肌肉收缩
肌浆Ca2+的浓度升高时,Ca2+与细肌丝上肌钙蛋白结合,引起肌钙蛋白分子构型发生变化,这种变化又传递给原肌球蛋白分子,使后者构型也发生变化。结果可使原肌球蛋白从肌动蛋白双螺旋结构的沟沿滑到沟底,安静时抑制肌动蛋白和横桥结合的因素被解除,暴露出肌动蛋白上能与横桥结合的位点。
肌肉舒张
当刺激停止后,终池对Ca2+肌肉通透性降低,Ca2+释放 停止。肌浆膜上的钙泵迅速回收Ca2+,使肌浆Ca2+下降, 钙与肌钙蛋白解离,肌钙蛋白恢复到原来的构型,继而原肌球蛋白也恢复到原来的构型,肌动蛋白上与横桥结合的位点重新被掩盖起来,横桥与肌动蛋白分离,粗、细肌丝退回到原来的位置,肌小节变长,肌肉产生舒张。
扩展资料
收缩形式
(一)等张收缩与等长收缩
1、等张收缩是指肌肉收缩时,主要表现长度发生改变而张力基本不变的收缩形式。
2、等长收缩是指肌肉收缩时,主要表现张力发生变化而长度基本不变的收缩形式。
(二)单收缩和强直收缩
1、单收缩是指肌肉受到一次短促刺激后出现的一次收缩和舒张。收缩过程分为潜伏期、收缩期和舒张期三个时期。
2、强直收缩是指肌肉受到连续刺激,当刺激频率达到一定程度时,后一次收缩落在前一次收缩的过程中发生收缩总和,出现强而持续的收缩。
刺激强度,刺激频率与肌肉收缩的关系是:刺激电压低于阈上刺激,神经不兴奋,肌肉也不会收缩。当电压达到阈强度,神经开始兴奋,肌纤维开始收缩,刺激强度逐渐增加,兴奋也增加,肌肉收缩强度也相应增大。当肌纤维全部兴奋后,收缩强度达到最大(此时的刺激强度称为最大刺激强度),不再随刺激强度增加而增加。
肌肉收缩类型
1、等长收缩
是指肌肉张力发生变化而长度基本不变的收缩形式,发生在肌肉静态工作,保持姿势的时候。这种收缩可以使人类手拿重物,过一会儿,肌肉会感觉酸痛。在马身上,这类似于以一种姿势支撑头的重量。
2、等张收缩
是指肌肉长度发生改变而张力基本不变的收缩形式。等张收缩产生运动,可被细分为:
向心收缩时,肌肉长度变短,产生运动。如马的快步和跑步。
离心收缩时,肌肉在产生张力的同时被拉长,控制运动。如马跳过障碍后的落地、急停或走下坡。
强直性肌营养不良疾病概述强直性肌营养不良由Delege(1890)首先描述。肌强直表现受累的骨骼肌收缩后松弛显著延迟,导致明显的肌肉僵硬,肌电图出现特征性连续高频电位放电现象。临床表现本病可发生于任何年龄, 但多见于青春期后, 男多于女。主要症状为肌无力、肌萎缩和肌强直。萎缩和无力表现为四肢不灵活, 前臂及手部肌肉萎缩,下肢有足下垂及跨阈步态。萎缩还可发展至面肌、咬肌、颞肌和胸锁乳突肌,故病人面容瘦长, 颧骨隆起, 呈斧状脸,颈消瘦而稍前屈。部分病人可有讲话及吞咽困难。肌强直分布不如先天性肌强直那样广泛。多限于上肢肌肉和舌肌。肌萎缩与肌强直之间并无明显的关系。大部分病人有白内障、多汗、秃发、基础代谢率下降、肺活量减少、消瘦、月经不调、阳痿、性欲下降和不孕等。尚可有胃肠道平滑肌功能障碍,部分病人智力衰退甚至痴呆。症状体征1、强直性肌营养不良症1型(MDI) 通常在30或40岁时显现症状,尽管儿童早期也可出现。男性多于女性,且症状较重。主要症状是肌无力、肌萎缩和肌强直,前两种症状更突出。肌无力见于全身骨骼肌,前臂肌和手肌无力伴肌萎缩和肌强直,有足下垂及跨阈步态,行走困难易跌跤;部分病人构音障碍和吞咽困难。肌萎缩常累及面肌、咬肌、颞肌和胸锁乳突肌,病人面容瘦长,颧骨隆起,呈斧状脸,颈部瘦长稍前驱。