转换成数字,确切的说应该是数学中的向量。有两种常用的表示模型分别是词袋模型和词向量。
①词向量
词向量是将字、词语转换成向量矩阵的计算模型。目前为止最常用的词表示方法是 One-hot,这种方法把每个词表示为一个很长的向量。
②词袋模型
即不考虑词语原本在句子中的顺序,直接将每一个词语或者符号统一放置在一个集合(如 list),然后按照计数的方式对出现的次数进行统计。统计词频这只是最基本的方式,TF-IDF 是词袋模型的一个经典用法。
常用的表示模型有:词袋模型(Bag of Word, BOW),比如:TF-IDF 算法;词向量,比如 one-hot 算法、word2vec 算法等。
4、特征选择
在文本挖掘相关问题中,特征工程也是必不可少的。在一个实际问题中,构造好的特征向量,是要选择合适的、表达能力强的特征。
举个自然语言处理中的例子来说,我们想衡量like这个词的极性(正向情感还是负向情感)。我们可以预先挑选一些正向情感的词,比如good。然后我们算like跟good的PMI,用到点互信息PMI这个指标来衡量两个事物之间的相关性。
特征选择是一个很有挑战的过程,更多的依赖于经验和专业知识,并且有很多现成的算法来进行特征的选择。目前,常见的特征选择方法主要有 DF、 MI、 IG、 CHI、WLLR、WFO 六种。
5、模型训练
在特征向量选择好了以后,接下来要做的事情是根据应用需求来训练模型,我们使用不同的模型,传统的有监督和无监督等机器学习模型,如 KNN、SVM、Naive Bayes、决策树、GBDT、K-means 等模型;深度学习模型比如 CNN、RNN、LSTM、 Seq2Seq、FastText、TextCNN 等。这些模型在分类、聚类、神经序列、情感分析等应用中都会用到。
当选择好模型后,则进行模型训练,其中包括了模型微调等。在模型训练的过程中要注意由于在训练集上表现很好,但在测试集上表现很差的过拟合问题以及模型不能很好地拟合数据的欠拟合问题。同时,也要防止出现梯度消失和梯度爆炸问题。
6、模型评估
在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。模型的评价指标主要有:错误率、精准度、准确率、召回率、F1 值、ROC 曲线、AUC 曲线等。
7、投产上线
模型的投产上线方式主要有两种:一种是线下训练模型,然后将模型进行线上部署提供服务;另一种是在线训练模型,在线训练完成后将模型 pickle 持久化,提供对外服务。
三、NLP应用方向
1、命名实体识别
指识别自然语言文本中具有特定意义的实体,主要包括人名、地名、机构名、时间日期等。
传统机器学习算法主要有HMM和CRF,深度学习常用QRNN、LSTM,当前主流的是基于bert的NER。
2、情感分析
文本情感分析和观点挖掘(Sentiment Analysis),又称意见挖掘(Opinion Mining)是自然语言处理领域的一个重要研究方向。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。
情感分析技术可以分为两类,一类是基于机器学习的方法,通过大量有标注、无标注的主观语料,使用统计机器学习算法,通过提取特征,进行文本情感分析。另一类是基于情感词典的方法,根据情感词典所提供的词的情感极性(正向、负向),从而进行不同粒度的(词语、短语、属性、句子、篇章)下的文本情感分析。
3、文章标签
文章标签是利用机器学习算法,对文章进行文字和语义的分析后,提取出若干个重要的词或者短语(关键短语)。关键短语是NLP基础的算法模块,有了关键短语,能为后续的搜索、推荐等更高级的应用提供有力的抓手。
适用场景:1、个性化推荐:通过对文章的标签计算,结合用户画像,精准的对用户进行个性化推荐;2、话题聚合:根据文章计算的标签,聚合相同标签的文章,便于用户对同一话题的文章进行全方位的信息阅读;3、搜索:使用中心词可以对query进行相似度计算、聚类、改写等,可以用于搜索相关性计算。
4、案件串并
①信息抽取
运用实体抽取、关系抽取,从案情中抽取关键信息,如从警情中可以抽取报警人项目、报警人电话、案发地址等信息
②实体对齐
相同的实体在不同的案情中会有不同的表述,会给串并带来困难。可针对地址、人名、组织名进行对齐处理。
③文本聚类
对于关键片段类信息,无法像实体那样对齐,需要借助文本聚类技术进行关联。
④构建图谱
将信息抽取结果存入图谱。每个警情id对应一个节点,实体、属性、关键片段作为节点,对齐的实体、同一类的文本存为同一个节点。
