求适合初中的趣味数学题和趣味数学故事

求适合初中的趣味数学题和趣味数学故事,第1张

高斯-数学家-卡尔·弗雷德里希·高斯 成就德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。

1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。职业生涯他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。数学神童 历史上间或出现神童。神童常常出现在数学、音乐、棋艺等方面。卡尔·弗雷德里希·高斯,一位数学神童,是各式各样的天才里最出色的一个。就像狮子号称万兽之王,高斯在数学家之林中称王,他有一个美号——数学王子。高斯不仅被公认为是十九世纪最伟大的数学家,并且与阿基米德、牛顿并称为历史上三个最伟大的数学家。现在阿基米德和牛顿的名字早已进入了中学的教科书,他们的工作或多或少成为大众的常识,而高斯和他的数学仍遥不可及,甚至于在大学的基础课程中也不出现。但高斯的肖像画却赫然印在10马克——流通最广泛的德国纸上,相应地出现在美元和英镑上的分别是乔治·华盛顿和伊丽莎白二世。1777年4月30日,高斯出生在德国下萨克森洲的不伦瑞克(Braunscheig),他的祖先里没有一个人可以说明为什么会产生高斯这样的天才。高斯的父亲是个普通的劳动者,做过石匠、纤夫、花农,母亲是他父亲的第二个妻子,当过女仆,没有受过什么教育,但她聪明善良,有幽默感,并且个性很强,她以97岁高寿仙逝,高斯是她的独养儿子。据说高斯3岁时就发现父亲帐簿上的一处错误。高斯9岁那年在公立小学读书,一次他的老师为了让学生们有事干,叫他们把从1到100这些数加起来,高斯几乎立刻就把写好结果的石板面朝下放在自己的桌子上,当所有的石板最终被翻过时,这位老师惊讶地发现只有高斯得出了正确的答案:5050,但是没有演算过程。高斯已经在脑子里对这个算术级数求了和,他注意到了1+100=101,2+99=101,3+98=101……这么一来,就等于50个101相加,从而答案是5050。高斯在晚年常幽默地宣称,在他会说话之前就会计算,还说他问了大人字母如何发音,就自己学着读起书来。高斯的早熟引起了不伦瑞克公爵的注意,这位公爵是个热心肠的赞助人。高斯14岁进不伦瑞克学院,18岁入哥廷根大学。当时的哥廷根仍默默无闻,由于高斯的到来,才使得这所日后享誉世界的大学变得重要起来。起初,高斯在做个语言学家抑或数学家之间犹豫不决,他决心献身数学是1796年3月30日的事了。当他差一个月满19岁时,他对正多边形的欧几里德作图理论(只用圆规和没有刻度的直尺)做出了惊人的贡献,尤其是,发现了作正十七边形的方法,这是一个有着二千多年历史的数学悬案。高斯初出茅庐,就已经炉火纯青了,而且以后的五十年间他一直维持这样的水准。高斯所处的时代,正是德国浪漫主义盛行的时代。高斯受时尚的影响,在其私函和讲述中,充满了美丽的词藻。高斯说过:“数学是科学的皇后,而数论是数学的女王。”那个时代的人也都称高斯为“数学王子”。事实上,纵观高斯整个一生的工作,似乎也带有浪漫主义的色彩。高处不胜寒 在高斯的时代,几乎找不到什么人能够分享他的想法或向他提供新的观念。每当他发现新的理论时,他没有人可以讨论。这种孤独的感觉,经年累月积存下来,就造成他高高在上、冷若冰霜的心境了。这种智慧上的孤独,在历史上只有很少几个伟人感受过。高斯从不参加公开争论,他对辩论一向深恶痛绝,他认为那很容易演变成愚蠢的喊叫,这或许是他从小对粗暴专制的父亲一种心理上的反抗。高斯成名后很少离开过哥廷根,他曾多次拒绝柏林、圣彼德堡等地科学院的邀请。高斯甚至厌恶教学,也不热衷于培养和发现年轻人,自然就谈不上创立什么学派,这主要是由于高斯天赋之优异,因而心灵上离群索居。可这不等于说高斯没有出类拔萃的学生,黎曼、狄里克雷都堪称伟大的数学家,戴特金和艾森斯坦也对数学作出了杰出贡献。