肌强直常在肌萎缩前数年或同时发生,分布不如先天性肌强直广泛,仅限于上肢肌、面肌和舌肌。检查可证明肌强直存在,如患者持续握拳后不能立即将手松开,需重复数次后才能放松;用力闭眼后不能立即睁眼,愈咀嚼时不能张口等。用诊锤扣击肌肉的肌呈持续收缩,局部有肌球形成,多见于前臂和手部伸肌,持续数秒后恢复原状,此体征对诊断本病有重要价值。2、强直型肌营养不良症2型(MD2)偶有患者临床表现与强直应肌营养不良症类似,但无肌强直性蛋白激酶基因重复性扩增。临床特征与MD1相似,表现显著的肢体远端肌、面肌、胸锁乳突肌的肌无力和肌萎缩,伴肌强直,也可有白内障、额秃、睾丸萎缩、糖尿病、心脏异常和智力异常等。3、近端肌强直性肌病表现肌强直、近端为主肌无力和白内障,病程不如MD1严重,也曾报道肌肉严重受累并有听力丧失的变异型。4、许多患者伴白内障、视网膜变性、眼球内陷眼睑下垂、多汗、消瘦、心脏传导阻滞、心律失常和基础代谢率下降等,约半数伴智能低下男性常见睾丸萎缩,但生育力很少下降,因此本病能在家族中传播。玻璃体红晕为早期特征性表现。本病进展缓慢,部分病人因肌萎缩及心、肺等并发症在40岁左右丧失工作能力,常因继发感染和心力衰竭死亡;轻症者病情可长期稳定。疾病病因强直性肌营养不良症1型是一种多活动受累的常染色体显性遗传病,基因缺陷位于染色体19q132-19q133基因三核苷酸(CTG)重复序列扩增,这种扩增的三核苷酸重复构成了诊断试验的基础。这一基因编码的蛋白被称为肌强直性蛋白激酶。基因外显率为100%。全球患病率为3-5/10万,发病率约为1/8000活婴,是成人最常见的肌营养不良症,无明显地理或种族差异。肌强直的发病机制不清,认为是广泛的膜异常,包括骨骼肌膜、红细胞膜、晶状体膜和血管膜等。至少在某些病例,肌纤维膜异常似乎与跨肌纤维膜氯离子电导率降低有关。除表现多组肌群肌萎缩和肌强直外,还有晶状体、皮肤、心脏、内分泌和生殖活动等多活动。强直型肌营养不良症2型的遗传方式不同。一组相关的强直性病变近端肌强直性肌病通常为显性遗传,也有散发病例,与萎缩性肌强直蛋白激酶(DMPK)基因无关,基因定位于3q213染色体。病理生理典型肌肉病理改变为细胞核内移,呈链状排列,肌细胞大小不一,呈镶嵌分布;肌原纤维往往向一侧退缩形成肌浆,肌细胞坏死和再生不明显。诊断检查▲辅助检查 1、肌电图出现典型肌强直放电,受累肌肉出现连续高频强直波逐渐衰减,肌电图扬声器发出一种类似俯冲轰炸机或链锯样声音;67%的患者运动单位时限缩短,48%有多相波。心电图常可发现传导阻滞及心律失常 2、血清CK和LDH等肌酶滴度或轻度增高。 3、肌活检显示轻度非特异性肌源性损害。 4、基因检测具有特异性,患者染色体19q133位点DMPK基因CTG三核苷酸序列异常重复扩增超过100(正常人为5-40),重复数目与症状严重性相关。
肌肉萎缩是指横纹肌营养障碍,肌肉纤维变细甚至消失等导致的肌肉体积缩小。病因主要有:神经源性肌萎缩、肌源性肌萎缩 、废用性肌萎缩和其他原因性肌萎缩 。肌肉营养状况除肌肉组织本身的病理变化外,更与神经系统有密切关系。脊髓疾病常导致肌肉营养不良而发生肌肉萎缩。肌萎缩患者由于肌肉萎缩、肌无力而长期卧床,易并发肺炎、褥疮等,加之大多数患者出现延髓麻痹症状,给患者生命构成极大的威胁。肌萎缩患者除请医生治疗外,自我调治十分重要。
