|z|的公式

|z|的公式,第1张

|z|的公式是z=a+bi,在数学中,虚数就是形如a+bi的数,其中a,b是实数,且b≠0,i2=-1,虚数这个名词是17世纪著名数学家笛卡尔创立的。

复数域中,负数-1的平方根记为i,称为虚数或虚数单位。一个实数乘以i称为纯虚数,例如5i就是一个纯虚数。

规律为: i^1=i, i^2=-1, i^3=-i, i^4=1, i^5=i^1=i,i^(4k)=1, i^(4k+1)=i ,i^(4k+2)=-1, i^(4k+3)=-i。

虚数i的n次方运算公式……虚数i的n次方运算公式:f=i^0。在数学中,虚数就是形如a+bi的数,其中a,b是实数,且b≠0,i=-1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为a。

复数

我们把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

——复数

1、i的三次方为-i。

2、i的四次方位1。

3、i的五次方为i。

虚数i的运算公式:(a+bi)±(c+di)=(a±c)+(b±d)i

(a+bi)(c+di)=(ac-bd)+(ad+bc)i

(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)

r1(isina+cosa)r2(isinb+cosb)=r1r2[cos(a+b)+isin(a+b)]

其中a,b是实数,且b≠0,i²=-1。

虚数i的三角函数公式:

1、sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)

2、cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)

3、tan(a+bi)=sin(a+bi)/cos(a+bi)

4、cot(a+bi)=cos(a+bi)/sin(a+bi)

5、sec(a+bi)=1/cos(a+bi)

6、csc(a+bi)=1/sin(a+bi)

虚数的物理意义与欧拉公式 如下:

虚数在物理里面可以理解为被隐藏的维度。比如电学里面,电和磁的能量转化。如果从电的角度列方程,矢量的模就是能量的大小。能量有电分量和磁分量,那么电分量体现为实部的时候磁分量体现为虚部。公式;sinx=(e^(ix)-e^(-ix))/(2i)

当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。

二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,  二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式),如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

扩展资料:

一次项系数b和二次项系数a共同决定对称轴的位置:

1、当a>0,与b同号时(即ab>0),对称轴在y轴左。因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号。

2、当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号。

3、可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。

-二次函数

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/278685.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-20
下一篇2023-06-20

发表评论

登录后才能评论

评论列表(0条)

    保存