但是由于高斯的登峰造极,在这几个人中,也只有黎曼(在狄里克雷死后继承了高斯的职位)被认为和高斯比较亲近。和高斯同时代的伟大数学家雅可比和阿贝尔都抱怨高斯漠视了他们的成就。雅可比是个很有思想的人,他有一句流传至今的名言:“科学的唯一目的是为人类的精神增光”。他是高斯的同胞,又是狄里克雷的丈人,但他一直没能和高斯攀上亲密的友情。在1849年哥廷根那次庆祝会上,从柏林赶来的雅可比坐在高斯身旁的荣誉席上,当他想找话题谈数学时,高斯不予理睬,这可能是时机不对,当时高斯几杯甜酒下肚,有点不能自制;但即使换个场合,结果恐怕也是一样。在给他兄弟论及该宴会的一封信中,雅克比写到,“你要知道,在这二十年里,他(高斯)从未提及我和狄里克雷……”阿贝尔的命运很惨,他与后来的同胞易卜生、格里格和蒙克一样,是在自己领域里唯一取得世界性成就的挪威人。他是一个伟大的天才,却过着贫穷的生活,毫无同时代人的了解。阿贝尔20岁时,解决了数学史上的一个大问题,即证明了用根式解一般五次方程的不可能性,他将短短六页“不可解”的证明寄给欧洲一些著名的数学家,高斯自然也收到了一份。阿贝尔在引言中满怀信心,以为数学家们会亲切地接受这篇论文。不久,乡村牧师的儿子阿贝尔开始了他一生唯一的一次远足,当时他想以这篇文章作敲门砖。阿贝尔此行最大的愿望就是拜访高斯,但高斯高不可攀,只是将论文瞄了几行,便把它丢在一旁,仍然专心于自己的研究工作。阿贝尔只得在从巴黎去往柏林的旅途中,以渐增的痛苦绕过哥廷根。高斯虽然孤傲,但令人惊奇的是,他春风得意地度过了中产阶级的一生,而没有遭受到冷酷现实的打击;这种打击常无情地加诸于每个脱离现实环境生活的人。或许高斯讲求实效和追求完美的性格,有助于让他抓住生活中的简单现实。高斯22岁获博士学位,25岁当选圣彼德堡科学院外籍院士,30岁任哥廷根大学数学教授兼天文台台长。虽说高斯不喜欢浮华荣耀,但在他成名后的五十年间,这些东西就像雨点似的落在他身上,几乎整个欧洲都卷入了这场授奖的风潮,他一生共获得75种形形色色的荣誉,包括1818年英王乔治三世赐封的“参议员”,1845年又被赐封为“首席参议员”。高斯的两次婚姻也都非常幸福,第一个妻子死于难产后,不到十个月,高斯又娶了第二个妻子。心理学和生理学上有一个常见的现象,婚姻生活过得幸福的人,常在丧偶之后很快再婚,一生赤贫的音乐家约翰·塞巴斯蒂安·巴赫也是这样。多才多艺 高斯不仅是数学家,还是那个时代最伟大的物理学家和天文学家之一。在《算术研究》问世的同一年,即1801年的元旦,一位意大利天文学家在西西里岛观察到在白羊座(Aries)附近有光度八等的星移动,这颗现在被称作谷神星(Ceres)的小行星在天空出现了41天,扫过八度角之后,就在太阳的光芒下没了踪影。当时天文学家无法确定这颗新星是彗星还是行星,这个问题很快成了学术界关注的焦点,甚至成了哲学问题。黑格尔就曾写文章嘲笑天文学家说,不必那么热衷去找寻第八颗行星,他认为用他的逻辑方法可以证明太阳系的行星,不多不少正好是七颗。高斯也对这颗星着了迷,他利用天文学家提供的观测资料,不慌不忙地算出了它的轨迹。不管黑格尔有多么不高兴,几个月以后,这颗最早发现迄今仍是最大的小行星准时出现在高斯指定的位置上。自那以后,小行星、大行星(海王星和冥王星)接二连三地被发现了。在物理学方面高斯最引人注目的成就是在1833年和物理学家韦伯发明了有线电报,这使高斯的声望超出了学术圈而进入公众社会。除此以外,高斯在力学、测地学、水工学、电动学、磁学和光学等方面均有杰出的贡献。即使是数学方面,我们谈到的也只是他年轻时候在数论领域里所做的一小部分工作,在他漫长的一生中,他几乎在数学的每个领域都有开创性的工作。例如,在他发表了《曲面论上的一般研究》之后大约一个世纪,爱因斯坦评论说:“高斯对于近代物理学的发展,尤其是对于相对论的数学基础所作的贡献(指曲面论),其重要性是超越一切,无与伦比的。”

