历史上最可耻的10个女人

历史上最可耻的10个女人,第1张

一个"可耻的女人"几乎是对任何一个违反了社会认可的女性规则的女人称呼。我本来是想把这篇头条文章命名为"10个做了除了做妻子和母亲以外的事情的女人"这些妇女中的许多人将会受到暴力或虐待,但尽管如此,她们仍会奋起反抗。无论是通过爱情、知识还是 的展示,以下女性确实以她们的行为震惊了她们的社会。

第一位:朱莉·德·奥比尼

朱莉·德·奥比尼

朱莉·德·奥比尼是一名剑客和歌剧演唱家,生活在16世纪末和17世纪初。朱莉从小就打扮成男孩,经常和男孩一起学习,学习舞蹈、阅读、绘画和击剑。 在她成年后,当一个她爱的女人被送进修道院时,朱莉密谋通过偷一具死去修女的尸体,把它放在她爱人的床上,然后点燃它来解救她。两人设法一起逃走了,但这一事件最终会结束。她曾经遇到一个侮辱她的男人,她向他挑战要决斗。当她刺穿他的肩膀时,她赢了。在他康复的时候,朱莉去医院看望他,他们建立了浪漫的关系和终生的友谊。朱莉·德·奥比尼在以后的日子非常震惊当时的社会,甚至一度被判死刑,引起了轩然 。她不幸英年早逝,只活到三十多岁。

第二位:希帕提娅

希帕提娅

希帕提娅是数学家、天文学家和哲学家。由于她那个时代极度厌恶女性,她的工作大部分时间都被浪费了。希帕提娅的父亲是一个知识分子,他的女儿一直幸运的接受他的教育。她后来继续扮演她那个时代许多男性主导的角色。她成为了一名教师,受到学生的喜爱,也是一名受人尊敬的学者,但这一切随着基督教的兴起而结束。公元415年,一群基督徒把希帕提娅从战车上拉下来,拖进教堂,剥光她的衣服,用屋顶瓦片把她打死。她死后,他们肢解了她的尸体并将其焚烧。她做了什么招来如此令人发指的死亡?根据基督徒的说法:巫术。然而,事实是她阻碍了基督徒的政治野心。希帕提娅不是基督徒,她公开谈论非基督教哲学,在他们看来,这使她成为一个巨大的威胁。她也有强大的朋友,包括亚历山大的州长,这让她背上了更大的目标。自从她死后,希帕提娅已经成为宗教迫害和不容忍的象征,甚至被称为科学烈士。

第三位:贝蒂·佩奇

贝蒂·佩奇

贝蒂·佩奇

贝蒂·佩奇是20世纪50年代最受欢迎的模特。贝蒂与摄影师欧文·克劳合作,拍摄了一些她最具代表性的照片,包括许多以BDSM为主题的照片。贝蒂后来会从公众视线中消失,不再做模特,要么是因为她新发现的宗教信仰,要么是因为她想回去教书,要么两者兼而有之。在这之后,她会陷入非常艰难的时期,经历过几次非常混乱的婚姻,并遭受着精神疾病的折磨。20世纪70年代末,贝蒂·佩奇对流行文化的影响将真正显现出来,当时许多贝蒂的绘画作品大受欢迎,一个以贝蒂标志性造型为基础的漫画人物也由此诞生。她不久就会再出现。她做了几次采访,并开始向使用她的形象的人收取版税。

第四位:玛格丽特·坎贝尔,阿盖尔公爵夫人

玛格丽特·坎贝尔,阿盖尔公爵夫人

玛格丽特·坎贝尔是一位主要在美国长大的富有女继承人,她于1951年嫁给了一位名叫伊恩·坎贝尔的公爵。到1954年,他们都受够了对方,到1959年,他们开始了离婚过程。这是一次极其丑陋的离婚,诉讼过程中发生的事情是玛格丽特名誉扫地的原因。双方都试图挖对方的墙角。雇佣了私家侦探。1963年,公爵设法拿到了玛格丽特的日记和13张照片,其中一些照片显示她有出轨的行为。这一判决并不是玛格丽特想要的结果,法官说她是"一个高度性感的女人,她不再满足于正常的夫妻生活,开始沉溺于令人厌恶的生活,以满足降低的 。"然而公爵本人并没有完全逍遥法外;他被禁止参加他的俱乐部,也就是众所周知的怀特俱乐部,因此他的名声似乎也受到了丑闻的影响。