神经原性肌萎缩常见的原因为废用、营养障碍、缺血和中毒。前角病变、神经根、神经丛、周围神经的肌肉萎缩 病变等均可引起神经兴奋冲动的传导障碍,从而使部分肌纤维废用,产生废用性肌萎缩[1]。 另一方面当下运动神经元任何部位损害后,其末梢部位释放的乙酰胆碱减少,交感神经营养作用减弱而致肌萎缩。肌原性肌萎缩是由肌肉本身疾病,可能还包括其他一些因素,如肩带或面肩肱型的肌营养不良患者,通过形态学检查证实为脊髓型肌萎缩。 用微电极技术检查患肌营养不良的动物,显示机能性失神经肌纤维者约占1/3。两大类疾病可以引起“肌萎缩”,一是神经受损称神经源性肌萎缩,二是肌肉本身的疾病称肌源性肌萎缩。
肌肉收缩的三种形式
肌肉对单个刺激发生的机械反应称为单收缩。根据肌肉收缩时肌长度和肌张力的变化,
可将肌肉收缩分为三种形式。
1、缩短收缩(向心收缩)
特点:张力大于外加阻力,肌长度缩短。
作用:是肌肉运动的主要形式,是实现动力性运动的基础(如挥臂、高抬腿等)。
(1)等张收缩
外加阻力恒定,当张力发展到足以克服外加阻力后,张力不再发生变化。但在不同的关节角度时,肌肉收缩产生的张力则有所不同。在关节运动的整个范围内,肌肉用力最大的一点称为“顶点”。在此关节角度下,骨杠杆效率最差。
如:推举杠铃, 关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小。
最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩。而在其他关节角度下,肌肉收缩均小于自身最大力量。
在整个关节活动的范围内,肌肉做等张收缩时所产生的张力往往不是肌肉的最大张力。
(2)等动收缩
在整个关节活动范围内,肌肉以恒定速度进行的最大用力收缩。但器械阻力不恒定。
等动练习器:
在离心制动器上连一条尼龙绳,由于离心制动作用,扯动绳子越快,器械产生的阻力就越大。
特点:器械产生的阻力与肌肉用力的大小相适应。
等动收缩的优点:
外加阻力能随关节活动的变化而精确地进行调整,使肌肉在整个关节活动范围内都能产生最大的肌张力。
2、拉长收缩(离心收缩)
特点:张力小于外加阻力,肌长度拉长。
作用:缓冲、制动、减速、克服重力。
如:蹲起运动、下坡跑、下楼梯、从高处跳落等动作,相关肌群做离心收缩可避免运动损伤。
3、等长收缩
特点:张力等于外加阻力,肌长度不变。
作用:支持、固定、维持某种身体姿势。其固定功能还可为其他关节的运动创造适宜条件。
如:站立、悬垂、支撑等动作。
4、三种收缩形式的比较
(1)力量:收缩速度相同情况下,离心收缩产生的张力最大。(比向心收缩大50%,比等长收缩大25%)
(2)代谢:输出功率时,离心收缩能量消耗低,耗氧量少。
(3)肌肉酸痛:离心收缩疼痛最显著,等长收缩次之,向心收缩最轻。
肌收缩
肌肉对刺激所产生的收缩反应现象。狭义来说,是指脊椎动物骨骼肌靠传播性活动电位而发生的收缩。单一的活动电位产生单收缩,反复活动电位产生强直收缩。不通过活动电位的肌肉收缩多数情况是由于非传布性的去极化而产生的,去极化如只限于局部肌肉,且为短暂性的,称为局部收缩。去极化如在肌肉全部而且是持续性的,则称为拘性收缩。在平滑肌等所见到的持续性收缩一般称为痉挛,但很多仍然是伴随着反复活动电位或是持续性去极化。可是在双壳贝的闭壳肌等所看到的持续性收缩并没有电位的变化,这种收缩是出于闸式结构。肌肉收缩的记录大致可有两种情况:一种是在重量负荷下记录肌肉缩短时的长度变化――等张收缩。另一种是记录肌肉长度保持一定时的张力变化的等长收缩。
