肌纤维的数量、肌纤维的粗细。肌肉是由快肌纤维与慢肌纤维组成,两种肌纤维在运动中扮演着不同的角色。
肌纤维即肌细胞,因肌细胞细而长,又称肌纤维。肌纤维分红肌纤维与白肌纤维,因外观不同而有红白不同的称呼。红肌纤维也叫I型纤维、慢缩肌纤维、慢氧化纤维;白肌纤维又称II型纤维、快缩肌纤维或快解醣纤维。
扩展资料:
肩膀肌肉柔韧性测试:
左手高举过肩,曲肘向下,右手反手贴背向上,两手指尖尽量相互靠拢。若两手中指能互相触碰,成绩为“0”;若两手能交叠,成绩为“+1”;若两手手指碰不到,成绩为“-1”;左右手交换方向做,然后算出平均值。
腰腿肌肉柔韧性测试:
坐在椅面前端,右腿伸直,脚跟着地脚尖朝天;左腿屈膝,吐气弯腰,两手朝右脚尖方向伸直。若右手中指能触碰到右脚大脚趾,成绩为“0”;若指尖能超过大脚趾,成绩为“+1”;若指尖碰不到大脚趾为“-1”;左右腿交换做,算出平均值。
手臂力量测试:
面壁站立,两臂张开比肩宽,屈肘两手撑墙;两脚张开与肩同宽,后退一大步;如做俯卧撑那样做撑墙动作,测试20秒内能做几次。
参考资料:
-肌纤维
人民网-自测:4个动作测出你的肌肉力量
第一阶段:稳定性训练
第二阶段:力量耐力训练
第三阶段:增肌训练
第四阶段:绝对力量训练
第五阶段:爆发力训练
一、稳定性训练
目标:
1、提高肌耐力
2、提高关节稳定性
3、提高柔韧性
4、改善身体姿势控制
5、改善神经肌肉协调(神经肌肉系统对肌肉的良好控制从而更有效率的完成各种不同的运动动作)
训练策略:
1、在一个不稳定,但是可以控制的环境中
2、低负荷,多次数;12次以上
二、力量耐力阶段
目标:
1、提高稳定性耐力和提高主运动肌力量
2、提高整体的肌肉工作能力
3、改善关节稳定性
4、提高肌含量
训练策略:
1、中等负荷(8-12次重复/组)
2、超级组:传统力量训练+稳定性训练动作
三、肌肉增大训练目标:
1、达到肌肉增大的最佳水平
2、增加最大的肌肉增长
3、集中高水平的训练量和最少的休息期
训练策略: 高负荷(多组数 短间歇 大重量) 60%-85% 1RM 的重量选择 组次数 6-12次
四、最大肌力训练目标:
1、通过举起重的负荷,使原动肌达到最大的力量
2、增加运动单位的募集频率
3、提高峰值运动表现
训练策略:
高负荷,低重复次数(1-5),长休息时间
五、爆发力训练目标:
1、提高肌肉神经效率
2、增加主动肌的力量
3、提高力量的产生速度
训练策略:
1、超级组:一个力量训练+爆发力训练
2、爆发力训练在可以控制的范围内尽量快;
肌肉的力量大小。
肌肉的力量可以从两个方面进行改变:一是通过被激活的运动单位的数量,另一个是增加激活运动单位的激活频率。例如对于腿部的大肌肉,在进行大重量活动时,会以近乎强直的频率募集更多的运动单位。而对于手部的小肌肉,为了产生较大的力量,会通过增加刺激的频率,颤动的力量开始叠加聚合,运动单位产生的力量就大于单次刺激产生的力量大小。
力量的产生是因为运动单位的兴奋,而运动单位由神经元与肌纤维组成。肌纤维的类型有快肌纤维和慢肌纤维,快肌纤维II型,慢肌纤维I型,I型肌纤维有抗疲劳和有氧供应能力,但是其快速力量有限,即其肌动蛋白和肌原纤维的ATP酶活性较低。II型肌纤维表现为效率低,易疲劳,低有氧能力,力量发展迅速,高肌球蛋白ATP酶活性,高无氧氧债等特点。
训练的针对性: 只有经过训练刺激的肌肉才能对抗阻训练做出适应和改变反应。
一般适应综合征: 适应的三个阶段1警觉期,由生理应激引起(如抗阻训练);2抵抗期,机体开始适应需求;3衰竭期,过度训练造成。