第五位:玛莉·渥斯顿克雷福特

玛莉·渥斯顿克雷福特

玛莉·渥斯顿克雷福特是19世纪末的作家、哲学家和女权倡导者。作为作家,玛丽最著名的作品之一题为《维护妇女权利》。在书中,她主张为女性提供更好的教育。她指出,只要妇女获得与男子同等的机会,妇女不仅可以成为有能力的妻子和母亲,也可以成为有能力的工人。玛丽生下第二个女儿后的第11天就去世了。玛丽去世后,她悲痛欲绝的丈夫威廉·戈德温决定写她的传记,以纪念他所爱的女人,但当她与精神健康问题作斗争并有婚外子女的消息被披露时,她震惊了人们。这些事情的耻辱会玷污玛丽几十年的遗产,但她在当时是妇女运动的关键人物,至今仍激励着女权主义者。

第六位:索菲·热尔曼

索菲·热尔曼

索菲·热尔曼

索菲·热尔曼是一位生活在17世纪末至18世纪初的法国女性。她是一个充满 的女人(和这篇上的许多女人一样),尽管她的父母和整个社会禁止她追随她的雄心壮志,但她仍为之奋斗。索菲在探索她父亲的图书馆时发现了她对数学的热爱。她迷上了阿基米德的故事。她想知道为什么阿基米德如此热爱数学,所以她决定研究她父亲所有的数学书籍。她甚至学会了希腊语和拉丁语,这样她就能完全理解一些旧的课文。她的父母不赞成她对数学的兴趣,因为他们认为这对年轻女性不合适。尽管父母希望如此,格里曼还是继续学习数学。她后来会使用笔名"布朗先生"(M Le Blanc),这样她就可以从讲座中获得笔记(女性不允许参加讲座),并开始与包括约瑟夫·路易斯·拉格朗日和卡尔·弗里德里希·高斯在内的几位数学家通信。她在费马大定理上的工作被广泛认为是索菲·热尔曼对数学的最大贡献,但是在向世界展示一个擅长数学的女人时,可以说她给社会的最大礼物就是她的例子。

第七位:西多妮-加布里埃尔·科莱特

西多妮-加布里埃尔·科莱特

西多妮-加布里埃尔·科莱特,常简称"科莱特",是20世纪初至中期的著名小说家。科莱特的作品经常涉及性主题和其他禁忌话题。她经常写一些她个人经历过的事情,比如在乡村长大或者嫁给一个更老、更世俗的男人。科莱特一生中嫁给了三个男人。她的第一任丈夫亨利·高希尔-维拉尔斯发现她写作的天赋后,会把她锁在房间里,这样她就可以专注于手头的任务。她和他在一起时写了四部小说。这些书是以他的名义出版的,他保留了他们赚的所有钱。也有传言说科莱特和女人有过几次风流韵事。她在最后几年写作,并得到了第三任丈夫的照顾。

第八位:路易莎·卡萨蒂

路易莎·卡萨蒂

路易莎·卡萨蒂(1881-1957)是一个生来就拥有巨大财富的女人,她以奢华的聚会、暴露狂和对世俗事物的憎恨而闻名。然而,起初路易莎是一位富有的继承人,似乎满足于像大多数人一样生活。当她遇到作家加布里埃尔·邓南遮时,情况发生了变化。路易莎在加布里埃尔还没结婚的时候就和她有了婚外情,他的影响有助于培养她出名的人格。路易莎曾经说过,"我想成为一件活的艺术品。"她不可否认地成功了,她的形象被许多绘画、雕塑和照片所捕捉。她在时尚界的声誉一直持续到今天。

第九位:塔鲁拉·班克赫德

塔鲁拉·班克赫德是20世纪早期的女演员、戏剧演员,偶尔也是广播电视名人,出演过《他们知道自己想要什么》、《小狐狸》等戏剧和《救生艇》等**。塔拉以其令人愤慨的行为、非常吝啬的服装以及她与男人和女人的多重关系而闻名,比如约翰·埃默里、伊娃·列·高丽安和纳皮尔·斯特特。她也是一个习惯性的吸毒者,曾经说过,"可卡因不是成瘾性的。我应该知道,我已经用了好几年了。"到目前为止,她最有争议的时刻是在接受采访时:"我已经六个月没有发生过任何事情了。六个月!太久了。。。我想要一个男人。"