一、骨骼肌细胞的微细结构
粗肌丝 :肌球蛋白
1肌原纤维: 肌动蛋白
细肌丝 原肌球蛋白
肌钙蛋白
2肌管系统 横管系统(T管)
纵管系统 (L管)
二、肌肉的特性
1、肌肉的物理特性
① 伸展性:肌肉在外力作用下可被拉长,为肌肉的伸展性。
② 弹性:当外力消失时,肌肉又恢复到原来形状,为肌肉的弹性。
③ 粘滞性:肌肉活动时由于肌肉内部各蛋白分子相互摩擦产生的内部阻力为肌肉的粘滞性。肌肉的物理特性受温度的影响。当肌肉温度升高时,肌肉的粘滞性下降,伸展性和弹性增加。
2、肌肉的生理特性
①兴奋性:肌肉具有对刺激发生反应兴奋的能力。
②收缩性
三、细胞的生物电现象
1 细胞的兴奋性;兴奋
2 单一细胞的跨膜静息电位和动作电位
①静息电位:(1)概念:(内负外正)
(2)极化、超极化、去极化(除极化)及复极化的概念
②动作电位:(1)概念:(跨膜出现短暂可逆的电位变化)
(2)产生时的电变化;(3)波形的特点(锋电位、负后电位、正后电位);(4)产生的意义;(5)特点
3生物电现象的产生机制
① K+平衡电位:产生的条件和产生机制
② 锋电位和Na+平衡电位: 产生的条件和产生机制
③ Na+通道的失活和膜电位的复极
(1)绝对不应期和相对不应期
(2)Na+泵的作用
4 动作电位的引起和它在同一细胞上的传导
(一)阈电位和锋电位的引起
1阈电位的概念2阈电位现象的原因
3阈强度、阈刺激、阈下刺激
(二)局部兴奋及其特性
(三)兴奋在同一细胞上的传导机制
1局部电流学说 2有髓神经纤维的跳跃式传导
四、 肌细胞的收缩功能
1、 神经-骨骼肌接头处的兴奋传递
神经-骨骼肌接头结构;兴奋传递过程;终板电位的特点;兴奋传递的特点
2、 运动单位的组成
3、 运动单位的动员
(4)骨骼肌收缩的分子机制
1. 滑行学说及其主要内容
2. 收缩过程的分子机制
①粗肌丝的结构及横桥的特性
②肌丝滑行的机制
③细肌丝的结构
五、肌肉的收缩形式与力学特征
1缩短收缩、拉长收缩和等长收缩
缩短收缩:缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式。依据整个关节运动范围肌肉张力与负荷的关系,缩短收缩又可分非等动收缩和等动收缩两种。
拉长收缩:当肌肉收缩所产生的张力小于外力时,肌肉积极收缩但被拉长,这种收缩形式称拉长收缩,又称离心收缩。
等长收缩:当肌肉收缩产生的张力等于外力时,肌肉积极收缩但长度不变,这种收缩形式称等长收缩。
2肌肉收缩的力学特征
(一)后负荷对肌肉收缩的影响——张力与速度关系
后负荷:后负荷是肌肉收缩开始之后所遇到的负荷。
力-速度曲线:固定前负荷不变,让肌肉在不同的后负荷条件下进行等张收缩。把肌肉所产生的张力和缩短初速度绘成坐标曲线。
(二)前负荷对肌肉收缩的影响—张力与长度关系:见课本图2-15
前负荷:是肌肉收缩开始前加上的负荷。
六、肌纤维类型与运动能力
1人类肌纤维类型的类型
依据收缩机能将骨骼肌纤维分为“慢肌”和“快肌”两种类型的观点。这一分类方法通常只适用于区别动物骨骼肌纤维类型,而不完全适合于区别人类的骨骼肌纤维类型。
(1)根据组织化学染色法
依据具有不同酶活性的肌原纤维ATP酶在各种不同pH环境中预孵育时染色程度的差异,可将骨骼肌纤维划分为Ⅰ型Ⅱ型,以及Ⅰc、 Ⅱa、Ⅱb、Ⅱc、Ⅱac和Ⅱab六种亚型。其中,Ⅱc型纤维被认为是一种未分化的较原始的肌纤维。