特定适应强加要求原则: 根据特定适应强加要求原则,这种适应会针对性的符合锻炼过程中运用到单位特征。
训练变化: 方案应该随时改变训练刺激。周期性的训练是构建最佳训练和康复训练方案的最佳选择。
训练的优先次序: 要求身体每个部位都充分锻炼是很困难的。所以在每一周期性的训练方案中,每一训练周期都应集中注意优先发展训练目标,尤其对新手尤为重要。在给定的训练周期内可能只需要关注一个训练目标,如何制定和实现训练目标则取决于学员的经验和个体的健康水平。
任何一个合理的力量训练方案由许多变量组成,包含所选择的动作练习、练习的先后次序、练习的强度或负荷、练习重复的次数和组数以及练习的休息时间间隙,这些都称为短期训练计划变量,这些变量可在单组训练中改变的,这些因素将决定长期训练的结果。
特定的关节角度对应可能的运动方式与提高人体功能性动作一样是无穷无尽的。当选择某一项练习动作时,记住肌肉组织只有从抗阻训练中激活才能受益(大小原则)。
运动可以指定为主要练习或辅助练习。主要运动锻炼的是主动肌(主要肌群)。常见有蹬腿练习、杠铃卧推举和悬垂高翻。辅助运动主要训练主动肌的一个肌群。如钢线肱三头伸展和哑铃肱二头肌弯举属于辅助运动。
练习方式也可以按照结构(涉及多个关节的练习)或特定身体部位(只涉及一个关节)进行分类。结构性的练习包含如全身性提拉这类要求多肌群协同收缩的练习。高翻、硬拉和深蹲都是全身性提拉结构练习。另一些结构只涉及一些关节或肌肉的参与,例如,杠铃卧推举需肘关节和肩关节同时作用。
多关节需要进行长时间的基础学习或更多神经配合。
多关节练习的好处在于激活的肌肉组织、激素反应以及新陈代谢都远高于单关节练习。
训练大块肌肉群会刺激更多的神经、新城代谢、内分泌激素和循环反应。
以下经常使用的顺序训练方法:
先锻炼大块肌肉群,在锻炼小块肌肉群; 先进性多关节,再进行单关节运动; 全身运动环节中交替进行上肢和下肢练习;全身运动环节中进行推拉练习; 先进行弱侧练习,然后进行优势侧练习; 进行基础力量训练和单关节练习之前先进行奥林匹克举练习; 进行其他类型的练习前首先进行爆发力训练进行低强度的练习前先进行高强度的练习,尤其是相同肌群连续运动的情况下;
最后一个考虑的因素是个体健康水平以及是否有过抗阻训练经历。精心设计减轻个体的压力,尤其对初学者。
阻力是改变力量和训练部位肌肉耐力的主要刺激。高强度对所有个体都重要。
低强度(轻阻力)、多重复次数的训练能够有效地I型纤维(更适合于耐力发展),但无法充分激活II型纤维(主要对最大力量产生和肌肥大起作用)。所以,如果你想将你的力量最大化,就应该增加训练负荷并且减少训练重复次数。
训练组数(互动量或训练量)
总运动量(组数x次数x负荷)设计训练过程中很重要的概念。在训练过程中保持训练量不变容易让人感到难以坚持下去。
某些阶段低训练量,对持续性的提高和增强训练适应性是至关重要。 关键的不是组数,因为组数只是影响训练量—强度周期模型的其中一个因素,更重要的是进行周期性的运动量划分,训练量—强度周期模型。
组间休息时间决定了ATP(磷酸肌酸能量合成程度以及血液中乳酸浓度的)产生量。休息时长可明显改变新陈代谢、激素水平和心血管系统对短时间抗阻训练以及对随后组数的反应。
高级训练强调绝对力量或爆发力的增长,对于使用最大或最大次数负荷结构性动作练习(深蹲、高翻、硬拉)而言,推荐至少3-5分钟组间休息;较少休息(1分钟以下)可能适合于肌肉参与程度较小的练习或单关节练习。初学者或中级举重,2-3分钟休息,这中水平抗阻训练强度对神经肌肉系统的压力较小。