第十位:梅·韦斯特

梅·韦斯特

梅·韦斯特的生活几乎总是充满争议。她是一个活泼、露骨的女人,她用自己的行为震惊、惊骇和激动着20世纪初的观众。她是一名作家、演员和导演,她的挑衅行为给她带来了很多麻烦。1926年,梅创作、导演并主演了百老汇一部名为《性》的戏剧,这部戏剧受到了公众的欢迎,但也遭到了评论家的抨击。这部作品也将是梅在节目被突袭后第一次与警方发生冲突。和其他几名演职人员因道德指控被逮捕和起诉,在监狱服刑八天。梅·韦斯特会继续写关于有争议主题的剧本,但是她现在更聪明,更有智慧,她采取了预防措施,以免被警察突袭。梅的**生涯也是争议的话题。她的**经常被《海斯法典》审查,但是梅经常用含沙射影和双关语绕过这一点,这会让审查者感到困惑。威廉·蓝道夫·赫斯特对梅的**《克朗代克安妮》极其愤怒,以至于他禁止在任何出版物上发表任何关于这部**的故事或广告。梅·韦斯特于1980年11月22日去世,享年87岁。她的遗产有争议,但也有成功。

路易(3)贝蒂(1)坎贝尔(1)

费马大定理

四色问题

哥德巴赫猜想

展开

编辑本段

费马大定理

  当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n 无正整数解。

  这个定理,本来又称费马最后的定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

发现

  费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi Hanc marginis exiguitas non caperet")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。

  对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍对费马大定理一筹莫展。

奖励

  德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。

  莫德尔猜想

  1983年,联邦德国数学家伐尔廷斯证明了莫德尔猜想,从而翻开了费马大定理研究的新篇章.获得1982年菲尔兹奖

  伐尔廷斯于1954年7月28日生于联邦德国的杰尔森柯琛,并在那里渡过了学生时代,而后就学于内斯涛德教授门下学习数学.1978年获得博士学位.他作过研究员、助教,现在是乌珀塔尔的教授.他在数学上的兴趣开始于交换代数,以后转向代数几何.

  1922年,英国数学家莫德尔提出一个著名猜想,人们叫做莫德尔猜想.按其最初形式,这个猜想是说,任一不可约、有理系数的二元多项式,当它的“亏格”大于或等于2时,最多只有有限个解.记这个多项式为f(x,y),猜想便表示:最多存在有限对数偶xi,yi∈Q,使得f(xi,yi)=0.

  后来,人们把猜想扩充到定义在任意数域上的多项式,并且随着抽象代数几何的出现,又重新用代数曲线来叙述这个猜想了.因此,伐尔廷斯实际上证明的是:任意定义在数域K上,亏格大于或等于2的代数曲线最多只有有限个K一点.

  数学家对这个猜想给出各种评论,总的看来是消极的. 1979年利奔波姆说:“可以有充分理由认为,莫德尔猜想的获证似乎还是遥远的事.”

  对于“猜想”,1980年威尔批评说:“数学家常常自言自语道:要是某某东西成立的话,‘这就太棒了’(或者‘这就太顺利了’).有时不用费多少事就能够证实他的推测,有时则很快否定了它.但是,如果经过一段时间的努力还是不能证实他的预测,那么他就要说到‘猜想’这个词,既便这个东西对他来说毫无重要性可言.绝大多数情形都是没有经过深思熟虑的。”因此,对莫德尔猜想,他指出:我们稍许来看一下“莫德尔猜想”.它所涉及的是一个算术家几乎不会不提出的问题;因而人们得不到对这个问题应该去押对还是押错的任何严肃的启示.

  然而,时隔不久,1983年伐尔廷斯证明了莫德尔猜想,人们对它有了全新的看法.在伐尔廷斯的文章里,还同时解决了另外两个重要猜想,即台特和沙伐尔维奇猜想,它们同莫德尔猜想具有同等重大意义.

  这里主要解释一下莫德尔猜想,至于证明就不多讲了. 所谓代数曲线,粗略一点说,就是在包含K的任意域中,f(x,y)=0的全部解的集合.