符号提出来,有一个-1的2m+1次方,一个单独的-1,合计-1的2m次方(那个单独的-1在除法的除数部分,后者说在分母,所以是2m+1减去1),结果一定是正1。所以结果没有负号。

再看x的指数,乘法中x的指数是1(就是一开始那个x)和2m+1,除法中除数的指数是4m-1。同底的指数相乘除,把指数相加减。所以结果的指数是1+(2m+1)-(4m-1)=-2m+3

所以最后结果是x^(2m+3)。

解:(1)非法收入为:2700/10=270(元/台)

而出售价是原售价的:(1+40%)×(8/10)=28/25

每台彩电的原价格为:270/(28/25-1)=2250(元)

设每台彩电的原价格为x,列方程

10[(14x×08)-x]=2700

解得x=2250亦可

(2)设乙的速度为X千米/小时,则甲的速度为(3X+1)千米/小时

在这3小时内,乙一直在步行,故乙的路程为3X

而甲停留了45分钟,故甲的路程为(3-45/60)(3X+1)

而甲乙路程之和,正好是AB两地路程的二倍

∴3x+(3-45/60)(3X+1)=255×2

解之得:x=5 ,3x+1=16

答:每台彩电的原价格为2250元,甲的速度是16千米/小时,乙的速度是5千米/小时

1、解:如图,连接AF、CD可知:AF∥BE∥CD,所以

由平行线间的距离处处相等,易得

S⊿ABC=S⊿ABE+S⊿CBE

=S⊿FBE+S⊿DBE

=S正方形BDEF=16

2、解:设正方形的边长为a米,则a=√10

    所以其内部最大圆的直径也为√10

    于是其内部最大圆的半径为(√10)/2

    所以所求圆的面积为π((√10)/2)^2=π(10)/4)=25π平方米

3、解:设共有m粒玉米,则有

          (1/10)m+(1/10)+(1/9)m+(1/9)+ (1/8)m+(1/8)+(1/7)m+(1/7)

+ (1/6)m+(1/6)+(1/5)m+(1/5)+ (1/4)m+(1/4)

+(1/3)m+(1/3)+(1/2)m+(1/2)+10=m

∴ (1/10)m+(1/9)m+(1/8)m+(1/7)m+ (1/6)m+(1/5)m+ (1/4)m+(1/3)m+(1/2)m

+(1/10)+(1/9)+ +(1/8)+(1/7)+(1/6)+(1/5)+(1/4)+(1/3)+(1/2)+10=m

∴ m是负数。这与事实不符。

出现错误,说明原题出题错误。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

延长AB到Q使BQ=BA,AE到G使EG=AE

连接QG,则与DE、BC交于点N、M,

此时ΔAMN的周长最小,

∵∠1=2∠Q,∠2=2∠G,∠Q+∠G=180°-∠BAE=180°-120°=60°

∴∠AMN+∠ANM=2∠Q+2∠G=2×60°=120

同一方向每趟车都间隔5分钟,不同方向车间隔3分钟

根据图形从6点到6:20分钟内

6到6:03四惠6:03到6:05苹果园

最后时间比为3:2

则到四惠为3/2+3=60%

到苹果园2/3+2=40%

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。

17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”

这就是老一辈数学家那颗爱国的赤子之心

数学家的墓志铭

一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。

古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。

16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=314,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在31415926与31415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

初中趣味数学题

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合16093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案

每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。

冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”

正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。

在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。

如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案

由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。

既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。

这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?

怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案

怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。

怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。

逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。

风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

答案:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来36050=18000元的收入; 扣除50间房的支出4050=2000元,每日净赚16000元。而客满时净利润只有16080-4080=9600元。

当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。

把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

答案:663

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/langman/3386485.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-14
下一篇2023-08-14

发表评论

登录后才能评论

评论列表(0条)

    保存