另外,对糖酵解和三磷酸腺苷(磷酸肌酸能量系统)增加压力可以促进肌肉增长,因此,如果训练目的是增加肌肉围度,哪么较少的休息时间(低于60-90秒)更为有效。休息过短,心理焦虑和疲劳心理因素很多产生。
周期性训练
准备阶段:包括增加力量和增加肌肉质量。在这阶段中,运动量大而运动强度小。
第一过渡期:在运动量减少的同时运动强度增强,目标是提高肌肉的爆发力以及增加肌群的熟悉程度。
比赛期(巅峰期):特点因项目不同而有所不同,这一阶段需要结合专项进行训练。
赛季间歇(第二过渡期):专注于适度运动以帮助肌肉恢复,但是不会完全停止训练。
线性周期
比如,在为期6周的中周期计划内,前两周为期2周的小周期以轻负荷为主,然后逐渐增重以过渡到第3隔小周期。抗阻训练强度增加的同时减少运动量。然后,6周的中期结束后,根据不同运动员的训练背景和训练水平来安排不同长度的主动恢复周期。然后再重复一个中周期。
线性周期中,大周期的根本目标就是增加肌肉力量和发展肌肉围度,使其在遗传理论内达到最大化。
为了避免进展过快,可以先进行为期6到12周的常规准备阶段,为后续的正式周期计划做好准备。这阶段包含使用轻的负重、学习动作技术,还有逐渐增加负荷至正式周期计划的负荷水平。 重点发展所需的神经系统适应性,以增强运动单位的募集。
非线性周期不适依次增加或减少运动量和运动强度,而是更频繁(即每周,有时每天)地改变以维持训练对机体的刺激。
非线性和线性比较,15周内同方案,更频繁的变化获得更多力量。短期训练变量的持续性变化要求生理上的适应也随之改变(与逐渐增加强度和运动量会造成力量瓶颈期相反)。
非线性周期另一个重要方面就是辅助性练习的训练量和强度。主要训练时典型的周期训练,但运用非线性方法,同样可以使用两个循环周期的方案以进行不同的训练,如小肌群的锻炼等。比如,钢线肱三头伸展,训练强度就可以介于(8-10RM)和较高水平(4-6RM)之间。这不但能够促进某一关节的单块肌肉增长,还会以后续大块肌肉的重负荷训练提供所需的力量支持。
非线性方法中,在为期7-14天的中周期内,运动员可以同步时进行增加肌肉围度和神经调动层面增加肌肉力量的训练。
非线性方法中,锻炼可分为四个程度——超强、强、中度和轻度。如你错过一次锻炼,完全可以第二天补充回来,然后继续进行这个循环。该训练不是必须在固定的时间内完成一次训练,而是当一定周数的训练完成时一个周期自然就完成了。
如图,关于下肢肌肉16周的大周期内,其中5周为非线性训练的案例。每周的训练变化比线性方案的变化更大,负荷从1-12RM不等。你可以增加一个爆发力训练日,负重为最大肌力的30-45%,关节运动时无减速环节,举起重物直接释放(如仰卧推举投掷)。像这样的变化通常被认为是负荷较低的,因为缺乏离心收缩的部分而导致生理上对运动应激不高,从而使运动员有很多的恢复时间。
为了增加方案中的变化并能够从高强度的运动中更快地恢复,可同时增加药球快速伸缩复合训练和其他下肢的快速复合训练。
非线性和线性整体看似相同,都能促进肌肉增长和神经募集。不过,任何周期性训练方案都要优于固定不变的训练。
循环训练
运动员选择8-12动作,一个接着一个,然后循环重复1-3次。循环训练主要目的在于增强心血管耐力和所锻炼肌肉部位的耐力;也能够促进肌肉力量的适度增长(训练计划表与休息时间)。
单组训练
单组训练通常在重复8-12次的单组训练内完成,每一组都要做到不能完成为止。并为被证实与多组的周期训练项目或渐进抗阻训练项目同样高效。不过,他们可以在非线性训练中提供快速转换,而且也可以被归类为单组循环训练。