  令F(x,y,z)为d次齐次多项式,其中d为f(x,y)的次数,并使F(x,y,1)=f(x,y),那么f(x,y)的亏格g为

  g≥(d-1)(d-2)/2

  当f(x,y)没有奇点时取等号.

  费马多项式x^n+y^n-1没有奇点,其亏格为(n-1)(n-2)/2.当n≥4时,费马多项式满足猜想的条件.因此,xn+yn=zn最多只有有限多个整数解.

  为什么猜想中除去了f(x,y)的亏格为0或1的情形,即除去了f(x,y)的次数d小于或等于3的情形呢?我们说明它的理由.

  d=1时,f(x,y)=ax+by+c显然有无穷多个解.

  d=2时,f(x,y)可能没有解,例如f(x,y)=x2+y2+1;但是如果它有一个解,那么必定有无穷多个解.我们从几何上来论证这一点.设P是f(x,y)解集合中的一点,令l表示一条不经过点P的直线(见上图).对l上坐标在域K中的点Q,直线PQ通常总与解集合交于另一点R.当Q在l上取遍无穷多个K—点时,点R的集合就是f(x,y)的K—解的无穷集合.例如把这种方法用于x2+y2-1,给出了熟知的参数化解:

  当F(X,Y,Z)为三次非奇异(即无奇点)曲线时,其解集合是一个所谓椭圆曲线.我们可用几何方法做出一个解的无穷集.但是,对于次数大于或等于4的非奇异曲线F,这种几何方法是不存在的.虽然如此,却存在称为阿贝尔簇的高维代数簇.研究这些阿贝尔簇构成了伐尔廷斯证明的核心.

  伐尔廷斯在证明莫德尔猜想时,使用了沙伐尔维奇猜想、雅可比簇、高、同源和台特猜想等大量代数几何知识. 莫德尔猜想有着广泛的应用.比如,在伐尔廷斯以前,人们不知道,对于任意的非零整数a,方程y2=x5+a在Q中只有有限个

有限组互质

  1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = cn。

Gerhard Frey

  1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。

怀尔斯和泰勒

  1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。

怀尔斯

  怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。

n=3

  欧拉证明了n=3的情形,用的是唯一因子分解定理。

n=4

  费马自己证明了n=4的情形。

n=5

  1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。

n=7

  1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧妙工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。

对于所有小于100的素指数n

  库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。

谷山——志村猜想

  1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。

谷山——志村猜想和费马大定理之间的关系

  1985年,德国数学家弗雷指出了谷山——志村猜想”和费马大定理之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。

弗雷命题

  1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。

谷山——志村猜想”成立

  1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理” 。

n<1,000,000

  至1991年对费马大定理指数n<1,000,000费马大定理已被证明, 但对指数n>1,000,000没有被证明 已成为世界数学难题。

编辑本段

四色问题

  四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)

  这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。

  四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

  1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。

  1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

  肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。

  肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。

  不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。

  肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。

  11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

  进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。

  高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。

  他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。

  电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。

  这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。

  “四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。

  不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。

编辑本段

哥德巴赫猜想

  史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。

  1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:

  一、任何不小于6的偶数,都是两个奇质数之和;

  二、任何不小于9的奇数,都是三个奇质数之和。

  这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。

  同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。

  我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。

  1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。

  20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。

  1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。

  1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。

  1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。

  由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。但x^3+y^3=z^3却始终没找到整数解。最接近的是:6^3+8^3=9^-1,还是差了1。于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。

已知:a^2+b^2=c^2

令c=b+k,k=1,2,3,则a^2+b^2=^2。

因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1,2,3。

设:a=d^,b=h^,c=p^;

则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1,2,3。

当n=1时,d+h=p,d、h与p可以是任意整数。

当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2=a^2+b^2=c^2。

当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。

因为,a=d^,b=h^,c=p^;要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。

a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。

假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。

1993年6月在剑桥牛顿学院要举行一个名为“L函数和算术”的学术会议,组织者之一正是怀尔斯的博士导师科茨,于是在1993年6月21日到23日怀尔斯被特许在该学术会上以“模形式、椭圆曲线与伽罗瓦表示”为题,分三次作了演讲。