除了来自于从警情中抽取的信息,还可以将其他警务系统中存在的结构化数据导入(如来自户籍信息的人物关系),从而丰富图谱。
⑤图谱检索
完成以上工作,即完成了案件串并的必要基础建设,接下来通过图谱的查询功能自动完成案件的串并。首先需要设定串并的条件,案件串并的条件在警务实战中已有很多的积累,如“具有相似的作案手段”,又如“相似作案手段,嫌疑人有共同联系人”,只需要将这些条件用图谱查询语言表达出来。
for循环是很多开发语言中最常用的一个循环。它可以大大提高代码的运行速度,简化逻辑代码,非常适用。
首先:for 有两种形式:一种是数字形式,另一种是通用形式。
数字形式的 for 循环,通过一个数学运算不断地运行内部的代码块。 下面是它的语法:
stat ::= for Name ‘=’ exp ‘,’ exp [‘,’ exp] do block end
block 将把 name 作循环变量。 从第一个 exp 开始起,直到第二个 exp 的值为止, 其步长为第三个 exp 。 更确切的说,一个 for 循环看起来是这个样子
for v = e1, e2, e3 do block end
注意下面这几点:
其次:所有三个控制表达式都只被运算一次, 表达式的计算在循环开始之前。 这些表达式的结果必须是数字。
var,limit,以及 step 都是一些不可见的变量。 这里给它们起的名字都仅仅用于解释方便。
如果第三个表达式(步长)没有给出,会把步长设为 1 。
你可以用 break 和 goto 来退出 for 循环。
循环变量 v 是一个循环内部的局部变量; 如果你需要在循环结束后使用这个值, 在退出循环前把它赋给另一个变量。
通用形式的 for 通过一个叫作 迭代器 的函数工作。 每次迭代,迭代器函数都会被调用以产生一个新的值, 当这个值为 nil 时,循环停止。
注意以下几点:
explist 只会被计算一次。 它返回三个值, 一个 迭代器 函数, 一个 状态, 一个 迭代器的初始值。
f, s,与 var 都是不可见的变量。 这里给它们起的名字都只是为了解说方便。
你可以使用 break 来跳出 for 循环。
环变量 var_i 对于循环来说是一个局部变量; 你不可以在 for 循环结束后继续使用。 如果你需要保留这些值,那么就在循环跳出或结束前赋值到别的变量里去。
var,limit,以及 step 都是一些不可见的变量。 这里给它们起的名字都仅仅用于解释方便。
如果第三个表达式(步长)没有给出,会把步长设为 1 。
你可以用 break 和 goto 来退出 for 循环。
循环变量 v 是一个循环内部的局部变量; 如果你需要在循环结束后使用这个值, 在退出循环前把它赋给另一个变量。
通用形式的 for 通过一个叫作 迭代器 的函数工作。 每次迭代,迭代器函数都会被调用以产生一个新的值, 当这个值为 nil 时,循环停止。
注意以下几点:
explist 只会被计算一次。 它返回三个值, 一个 迭代器 函数, 一个 状态, 一个 迭代器的初始值。
f, s,与 var 都是不可见的变量。 这里给它们起的名字都只是为了解说方便。
你可以使用 break 来跳出 for 循环。
环变量 var_i 对于循环来说是一个局部变量; 你不可以在 for 循环结束后继续使用。 如果你需要保留这些值,那么就在循环跳出或结束前赋值到别的变量里去。
源文地址: https://zhuanlanzhihucom/p/50095779
对话系列的系列文章,我都是学习上面链接大佬的文章,准备将整个对话系统脉络先走通,一边学习一边加以记录,使得自己学习效果更加深刻一点。想看的人还是建议去看大佬源文。
自然语言理解(NLU)就是要获得一个计算机能 直接使用的语义表示 。比如分布式语义表示(Distributional semantics)、框架语义表示(Frame semantics)、模型语义表示(Model-theoretic semantics)等,本文采用的是frame semantics。NLU在很多NLP领域或任务都有涉及,比如问答、信息检索、阅读理解、对话系统以及很多需要NLG的任务等。不同任务下的NLU也不一样,今天我们简单来聊聊对话系统中的NLU。对话系统的自然语言理解(NLU) 部分我们称之为SLU。
因为SLU内容较多,所以打算分3次写。第1次写领域分类和意图识别,第2次写槽填充,第三次写Structural LU、Contextual LU、各种NLU方法的对比以及评测标准。