多组训练系统
最初包含2-3个热身训练,随后每组的负荷逐渐增加至目标负荷,接下来的几组练习采用该负荷。
结果表明,无论是初学者还是顶尖的运动员,对于多关节运动而言,5-6RM的负荷,至少3组(3-6组)的训练模式是增加力量的最佳方案。
可以设定任何阻力、任何重复次数和组数来进行这个多组数训练系统的运动,从而达到抗阻训练中想要到达的目标。进行长时间的多组训练而不改变其他变量,通常会导致力量和爆发力的增长进入瓶颈期。抗阻训练系统使用的大部分都是多组训练系统中的某些变量。如果训练的目标是获得力量和爆发力,可以通过周期训练优化多组训练系统。
超慢系统
进行20-60秒的重复一次的非常慢的练习。研究表明,较慢的速度(向心和离心10秒)的运动不能完全激发爆发力、力量或促进力量增长和运动表现提升的最佳运动量。但是,可能对发展肌肉速慢耐力有潜在效果。
这一系统主要适用于单关节练习和器械练习,通过关节活动度来控制。通常,在整个训练中只进行1-2组超慢训练。
金字塔或三角形通路
10RM、8RM、6RM、4RM、2RM、4RM、6RM、8RM、10RM的抗阻训练顺序进行或者相反。非常耗时,迫切只适用于2-3个练习。
超级组训练
可以完全相反肌群(肱三头和肱二头)也可以关节不同肌肉(股四头和三角肌)。
110RM肱二头弯举、10RM肱三头下压。无组间休息,重复三次。
210RM背阔肌下拉,坐式划船后拉,俯身划船。每个练习之间休息60秒,重复三次。
由于间隙时间短,这类训练对身体要求非常高。
反向抗阻训练(离心训练)
分割训练系统
典型的分割训练系统要求星期一、星期三、星期五训练上肢、下肢和腹部,二星期二、星期四、星期六训练胸部、背部和肩膀(可以减少到每周4-5天训练,即使训练频率很高,他也能帮组训练环节期间肌肉的高效恢复)。维持高强度训练会促进更多力量单位获得。更要注重辅助训练。
强制重复系统
力竭组后使用
功能性等长收缩
解释不清楚 看书66页
休息暂停系统
常用于最大力量(1RM)多次重复练习中动。每次运动休息10-15秒,然后进行下一次练习。这个系统左右可能获得最大力量(我觉得这些都是瞎掰)。
优先系统
优先系统几乎适用于所有抗阻训练方案。健美运动员股四头弱,优先最弱的股四头肌群训练。篮球先锋最大弱点是缺乏上半身力量,以至于缺乏篮下对抗能力。足球运动员可能想要发展腿部、臀部和背部的力量和爆发力,因而,他开始就要进行负重高翻和深蹲训练等。
复合、同步、对比和交叉训练
他们应用在训练三种不同的能量代谢方式。
根据个体训练的要求,同步训练之间的目标可能会也可能不会相互矛盾。比如,有氧代谢已被证实有效影响肌肉力量的提高。有氧代谢运动取决于特定的阈值(最大心率强度的75%,每周2-3次20-30分钟的训练),但是任何超出的阈值范围的训练都会对力量增长有负面影响。研究表明力量训练不会影响最大摄氧能力。
同步训练对于不同目标的训练而言都是有利的。比如,研究表明同步力量和爆发力训练能够增加爆发力的测试水平,比如投掷速度和垂直跳跃高度。这两个变量经常在一次训练中同步进行(有时称为对照法)。通常将高负荷变为高速度低负荷训练,可以同时发展最大力量和爆发力。
这类训练同样非常适应于周期训练计划。目标确定时。可以按照中周期和小周期的训练来达到主要训练目标。次目标可以稍后再增加到训练方案中,以形成️一个完整的、全面俱到的训练方案。比如说,速度和爆发力可以是橄榄球折返跑训练的主要目标,然后最大肌力可以是次要目标。因此对照法会很合适上述运动员。