1994年10月25日11点4分11秒,怀尔斯通过他以前的学生、美国俄亥俄州立大学教授卡尔鲁宾向世界数学界发了费马大定理的完整证明邮件,包括一篇长文“模椭圆曲线和费马大定理”,作者安德鲁怀尔斯。另一篇短文“某些赫克代数的环论性质”作者理查德泰勒和安德鲁怀尔斯。至此费马大定理得证。

怀尔斯和他以前的博士研究生理查德泰勒用了近一年的时间,用之前一个怀尔斯曾经抛弃过的方法修补了这个漏洞,这部份的证明与岩泽理论有关。这就证明了谷山-志村猜想,从而最终证明了费马大定理。

1、费马大定理

费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。

内容:当整数n >2时,关于x, y, z的方程 xⁿ + yⁿ = zⁿ没有正整数解。

2、四色问题

四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。地图四色定理最先是由一位叫古德里的英国大学生提出来的。

四色问题的内容:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。

用数学语言表示:将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。

3、哥德巴赫猜想

1742年6月7日,哥德巴赫提出了著名的哥德巴赫猜想。

内容:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”

扩展资料

1、费马大定理

史上最精彩的一个数学谜题。证明费马大定理的过程是一部数学史。费马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。

2、四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。很多人证明了二维平面内无法构造五个或五个以上两两相连区域,但却没有将其上升到逻辑关系和二维固有属性的层面,以致出现了很多伪反例。不过这些恰恰是对图论严密性的考证和发展推动。

计算机证明虽然做了百亿次判断,终究只是在庞大的数量优势上取得成功,这并不符合数学严密的逻辑体系,至今仍有无数数学爱好者投身其中研究。

3、从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。

若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。

-费马大定理

-四色定理

-哥德巴赫猜想

数学最奇葩的九个定理分别为:小鸟喝醉了不能够回家问题,地图上的定点,永远不能理顺球面上的毛,地球对称问题,三明治等分问题,四色定理,费马大定律,奥尔定理,托密斯定理,这九个定理都是数学界比较奇葩的九个定理,是值得许多人深思的九个定理。

一、酒鬼总能回家,小鸟醉了不一定能够回家

如果一个喝醉了的酒鬼,他总能够找到回家的路,因为酒鬼回家的路如同一个巨大的平面,在二维平面上行走,总能够快速的找到回家的路,然而,小鸟只要喝醉了,它是在天空中飞行,回家的路是三维空间,就很难找到回家的路。

二、地图上相同定点

如果将一张大型地图铺在地面上,现在在地图上任意点一个点,那么这个点在地图上的位置和所对应的实际位置就有可能重合。

三、永远不能理顺球面上的毛

如果在一个巨大的球面上覆盖了很多的毛,比如说椰子,那么人是无论如何也不能够将这个巨大球面的毛理顺。

四、地球对称问题

地球上一定会永远存在两个相对称的两点,在这对称的两点上,地球上所有的温度、大气压全部相等。

五、三明治等分问题

很多人都特别喜欢吃三明治,但是三明治存在一个完全等分问题,就是三明治上存在一个非常完美的直线,如果切割这条直线,可以使三明治面包火腿奶酪完全等分。

六、四色定理

四色定理完美的解释了二维空间所出现的约束条件,四色定理表间在二维空间内,任何两条直线交叉一定会产生四个区域。

七、费马大定律

费马大定律明确的指出,当N在大于2时,X的N次方加Y的N次方等于Z的N次方这个方程,一定没有正整数解。

八、奥尔定理

奥尔定理解释一个巨大的图形中至少还有三个点,如果这巨大的图形任意两个点的度数都大于等于一个定值,那么这个图形就是满足哈密顿回路。

九、托密斯定理

托密斯定理指出,如果一个四边形能够内接于一个圆,那么这个四边形两组对边乘积之和等于它的对角线乘积之和。

数学马勒戈壁四大定理:费马定理、泰勒公式、拉格朗日定理、罗必达法则的简称。费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费马提出。

他断言当整数n>2时,关于x、y、z的方程x^n+y^n=z^n没有正整数解。泰勒公式应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用导数值。