对话系统按照功能划分为:闲聊型、任务型、知识问答型和推荐型。在不同类型的聊天系统中,NLU也不尽相同。
闲聊型对话中的NLU就是根据上下文进行意图识别、情感分析等, 并作为对话管理(DM)的输入;
任务型对话中的NLU就是领域分类和意图识别、槽填充。他的输入是用户的输入Utterance,输出是Un =(In, Zn), In是intention,Zn是槽植对。
知识问答型对话中的NLU主要是根据用户的问题,进行问句类型识别与问题分类,以便于更精准的进行信息检索或文本匹配来生成用户需要的知识(知识、实体、片段等)。
推荐型对话系统中的NLU就是根据用户各种行为数据和爱好进行兴趣匹配,以便于找到更精准的推荐候选集。
先来看看我汇总的任务型对话系统中的NLU之Domain/Intent Classification
下面分别介绍下对话系统中不同Domain/Intent Classification技术。
这个就是用传统的SVM或MaxEnt,模型方面就是传统的MaxEnt或SVM(几个不同变种、几种不同核函数等),特征主要就是用户的输入Utterance的句法、词法、词性等特征,分类的label集合是事先确定的,这方面paper也不少,不过比较久远了。相信大家都懂,不再赘述。
这种方法基于Deep belief network,它是一种生成模型,由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,被“限制”为可视层和隐层,层间有连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。
具体到这篇论文,主要思路:无监督训练权重,然后用BP做Fine-tuning。另外,还对比了与SVM、最大熵、boosting的效果。
这是一种基于Deep convex network(一种可扩展的模式分类体系结构)做NLU,具体可以参考Li Deng大牛在2011的Interspeech的paper。
这个工作的主要思路:用n-grams对用户的Utterance做特征选择,然后把简单的分类器做 Stacking ,Stacking跟Bagging与Boosting一样,也是一种ensemble的方法。 Stacking 指训练一个模型用于组合其他各个模型, 在这里相当于二次分类 。首先训练多个不同的模型,然后把训练的各个模型的输出作为输入来训练一个模型以得到最终输出。
另外,基于DCN的方法还被扩展到kernel-DCN( Deng et al, 2012 )
这种方法使用了RNN和LSTM,模型方面不用赘述了吧,都烂大街了。最终结论是,输入完所有词再进行意图分类效果更好。
这个方法是用RNN+CNN做对话的act分类,提出了基于RNN和CNN并融合preceding short texts的模型。短文本如果出现在一个序列中,使用preceding short texts可能提高分类效果,这就是本文的最大的动机和创新点,事实证明也确实达到了SOTA的效果。
本文的两部分:使用RNN/CNN把短文本变成向量表示,基于文本的向量表示和preceding short texts做act分类。
另外,还有rule-based的方法做Domain/Intent Classification,比如CFG、JSGF,感兴趣的可以看看。基于RNN的细分的话,还有RCNN(Lai et al, 2015)和C-LSTM(Zhou et al, 2015)两种方法。
以上是我关于对话NLU中Domain/Intent Classification的一些总结。下面贴出了一些代表性的paper,大家可以深入学习。另外,如果看完论文还是不太懂的欢迎微信找我讨论。
Deep belief nets for natural language call-routing, Sarikaya et al, 2011
Towards deeper understanding: Deep convex networks for semantic utterance classification, Tur et al, 2012
Use of kernel deep convex networks and end-to-end learning for spoken language understanding, Deng et al, 2012