(2)根据肌纤维代谢特征
把骨骼肌纤维分为慢缩强氧化型、快缩强氧化酵解型和快缩强酵解型三种类型
2两类肌纤维的形态、代谢和生理特征
形态特征
形态特征包括以下三个方面: ①结构特征; ②神经支配;③肌纤维面积。
代谢特征:① 代谢底物;② 代谢酶活性
3、生理特征
①收缩速度:肌肉中快肌纤维百分比较高者,其收缩速度也较快。
②收缩力量:肌肉收缩力大小取决于肌肉的横断面积并受肌纤维类型等因素影响,多数研究认为动物快肌收缩力量明显大于慢肌。
③ 抗疲劳性:动物和人体实验均证明,慢肌纤维的抗疲劳能力较快肌强,故快肌纤维较慢肌纤维更易疲劳。
3不同类型肌纤维的分布
(1)肌纤维类型的百分组成。
(2)骨骼肌纤维功能上的分布现象
(3)骨骼肌纤维类型的性别差异。
(4)骨骼肌纤维类型组成的年龄变化。
(5)遗传因素对骨骼肌纤维类型分布的影响。
4肌肉中感受器的结构和功能
(1)肌梭的结构与功能;脊髓前角的描述;感受装置结构和功能的描述;γ运动纤维的作用;反馈信息的传递
(2)腱梭的结构与功能;感受装置结构;反馈信息的传递
七、肌肉的结缔组织
1、肌肉结缔组织的组成:胶原是结缔组织最主要成分,以胶原纤维形式存在。
2.运动对肌肉结缔组织的影响
3.解释:快速下蹲比缓慢下蹲起跳和“挺胸带臂”比“停胸带臂”用力效果好的原因。
4 运动对肌肉结缔组织的影响
①长期运动可提高肌腱的抗张力量和抗断裂力量。
②长期运动可使肌中结缔组织肥大。
八、肌电图的应用
1、肌电的引导
表面电极所引导的是整块肌肉的综合电活动,它具有操作简便,无损伤和无痛苦等优点,被广泛应用于体育科学研究,缺点是不能记录深层肌肉电活动。
2、正常肌电图
正常肌肉在完全松弛情况下不出现电活动,引导电极插入肌肉后,在记录仪上仅描记出一条平稳的基线。运动单位电位的波幅代表放电的强度,其大小取决于兴奋的运动单位大小或活动肌纤维数目。
3、肌电图的应用
①利用肌电图分析技术动作,了解完成该项动作的主要肌群,及其用力程度和顺序,为体育教学与训练提供依据。
②利用肌电图解决体育基础学科(如运动生理学、运动解剖学、运动生物力学和运动医学)中某些理论与实践问题。
③利用肌电图了解训练对神经肌肉的影响,为评定运动员训练水平提供依据
刺激强度一定时,强直收缩的高度要比单收缩高,而且在一定范围内,收缩高度随刺激频率的增加而增高。
肌肉收缩牵引骨骼而产生关节的运动,其作用犹如杠杆装置,平衡杠杆运动,支点在重点和力点之间,如寰枕关节进行的仰头和低头运动。
当刺激频率比较高时,肌肉处于持续稳定的收缩状态,各收缩波完全融合,不能分辨,这种现象叫完全强直收缩。也即肌肉始终保持收缩状态。当刺激频率比较高时,后一刺激引起的收缩落在前一收缩的收缩期内。
扩展资料:
两个相同强度的阈上刺激,相继作用与神经-肌肉标本,如果刺激间隔大于单收缩的时程,肌肉则出现两个分离的单收缩;如果刺激间隔小于单收缩的时程而大于不应期,则出现两个收缩反应的重叠。当同等强度的连续阈上刺激作用于标本时,则出现多个收缩反应的叠加。
因为强直收缩是重复兴奋,因此出现与刺激频率相当的动作电位,这点可与挛缩和僵直相区别。易体的随意运动和反射运动大多数是基于来自运动神经的反复冲动而引起的强直收缩。
——强直收缩
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)