设这两个两位数分别为ab和cd 其中ab比cd大

①10a+b+10c+d=68

②(1000a+100b+10c+d)-(1000c+100d+10a+b)=2178

由②得,990a+99b-990c-99d=2178

10a+b-10c-d=22

再根据①,就能得出,10a+b=45,10c+d=23

所以这两个两位数分别为45和23

费马大定理(Fermat's last theorem)

现代表述为:当n>2时,方程

xn+yn=zn

没有正整数解。

费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。

丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。他求解了他这样表述的不定方程(《算术》第2卷第8题):

将一个已知的平方数分为两个平方数。 (1)

现在人们常把这一表述视为求出不定方程

x2+y2=z2 (2)

的正整数解。因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。有时把不定方程称为丢番图方程。

关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。费马提出了这一数学问题。

费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。他去世后,才由后人收集整理出版。

1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我已发现一种美妙的证法,可惜这里空白的地方太小,写不下。” (3)

费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣。

后来,表述(3)被理解为:当整数n>2时,方程

xn+yn=zn (4)

没有正整数解。

欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难,吸引了更多的人投入证明工作。

这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做“费马最后定理”,在我国,则一般称之为费马大定理。

“费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840年前后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”。

称之为费马大定理是为了和“费马小定理”相区别,后者也是数论中的一个著名定理:设p为素数,而a与p互素,则ap -a必为p的倍数。

从费马的时代起,人们就不断进行费马大定理的试证工作。巴黎科学院曾先后两次提供奖章和奖金,奖励证明费马大定理的人,布鲁塞尔科学院也悬赏重金,但都无结果。1908年,德国数学家佛尔夫斯克尔(F.Wolfskehl)将10万马克赠给格丁根皇家科学会,用以奖励证明费马大定理的人,悬赏期100年。

人们先对费马大定理作了一些探讨,得出只要证明n=4时以及n是任一奇素数p时定理成立,定理就得证。这为后来的证明指出了方向。

最初的证明是一个数一个数地进行的。

n=3的情形在公元972年已为阿拉伯人胡坚迪(al-Khujandi)所知,但他的证明有缺陷。1770年欧拉给出一个证明,但也不完善。后来,高斯给出完善的证明。

n=4的情形,费马本人已接近得出证明(见无穷递降法),后来欧拉等人给出了新证。

n=5的情形,1823年和1826年勒让德和狄利克雷各自独立地给出证明。1832年后者还证明了n=14的情形。

n=7的情形,1839年为拉梅(Lame)所证明。

后来,人们为研究的方便,对费马大定理作了进一步的分析。对于素数p,当p不能整除xyz之积时,不定方程

xp+yp=zp (5)

无正整数解(p>2),称之为费马大定理的第一种情形,这种情形似乎容易证一些。

法国数学家热尔曼证明:如果p是一个奇素数,使得2p+1也是素数,那么对于p,费马大定理的第一种情形成立;勒让德推广了热尔曼的结果,证明:如果p是素数,使4p+1,8p+1,l0p+1,14p+1,16p+1之一也是素数,则对于p,费马大定理的第一种情形成立。这实际上已经证明了对于所有素数p<l00,费马大定理的第一种情形成立。

德国数学家库默尔则从另一个角度分析了费马大定理,他引入理想数和分圆数,开创理想数论,他把素数分为正则素数和非正则素数两部分。他证明,对于正则素数,费马大定理成立。以100之内的奇素数为例,共有24个,除37,59,67外都是正则素数。1844年,库默尔证明了对于它们费马大定理成立。那么素数中到底有多少正则素数呢?这一问题却长期未得到解决。1915年,卡利茨证明非正则素数有无穷多,对于非正则素数怎么处理呢?还得回到一个一个证明的老路上来。1857年库默尔证明对于p=59,67,费马大定理成立;1892年米里曼诺夫(D.Mirimanoff)证明对p=37费马大定理成立。电子计算机出现并广泛应用之后,对非正则素数情形的证明取得了新的进展:1978年证明,对125000以内的非正则素数,费马大定理成立;1987年这一上限推进到150000;1992年更推进到1000000。由于库默尔第一次“成批地”证明了定理的成立。人们视之为费马大定理证明的一次重大突破。1857年,他获得巴黎科学院的金质奖章。

对于第一种情形,进展更快一些。如1948年,日本的森岛太郎等证明对于P<57×109,第一种情形成立。1983年,人们证明了对于当时已知的最大的素数p=286243-1,第一种情形成立。1985年,英国的希斯-布朗(R.Heath-Brown)证明:存在无穷个素数p,使第一种情形成立。