Recurrent Neural Network and LSTM Models for Lexical Utterance Classification, Ravuri et al, 2015
Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks, Lee et al, NAACL 2016
线性可分svm的基本思想
一、决策面方程
以二维空间为例,二维空间中任意一条直线方程可以写为
我们将其向量化,可以得到
设用向量w代表矩阵a1和a2,用向量x代表矩阵x1和x2,标量γ代表b,则方程可化表示为
从方程可知,一个n维空间的超平面在二维空间上的表现,可以是一条直线,或者一个曲线(二维空间中只能看到这个n维超平面穿过而无法看到其模样), 超平面方程即是我们的决策面方程
二、函数间隔和几何间隔
在SVM监督学习中,我们规定标签数据为+1和-1两个值,这么做的目的, 可以计算出任意一个样本点在超平面方程上的表现结果的符号,与标签符号是否一致来判断分类的正确性 ,为此我们可以引入函数间隔的概念。
但是当我们成比例的缩放w和γ,函数间隔的值也将成比例的变化,可是超平面的位置并没有发生任何变化,所以函数间隔并不是我们想要的分类间隔,为此,我们需要引入几何间隔的概念
Adaboost是一种迭代算法,其核心的思想就是针对同一个训练集训练不同的分类器,然后把这些弱分类器集合起来,构成一个更强的最终分类器。
但是算法本身是通过改变数据分布来达到实现,它根据每次训练集之中每个样本的分类正确与否,以及上次的总体分类的准确率,来判断每个样本的权值。
将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器融合起来,作为决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并放在关键的训练数据上面。
SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习的领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。
SVM的主要思想可以概括为两点:
1是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能。
2是基于结构风险最小化理论之上在特征空间中构建最优超平面,使得学习器得到全局最优化,并且在整个样本空间的期望以某个概率满足一定上界。
看了很多关于SVM的博客,但是常常只能保存书签之后看,有时候有的博客就突然没了,这里就作为搬运工总结一下之后自己看吧。主要内容来自于:
支持向量机通俗导论(理解SVM的三层境界)
线性回归
给定数据集 , 其中, ,线性回归试图学习到一个线性模型,尽可能地输出正确标记
如果我们要用线性回归算法来解决一个分类问题,(对于分类,y 取值为 0 或者 1),但如果你使用的是线性回归,那么假设函数的输出值可能远大于 1,或者远小于 0,就算所有训练样本的标签 y 都是 0 或 1但是如果算法得到的值远大于 1 或者远小于 0 的话,就会感觉很奇怪。所以我们在接下来的要研究的算法就叫做逻辑回归算法,这个算法的性质是:它的输出值永远在 0 到 1 之间。
所以逻辑回归就是一个分类算法,这个算法的输出值永远在 0 到 1 之间
我们先看二分类的LR,具体做法是:利用sigmoid 函数,将每一个点的回归值映射到0,1之间sigmoid函数特性如下:
如图所示,令 , 当 z > 0 , z 越大, sigmoid 返回值越接近1(但永远不会超过1) 反之,当z < 0时,z 越小, sigmoid 返回值越接近0(但永远不会小于0)
支持向量机 ,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为 特征空间 上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。
线性分类器
给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置):
logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。
假设函数:
其中x是n维特征向量,函数g就是logistic函数。
图像为:
在超平面w x+b=0确定的情况下,|w x+b|能够表示点x到距离超平面的远近,而通过观察w x+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y (wx+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。
定义函数间隔 (用表示)为
而超平面(w,b)关于T中所有样本点(xi,yi)的函数间隔最小值(其中,x是特征,y是结果标签,i表示第i个样本),便为超平面(w, b)关于训练数据集T的函数间隔:
但这样定义的函数间隔有问题,即如果成比例的改变w和b(如将它们改成2w和2b),则函数间隔的值f(x)却变成了原来的2倍(虽然此时超平面没有改变),所以只有函数间隔还远远不够。
事实上,我们可以对法向量w加些约束条件,从而引出真正定义点到超平面的距离--几何间隔(geometrical margin)的概念。
假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量, 为样本x到超平面的距离,如下图所示:
根据平面几何知识,有
其中||w||为w的二阶范数(范数是一个类似于模的表示长度的概念), 是单位向量(一个向量除以它的模称之为单位向量)。
又由于x0 是超平面上的点,满足 f(x0)=0,代入超平面的方程 ,可得 ,即
随即让此式 的两边同时乘以 ,再根据 和 ,即可算出 :
为了得到 的绝对值,令 乘上对应的类别 y,即可得出几何间隔(用 表示)的定义:
从上述函数间隔和几何间隔的定义可以看出:几何间隔就是函数间隔除以||w||,而且函数间隔y (wx+b) = y f(x)实际上就是|f(x)|,只是人为定义的一个间隔度量,而几何间隔|f(x)|/||w||才是直观上的点到超平面的距离。
对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。
通过由前面的分析可知:函数间隔不适合用来最大化间隔值,因为在超平面固定以后,可以等比例地缩放w的长度和b的值,这样可以使得 的值任意大,亦即函数间隔 可以在超平面保持不变的情况下被取得任意大。但几何间隔因为除上了 ,使得在缩放w和b的时候几何间隔的值 是不会改变的,它只随着超平面的变动而变动,因此,这是更加合适的一个间隔。换言之,这里要找的最大间隔分类超平面中的“间隔”指的是几何间隔。
于是最大间隔分类器(maximum margin classifier)的目标函数可以定义为
同时需满足一些条件,根据间隔的定义,有
回顾下几何间隔的定义 ,可知:如果令函数间隔 等于1(之所以令等于1,是为了方便推导和优化,且这样做对目标函数的优化没有影响),则有 = 1 / ||w||且 ,从而上述目标函数转化成了:
相当于在相应的约束条件 下,最大化这个1/||w||值,而1/||w||便是几何间隔。
据了解,
由于这个问题的特殊结构,还可以通过拉格朗日对偶性(Lagrange Duality)变换到对偶变量 (dual variable) 的优化问题,即通过求解与原问题等价的对偶问题(dual problem)得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题。
那什么是拉格朗日对偶性呢?简单来讲,通过给每一个约束条件加上一个拉格朗日乘子 ,(Lagrange multiplier),定义拉格朗日函数(通过拉格朗日函数将约束条件融合到目标函数里去,从而只用一个函数表达式便能清楚的表达出我们的问题)
然后令:
容易验证,当某个约束条件不满足时,例如 ,那么显然有 (只要令 即可)。而当所有约束条件都满足时,则最优值为 ,亦即最初要最小化的量。
因此,在要求约束条件得到满足的情况下最小化 ,实际上等价于直接最小化 (当然,这里也有约束条件,就是 ≥0,i=1,…,n) ,因为如果约束条件没有得到满足, 会等于无穷大,自然不会是我们所要求的最小值。
具体写出来,目标函数变成了:
这里用 表示这个问题的最优值,且和最初的问题是等价的。如果直接求解,那么一上来便得面对w和b两个参数,而 又是不等式约束,这个求解过程不好做。不妨把最小和最大的位置交换一下,变成:
交换以后的新问题是原始问题的对偶问题,这个新问题的最优值用 来表示。而且有 ≤ ,在满足某些条件的情况下,这两者相等,这个时候就可以通过求解对偶问题来间接地求解原始问题。
