跪求高三物理电磁学和光学所有公式,哪位前辈指点一下

跪求高三物理电磁学和光学所有公式,哪位前辈指点一下,第1张

请选用:(基础知识部分)

十、电场

1两种电荷、电荷守恒定律、元电荷(e=160×10-19C)

2库仑定律 (在真空中) (在介质中) {F:点电荷间的作用力(N) K:静电力常量K=90×109N•m2/C2 q1、q2:两点荷的电量(C) ε:介电常数 r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。}

3电场强度 (定义式、计算式) {E :电场强度(N/C) q:检验电荷的电量(C) E是矢量}

4真空点电荷形成的电场 { r:点电荷到该位置的距离(m) Q:点电荷的电量}

5电场力F=qE {F:电场力(N) q:受到电场力的电荷的电量(C) E:电场强度(N/C)}

6电势与电势差

7电场力做功WAB= qUAB {WAB:带电体由A到B时电场力所做的功(J) q:带电量(C) UAB:电场中A、B两点间的电势差(V) (电场力做功与路径无关)}

8电势能 { εA:带电体在A点的电势能(J) q:电量(C) :A点的电势(V)}

9电势能的变化ΔεAB =εB- εA {带电体在电场中从A位置到B位置时电势能的差值}

10电场力做功与电势能变化ΔεAB= -WAB= -qUAB {电势能的增量等于电场力做功的负值)}

11电容 (定义式,计算式) {C:电容(F) Q:电量(C) U:电压(两极板电势差)(V)}

12匀强电场的场强 {U:AB两点间的电压(V) d:AB两点在场强方向的距离(m)}

13带电粒子在电场中的加速

(vo=0) W=ΔEK

14带电粒子沿垂直电场方向以速度vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类似于平 垂直电杨方向:匀速直线运动L=vot (在带等量异种电荷的平行极板中: )

抛运动 平行电场方向:初速度为零的匀加速直线运动

15光斑在荧光屏上的竖直偏移(如图):

16平行板电容器的电容 {S:两极板正对面积 d:两极板间的垂直距离}

注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记,(见下图、[教材P124]);

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算1F=106μF=1012PF ;

(7)电子伏(eV)是能量的单位,1eV=160×10-19J;

(8) 其它相关内容:静电屏蔽〔见第二册P126〕。示波管、示波器及其应用〔见第二册P139〕等势面〔见下图及第二册P131〕。

十一、恒定电流

1电流强度: {I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2欧姆定律: {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3电阻、电阻定律: {ρ:电阻率(Ω•m),L:导体的长度(m),S:导体横截面积(m2)}

4闭合电路欧姆定律: 或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7纯电阻电路中:由于 ,W=Q,因此W=Q=UIt=I2Rt=

8电源总动率、电源输出功率、电源效率:P=IE,P出=IU, {I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9电路的串、并联: 串联电路(P、U与R成正比), 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+……+Rn

电流关系 I总=I1=I2=I3 =……=In I并=I1+I2+I3+……+In

电压关系 U总=U1+U2+U3+……+Un U总=U1=U2=U3

功率分配(无论串、并联均相同) P总=P1+P2+P3+ ……+Pn

10欧姆表测电阻

(1)电路组成(如右图); (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

接入被测电阻Rx后通过电表的电流为

式中 为欧姆表内阻,也是表盘中央刻度值,

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11伏安法测电阻

电流表内接法:图甲, 电压表示数:U=UR+UA

Rx的测量值 电流表外接法:图乙,电流表示数:I=IR+IV

Rx的测量值

选用电路甲的条件Rx>>RA [或 ], 选用电路乙的条件Rx<<RV [或 ]

12滑动变阻器在电路中的限流接法与分压接法

限流接法(图甲) 分压器接法(图乙)

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件R>RL 便于调节电压的选择条件R<RL

注:(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为 ;

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P153~157〕。

十二、磁场

1磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A•m

2安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3洛仑兹力f=qvB(注v⊥B);质谱仪〔见第二册P181〕 {f:洛仑兹力(N),q:带电粒子电量(C),v:带电粒子速度(m/s)}

4在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:

(a)F向=f洛= ; ; ;

(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);

(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P170〕;

(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P177〕回旋加速器〔见第二册P182〕磁性材料(见第二册P184)

十三、电磁感应

1[感应电动势的大小计算公式]

1) (只能计算平均感应电动势){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLv(直导线沿垂直于磁感线方向做切割磁感线运动) {L:有效长度(m) ,v:速度(m/s)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4) (导体一端固定以ω旋转切割) {ω:角速度(rad/s)}

2磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:垂直于磁场方向的面积(m2)}

3感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4自感电动势 {L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P199〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH。

(4)其它相关内容:自感〔见第二册P204〕日光灯〔见第二册P206〕。

十四、交变电流(正弦式交变电流)

1电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中):

3正(余)弦式交变电流有效值: ; ;

4理想变压器原副线圈中的电压与电流及功率关系

; ; P入=P出

5在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损= ;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P224〕;

6公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。

注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;

(5)其它相关内容:正弦交流电图象〔见第二册P215〕。电阻、电感和电容对交变电流的作用〔见第二册P219〕。

十五、电磁振荡和电磁波

1LC振荡电路 ;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}

2电磁波在真空中传播的速度c=300×108m/s, {λ:电磁波的波长(m),f:电磁波频率}

注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

(3)其它相关内容:电磁场〔见第二册P241〕电磁波〔见第二册P242〕无线电波的发射与接收〔见第二册P245〕电视雷达〔见第二册P246〕。

十六、光的反射和折射(几何光学)