前人直接证明费马大定理的努力取得了许多成果,并促进了一些数学分支的发展,但离定理的证明,无疑还有遥远的距离。怎么办呢?按数学家解决问题的传统,就是要作变换—把问题转化为已知的或易于解决的领域的“新”问题。

一个转化方向是把问题具体化,就是建立一个可由要证的命题推导出来的新命题(从逻辑的角度看,是要证命题的必要条件)。一般地,更具体的命题比原命题容易证明,如果证明了这个新命题,则把对原命题的证明推进了一大步。如果反驳了这个新命题,那就直接反驳了原命题:必要条件不成立的命题不成立。

具体化的方式取得了一批重要的成果。1909年,威费里希(A.Wieferich)证明,如果对指数p,费马大定理的第一种情形不成立,则p2可以整除2p-1-1。经过寻找,在3×109以下只有p=1093和p=3511满足这一条件,但这两个素数均已直接验证满足费马大定理。这实际上就证明了,对30亿以内的所有素数,第一种情形都成立。20世纪80年代人们更证明了费马大定理若有反例,即存在正整数x,y,z,当n>2时,使

xn+yn=zn

成立,则n>101800000。

另一个转化方向是使问题抽象化,就是建立一个可由之推导出要证明的命题的“新”命题(从逻辑的角度看,是要证命题的充分条件)。一般地说,更抽象的命题更难证明,但是一旦证明了,就能立即推出要证的命题,并且还能得出许多别的结果来。

抽象化的一个结果就是求解丢番图方程,方程(5)不过是丢番图方程的一个特例。经过一种代数几何学的转化,人们把丢番图方程的解与代数曲线上的有理点(坐标都是有理数的点)联系起来了。

对于平面中的一条曲线,人们首先注意到的一个数值不变量是它的次数,即定义这条曲线的方程的次数。次数为一次、二次的曲线都是有理曲线(在代数几何中,它们与直线同构),它们主要是解析几何的研究对象。代数几何是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。

定义代数曲线的方程一般可表示为

F(u,v)=0, (6)

左边为u,v的一个多项式。丢番图方程就是一种代数曲线的方程。人们发现,曲线上的有理点就是使等式成立的点,即定义曲线的方程的解。

对方程

xn+yn=zn

来说,两边除以zn,得

令u= ,v= ,则有

un+vn=1 (7)

(7)被称为费马方程,由它定义的曲线被称为费马曲线。于是,费马大定理转化为“在平面中,费马曲线在n>2时没有坐标都是非零有理数的点”。

黎曼在1857年引入了代数函数,使代数几何有了较大的发展。他把代数函数定义在一些互相适当联结的覆叠的复平面上,它们后来被称为黎曼曲面,代数函数在其黎曼曲面上得以单值化。若把代数曲线视为由方程(6)确定的一个代数函数的图象,则每个代数曲线都有一个自己的(一一对应的)黎曼曲面。这种黎曼曲面有一大特点:它们恒可以经连续变换成为球面或带有n个洞(贯通的洞)的球面。洞的个数被称为黎曼曲面的从而也是与它对应的代数曲线的亏格—这是一个重要的代数几何不变量,它决定了黎曼曲面从而代数曲线的许多性质,亏格可以作为划分代数曲线的一个标准,例如按亏格g的不同,有:

g=0:直线、圆、圆锥曲线;

g=1:椭圆曲线;

g≥2:其他曲线,如费马曲线等。

1922年,英国数学家莫德尔提出一个猜想——亏格g≥2的代数曲线上的有理点只有有限多个。按前述转化分析,由它立即可得出丢番图方程(由方程定义的代数曲线亏格g≥2的)的解只有有限多个;进而可推出,n>2时,方程(5)的正整数解(原始解)至多只有有限多个。

1983年,德国数学家法尔廷斯利用法国数学家格罗唐迪克所建立的概形理论证明了莫德尔猜想,从而证明了前述关于费马大定理的结论。人们认为这是费马大定理证明中的又一次重大突破,对许多数学分支都产生了重要的影响。为此,法尔廷斯获得1986年度菲尔兹奖。1985年,希斯-布朗利用法尔廷斯的结果,证明了对于几乎所有的素数p,费马大定理成立,即如果对某些素数p,定理不成立,那么这样的p的数目在整个素数中是微不足道的。