换言之,之所以从minmax 的原始问题,转化为maxmin 的对偶问题,一者因为 是 的近似解,二者,转化为对偶问题后,更容易求解。
下面可以先求L 对w、b的极小,再求L对 的极大。
KKT条件
≤ 在满足某些条件的情况下,两者等价,这所谓的“满足某些条件”就是要满足KKT条件。
要让两者等价需满足strong duality (强对偶),而后有学者在强对偶下提出了KKT条件,且KKT条件的成立要满足constraint qualifications,而constraint qualifications之一就是Slater条件。所谓Slater 条件,即指:凸优化问题,如果存在一个点x,使得所有等式约束都成立,并且所有不等式约束都严格成立(即取严格不等号,而非等号),则满足Slater 条件。对于此处,Slater 条件成立,所以 ≤ 可以取等号。
一般地,一个最优化数学模型能够表示成下列标准形式:
其中,f(x)是需要最小化的函数,h(x)是等式约束,g(x)是不等式约束,p和q分别为等式约束和不等式约束的数量。
KKT条件的意义:它是一个非线性规划(Nonlinear Programming)问题能有最优化解法的必要和充分条件。
而KKT条件就是指上面最优化数学模型的标准形式中的最小点 x 必须满足下面的条件:
我们这里的问题是满足 KKT 条件的(首先已经满足Slater条件,再者f和gi也都是可微的,即L对w和b都可导),因此现在我们便转化为求解第二个问题。
也就是说,原始问题通过满足KKT条件,已经转化成了对偶问题。而求解这个对偶学习问题,分为3个步骤:首先要让L(w,b,a) 关于 w 和 b 最小化,然后求对 的极大,最后利用SMO算法求解对偶问题中的拉格朗日乘子。
对偶问题求解的3个步骤
将以上结果代入之前的L:
得到:
具体推导过程是比较复杂的,如下所示:
最后,得到:
“倒数第4步”推导到“倒数第3步”使用了线性代数的转置运算,由于ai和yi都是实数,因此转置后与自身一样。“倒数第3步”推导到“倒数第2步”使用了(a+b+c+…)(a+b+c+…)=aa+ab+ac+ba+bb+bc+…的乘法运算法则。最后一步是上一步的顺序调整。
从上面的最后一个式子,我们可以看出,此时的拉格朗日函数只包含了一个变量,那就是 (求出了 便能求出w,和b,由此可见,则核心问题:分类函数 也就可以轻而易举的求出来了)。
上述式子要解决的是在参数上 求最大值W的问题,至于 和 都是已知数。要了解这个SMO算法是如何推导的,请跳到下文第35节、SMO算法。
总结
让我们再来看看上述推导过程中得到的一些有趣的形式。首先就是关于我们的 hyper plane ,对于一个数据点 x 进行分类,实际上是通过把 x 带入到 算出结果然后根据其正负号来进行类别划分的。而前面的推导中我们得到:
因此分类函数为:
这里的形式的有趣之处在于,对于新点 x的预测,只需要计算它与训练数据点的内积即可(表示向量内积),这一点至关重要,是之后使用 Kernel 进行非线性推广的基本前提。此外,所谓 Supporting Vector 也在这里显示出来——事实上,所有非Supporting Vector 所对应的系数 都是等于零的,因此对于新点的内积计算实际上只要针对少量的“支持向量”而不是所有的训练数据即可。
为什么非支持向量对应的 等于零呢?直观上来理解的话,就是这些“后方”的点——正如我们之前分析过的一样,对超平面是没有影响的,由于分类完全有超平面决定,所以这些无关的点并不会参与分类问题的计算,因而也就不会产生任何影响了。
回忆一下我们通过 Lagrange multiplier得到的目标函数:
注意到如果 xi 是支持向量的话,上式中红颜色的部分是等于 0 的(因为支持向量的 functional margin 等于 1 ),而对于非支持向量来说,functional margin 会大于 1 ,因此红颜色部分是大于零的,而 又是非负的,为了满足最大化, 必须等于 0 。这也就是这些非Supporting Vector 的点的局限性。
至此,我们便得到了一个maximum margin hyper plane classifier,这就是所谓的支持向量机(Support Vector Machine)。当然,到目前为止,我们的 SVM 还比较弱,只能处理线性的情况,不过,在得到了对偶dual 形式之后,通过 Kernel 推广到非线性的情况就变成了一件非常容易的事情了(通过求解对偶问题得到最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题”)。