1反射定律α=i {α;反射角,i:入射角}

2绝对折射率(光从真空中到介质) {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, α:入射角, β:折射角}

3全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)光导纤维是光的全反射的实际应用〔见第三册P11〕,放大镜是凸透镜,近视眼镜是凹透镜;

(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)

1两种学说:微粒说(牛顿)、波动说(惠更斯)〔见第三册P23〕

2.双缝干涉:中间为亮条纹;产生亮条纹的条件: ;产生暗条纹的条件: (n=0,1,2,3,……);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d:两条狭缝间的距离;l:挡板与屏间的距离}

3光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)

4薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕

5光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播〔见第三册P27〕

6光的偏振:光的偏振现象说明光是横波〔见第三册P32〕

7光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用〔见第三册P29〕

8光子说,一个光子的能量E=hν {h:普朗克常量=663×10-34Js,ν:光的频率}

9爱因斯坦光电效应方程: { :光电子初动能,hν:光子能量,W:金属的逸出功}

10物质波:任何运动着的物体都有一种波与它对应,其波长为 {也叫德布罗意波。p:运动物体的动量(kg•m/s);h:普朗克常量}

注:(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P48〕。光电效应的规律光子说〔见第三册P41〕。光电管及其应用/光的波粒二象性〔见第三册P45〕。激光〔见第三册P35〕。物质波〔见第三册P51〕。

十八、原子和原子核

1α粒子散射试验结果:(a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)

2原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

4原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

5天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕

衰变方程:α衰变, ,β衰变, 。

6 原子核的人工转变:

是指用人为的方法(如用 去轰击其它核)而使一种元素的原子核转变成另一种元素的原子核,如上述中子和质子的发现中所发生的核反应。

质子的发现:

发现者:1919年 卢瑟福 α粒子轰击氮核

核反应方程:

中子的发现:

发现者:1932年 查德威克

1920年卢瑟福预言中子的存在

1930年用α轰击铍产生了(卢瑟福预言中的中子)不带电粒子

1932年约里奥•居里和伊丽芙•居里用上述粒子从石蜡(含大量 1 1 H)中打出了质子,但他们当时不知道卢瑟福的预言,放弃了进一步研究。

核反应方程:

7爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

8核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=9315MeV}〔见第三册P72〕。

9重核的裂变:

10轻核的聚变:

注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

(2)熟记常见粒子的质量数和电荷数;

(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完) 图不完整 ,见谅。

1、光的折射

光从一种介质斜射入另一种介质时,传播方向一般会发生变化,这种现象叫光的折射

光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射

注意:在两种介质的交界处,既发生折射,同时也发生反射

2、光的折射规律

光从空气斜射入水或其他介抽中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆

折射规律分三点:(1)三线一面 (2)两线分居(3)两角关系分三种情况:①入射光线垂直界面入射时,折射角等于入射角等于0°;②光从空气斜射入水等介质中时,折射角小于入射角;③光从水等介质斜射入空气中时,折射角大于入射角

3、在光的折射中光路是可逆的

4、透镜及分类

透镜:透明物质制成(一般是玻璃),至少有一个表面是球面的一部分,且透镜厚度远比其球面半径小的多

分类:凸透镜:边缘薄,中央厚

凹透镜:边缘厚,中央薄

5、主光轴,光心、焦点、焦距

主光轴:通过两个球心的直线

光心:主光轴上有个特殊的点,通过它的光线传播方向不变(透镜中心可认为是光心)

焦点:凸透镜能使跟主轴平行的光线会聚在主光轴上的一点,这点叫透镜的焦点,用“F”表示

虚焦点:跟主光轴平行的光线经凹透镜后变得发散,发散光线的反向延长线相交在主光轴上一点,这一点不是实际光线的会聚点,所以叫虚焦点

焦距:焦点到光心的距离叫焦距,用“f”表示

每个透镜都有两个焦点、焦距和一个光心如图

6、透镜对光的作用

凸透镜:对光起会聚作用(如图)

凹透镜:对光起发散作用(如图)

7、凸透镜成像规律

物 距

(u) 成像

大小 像的

虚实 像物位置 像 距

( v ) 应 用

u > 2f 缩小 实像 透镜两侧 f < v u 放大镜

凸透镜成像规律口决记忆法

口决一:

“一焦分虚实,二焦分大小;虚像同侧正;实像异侧倒,物运像变小”

口决二:

三物距、三界限,成像随着物距变;

物远实像小而近,物近实像大而远

如果物放焦点内,正立放大虚像现;

幻灯放像像好大,物处一焦二焦间;

相机缩你小不点,物处二倍焦距远

口决三:

凸透镜,本领大,照相、幻灯和放大;

二倍焦外倒实小,二倍焦内倒实大;

若是物放焦点内,像物同侧虚像大;

一条规律记在心,物近像远像变大

8、为了使幕上的像“正立”(朝上),幻灯片要倒着插

9、照相机的镜头相当于一个凸透镜,暗箱中的胶片相当于光屏,我们调节调焦环,并非调焦距,而是调镜头到胶片的距离,物离镜头越远,胶片就应靠近镜头

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/329943.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-06-23
下一篇2023-06-23

发表评论

登录后才能评论

评论列表(0条)

    保存