种种转化的方法既推进了所转化的领域的发展,也使费马大定理的证明取得进展。可以说,以上结论已十分接近费马大定理了,但它们毕竟不是原定理的证明,离原定理的证明尚有并非容易跨越的“一小步”。

1993年6月23日,星期三。英国剑桥大学新落成的牛顿数学研究所的大厅里正在进行例行的学术报告会。报告从上午8时整开始,报告人怀尔斯用了两个半小时就他关于“模形式、椭圆曲线和伽罗瓦表示”的研究结果作了一个冗长的发言。10时30分,在他的报告结束时,他平静地宣布:“因此,我证明了费马大定理。”很快,这一消息轰动了全世界,许多一流的大众传播媒介迅速地报道了这一消息,并一致称之为“世纪性的科学成就”。

那么,怀尔斯是怎样完成费马大定理的最后一步证明的呢?他继续使用转化的方法,采用的则是椭圆函数参数化。

20世纪50年代,一些数学家发现椭圆函数与模函数有联系。模函数也是一种人们早有研究的复变数函数,它是定义在单位圆(或上半平面)内部且以其周界为自然边界的一种特殊解析函数。人们发现,构成模函数的种种反演变换生成一个变换群G,模函数是关于群G的自守函数。这是它与椭圆函数的联系之一。一些数学家猜测,椭圆曲线可由特殊的模函数单值化,这种曲线被称为模曲线。1967年韦伊发表了这一猜想,称为谷山-志村-韦伊猜想:所有椭圆曲线都是模曲线。

1971年,一位法国数学家指出椭圆函数可与费马大定理联系起来。椭圆曲线可由模函数单值化,这与代数曲线由其黎曼曲面单值化十分相似。是否也可以类比于黎曼曲面方法,从模函数中找出椭圆曲线的分类标准对其分类,使其中与费马大定理对应的一类中无有理点呢?

1986年,德国数学家符莱(G.Frey)真正把费马方程与椭圆曲线联系起来:如果u,v,w满足费马方程

up+vp=wp(p≥5,是素数),

则可构造椭圆函数

y2=x(x一u p)(x+v p) (8)

与之对应,他要求v为偶数,u为4m+3型的奇数。因而(8)只是一种所谓“半稳定性”椭圆曲线。符莱进而猜想,按他所作的对应,从谷山-志村-韦伊猜想可以推出费马大定理。1990年,李贝(K.Ribet)证明了这一个猜想,即证明,如果谷山-志村-韦伊猜想真,那么费马大定理一定真(一个“抽象化”的转化)。

于是证明费马大定理的努力指向了谷山-志村-韦伊猜想。怀尔斯针对符莱引入的“半稳定性”椭圆曲线,他认为,只需对这一类椭圆曲线证明谷山-志村-韦伊猜想就行了(这又是一个“具体化”的转化)。当然这也是极困难的工作。为此,他写了200多页,1993年6月23日他的报告就是关于这一证明的。人们认为,怀尔斯取得费马大定理证明的第三次突破——最终证明了费马大定理。这一成就被列入1993年世界科学十大成就之一。

但怀尔斯的长达200多页的论文送交审查时,却被发现其证明有漏洞。许多传媒又迅速地报道了这一“爆炸性”新闻。

怀尔斯本人在挫折面前没有止步,从1993年7月起他就一直在修改论文,补正漏洞,这是一项十分困难的工作。1994年8月在瑞士苏黎世召开的国际数学家大会(ICM)上特邀怀尔斯作报告,在报告中他只字未提费马大定理。人们认为,他一定是遇到了难以克服的困难。

1994年9月,怀尔斯终于解决了困难,重新写出了一篇108页的论文,于1994年10月14日寄往美国《数学年刊》,论文顺利通过审查,1995年5月,《数学年刊》第41卷第3期登载了他的这一篇论文!这使得怀尔斯获得1995-1996年度沃尔夫奖。这一成果被认为是“20世纪最重大的数学成就”。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3351676.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-14
下一篇2023-08-14

发表评论

登录后才能评论

评论列表(0条)

    保存