事实上,大部分时候数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在。在上文中,我们已经了解到了SVM处理线性可分的情况,那对于非线性的数据SVM咋处理呢?对于非线性的情况,SVM 的处理方法是选择一个核函数 κ(⋅,⋅) ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。
具体来说,在线性不可分的情况下,支持向量机首先在低维空间中完成计算,然后通过核函数将输入空间映射到高维特征空间,最终在高维特征空间中构造出最优分离超平面,从而把平面上本身不好分的非线性数据分开。如图所示,一堆数据在二维空间无法划分,从而映射到三维空间里划分:
而在我们遇到核函数之前,如果用原始的方法,那么在用线性学习器学习一个非线性关系,需要选择一个非线性特征集,并且将数据写成新的表达形式,这等价于应用一个固定的非线性映射,将数据映射到特征空间,在特征空间中使用线性学习器,因此,考虑的假设集是这种类型的函数:
这里ϕ:X->F是从输入空间到某个特征空间的映射,这意味着建立非线性学习器分为两步:
首先使用一个非线性映射将数据变换到一个特征空间F,
然后在特征空间使用线性学习器分类。
而由于对偶形式就是线性学习器的一个重要性质,这意味着假设可以表达为训练点的线性组合,因此决策规则可以用测试点和训练点的内积来表示:
如果有一种方式可以在特征空间中直接计算内积〈φ(xi · φ(x)〉,就像在原始输入点的函数中一样,就有可能将两个步骤融合到一起建立一个非线性的学习器,这样直接计算法的方法称为核函数方法:
核是一个函数K,对所有x,z,满足 ,这里φ是从X到内积特征空间F的映射。
来看个核函数的例子。如下图所示的两类数据,分别分布为两个圆圈的形状,这样的数据本身就是线性不可分的,此时咱们该如何把这两类数据分开呢(下文将会有一个相应的三维空间图)?
事实上,上图所述的这个数据集,是用两个半径不同的圆圈加上了少量的噪音生成得到的,所以,一个理想的分界应该是一个“圆圈”而不是一条线(超平面)。如果用 和 来表示这个二维平面的两个坐标的话,我们知道一条二次曲线(圆圈是二次曲线的一种特殊情况)的方程可以写作这样的形式:
注意上面的形式,如果我们构造另外一个五维的空间,其中五个坐标的值分别为 ,那么显然,上面的方程在新的坐标系下可以写作:
关于新的坐标 ,这正是一个 hyper plane 的方程!也就是说,如果我们做一个映射 ,将 按照上面的规则映射为 ,那么在新的空间中原来的数据将变成线性可分的,从而使用之前我们推导的线性分类算法就可以进行处理了。这正是 Kernel 方法处理非线性问题的基本思想。
再进一步描述 Kernel 的细节之前,不妨再来看看上述例子在映射过后的直观形态。当然,你我可能无法把 5 维空间画出来,不过由于我这里生成数据的时候用了特殊的情形,所以这里的超平面实际的方程是这个样子的(圆心在 轴上的一个正圆)
因此我只需要把它映射到 ,这样一个三维空间中即可,下图即是映射之后的结果,将坐标轴经过适当的旋转,就可以很明显地看出,数据是可以通过一个平面来分开的
核函数相当于把原来的分类函数:
映射成:
而其中的 可以通过求解如下 dual 问题而得到的:
这样一来问题就解决了吗?似乎是的:拿到非线性数据,就找一个映射
SVM核函数的作用
SVM核函数是用来解决数据线性不可分而提出的,把数据从源空间映射到目标空间(线性可分空间)。
SVM中核函数的种类
1、线性核
优点:
方案首选,奥卡姆剃刀定律
简单,可以求解较快一个QP问题
可解释性强:可以轻易知道哪些feature是重要的
限制:只能解决线性可分问题
2、多项式核
基本原理:依靠升维使得原本线性不可分的数据线性可分;
升维的意义:使得原本线性不可分的数据线性可分;
优点:
可解决非线性问题
可通过主观设置幂数来实现总结的预判
缺点:
对于大数量级的幂数,不太适用
比较多的参数要选择
通常只用在已经大概知道一个比较小的幂数的情况
3、高斯核
优点:
可以映射到无限维
决策边界更为多样
只有一个参数,相比多项式核容易选择
缺点:
可解释性差(无限多维的转换,无法算w)
计算速度比较慢(解一个对偶问题)
容易过拟合(参数选不好时容易overfitting)
4、Sigmoid核
采用Sigmoid函数作为核函数时,支持向量机实现的就是一种多层感知器神经网络,应用SVM方法,隐含层节点数目(它确定神经网络的结构)、隐含层节点对输入节点的权值都是在设计(训练)的过程中自动确定的。而且支持向量机的理论基础决定了它最终求得的是全局最优值而不是局部最小值,也保证了它对于未知样本的良好泛化能力而不会出现过学习现象。
在实战中更多的是:
特征维数高选择线性核
样本数量可观、特征少选择高斯核(非线性核)
样本数量非常多选择线性核(避免造成庞大的计算量)
SVM的优缺点
1、SVM算法对大规模训练样本难以实施
SVM的空间消耗主要是存储训练样本和核矩阵,由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有JPlatt的SMO算法、TJoachims的SVM、CJCBurges等的PCGC、张学工的CSVM以及OLMangasarian等的SOR算法。如果数据量很大,SVM的训练时间就会比较长,如垃圾邮件的分类检测,没有使用SVM分类器,而是使用了简单的naive bayes分类器,或者是使用逻辑回归模型分类。
2、用SVM解决多分类问题存在困难
经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。
3、对缺失数据敏感,对参数和核函数的选择敏感
支持向量机性能的优劣主要取决于核函数的选取,所以对于一个实际问题而言,如何根据实际的数据模型选择合适的核函数从而构造SVM算法。目前比较成熟的核函数及其参数的选择都是人为的,根据经验来选取的,带有一定的随意性在不同的问题领域,核函数应当具有不同的形式和参数,所以在选取时候应该将领域知识引入进来,但是目前还没有好的方法来解决核函数的选取问题。
大数据分析到底需要多少种工具?
摘要
JMLR杂志上最近有一篇论文,作者比较了179种不同的分类学习方法(分类学习算法)在121个数据集上的性能,发现Random Forest(随机森林)和SVM(支持向量机)分类准确率最高,在大多数情况下超过其他方法。本文针对“大数据分析到底需要多少种工具?”这一问题展开讨论,总结机器学习领域多年来积累的经验规律,继而导出大数据分析应该采取的策略。
1.分类方法大比武
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
机器学习
图1 机器学习分类体系
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在843%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
2.几点经验总结
大数据分析到底需要多少种机器学习的方法呢?围绕着这个问题,我们看一下机器学习领域多年得出的一些经验规律。
大数据分析性能的好坏,也就是说机器学习预测的准确率,与使用的学习算法、问题的性质、数据集的特性包括数据规模、数据特征等都有关系。
一般地,Ensemble方法包括Random Forest和AdaBoost、SVM、Logistic Regression 分类准确率最高。
没有一种方法可以“包打天下”。Random Forest、SVM等方法一般性能最好,但不是在什么条件下性能都最好。
不同的方法,当数据规模小的时候,性能往往有较大差异,但当数据规模增大时,性能都会逐渐提升且差异逐渐减小。也就是说,在大数据条件下,什么方法都能work的不错。参见图2中Blaco & Brill的实验结果。
对于简单问题,Random Forest、SVM等方法基本可行,但是对于复杂问题,比如语音识别、图像识别,最近流行的深度学习方法往往效果更好。深度学习本质是复杂模型学习,是今后研究的重点。
在实际应用中,要提高分类的准确率,选择特征比选择算法更重要。好的特征会带来更好的分类结果,而好的特征的提取需要对问题的深入理解。
大数据
图2 不同机器学习方法在数据集增大时的学习曲线。
3.应采取的大数据分析策略
建立大数据分析平台时,选择实现若干种有代表性的方法即可。当然,不仅要考虑预测的准确率,还有考虑学习效率、开发成本、模型可读性等其他因素。大数据分析平台固然重要,同时需要有一批能够深入理解应用问题,自如使用分析工具的工程师和分析人员。
只有善工利器,大数据分析才能真正发挥威力。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)