恒定阻力器材
训练过程保持恒定负荷,包括哑铃、杠铃、药球和其他其他没有滑轮或杠杆移动的孤立式器材。
可变阻力器材
包含大多数抗阻训练器械、绳索阻力设备以及弹性力器材系列。
从固定阻力器材中获得的益处要远比从阻力变化器材中获得的多得多。
静态阻力器材
指个体推或拉一个等长收缩训练中的固定装置。
快速伸缩复合训练
用于训练速度、爆发力和起始力量。这个循环按照离心、等长、向心的方式进行。特点是离心运动带领运动进入弹道向心运动。
弹跳、跳投以及药球训练都是很普通的ssc训练。快速伸缩复合训练的关键在于使SSC允许通过在离心运动时预激活而后增强向心的作用。因此,离心收缩运动的速度对向心的重复至关重要。SSC增加爆发力输出的能力大小还要取决于负荷、时间以及诱发肌肉预先拉伸的能力等。
这很容易解释什么为何一个SSC会引起如此有力的收缩运动,如执行正常的垂直跳(即有反向双脚跳。在这一类型的跳跃运动中,首先膝关节髋关节屈曲(离心),然后快速反向运动并跳起(先到等长再向心运动)。一个反向跳包含了一个SSC。
现在进行屈曲膝关节和屈曲髋关节的跳跃,在跳起前保持动作3-5秒,然后再跳。这称为无反向双脚跳;这就不包含SSC,而且这一跳不会高于反向双脚跳(包含SSC跳跃)。
训练建议
每一训练类型都会用到周期训练方案。为了设计一个高效的训练方案,必须进行需求分析。分析可以帮助选择最合适的训练类型(如自由重量训练vs训练器械vs快速伸缩复合训练),以及运动选择、能量通路在训练中的使用、训练中的变量控制、处理出现的伤病以及预防受伤风险等。
最大力量: 总的来说,大于最大肌力的85%,每组要进行2-6次。组间休息2-5分钟的中高组数的训练方案可用于最大力量的获得。对高级举重运动员,分隔训练(如4-6天的训练)是达到这些目标的最佳选择。顶尖奥利匹克举重运动员每天会进行3-6次训练,这就增加了训练的频率和总运动量。针对每一肌群,在组织好的周期训练方式下,每周应训练2-3天。多关节的自由重量训练应该是整个训练的重要组成部分,同时机械训练和单关节运动作为补充部分。
肌肉增长: 向心和离心同时进行效果最佳。建议每次练习3-6组,每组重复6-10次,从中度到重度负荷(1RM的75%-85%)的训练。高级举重练习者,会不会增加负荷以及组数,并逐渐减少休息时间(1-2分钟)尽量不要超过个体忍耐极限,否则会出现头晕和恶心。除上述之外,还应该包括单关节和多关节运动。要保持训练频率与最大力量训练相同:根据训练具体情况,每周应进行1-3天主要肌群的锻炼。
肌肉爆发力
训练爆发力时,速度尤为重要。发力过程要符合整个爆发力-速度曲线。训练的同时你可以通过最大力量的同步训练来增加爆发力。
局部肌肉耐力训练
最佳训练是使用轻负荷进行1-2组重复训练(15-25次为佳)。组间休息时间较短—高重复次数时组间休息1-2分钟,中等重复次数时组间休息时间应低于1分钟。
肌电图的临床应用
一、肌电图:
狭义的肌电图是指以同心圆针电极插入肌肉中,收集针电极附近一组肌纤维的动作电位,以及在插入过程中观察其静息状态、轻用力时运动单位电位,大力时募集状态。
广义的肌电图学,还包括神经传导、神经重复电刺激等有关周围神经、神经肌肉接头和肌肉疾病的电诊断学。
1、正常肌电图
(1)插入电活动:针电极在插入肌肉时,可机械地刺激或损伤肌纤维,而产生各种大小不同形态不同的短暂的电位,这就是插入电活动。持续时间是几百毫秒,(如果针电极不活动,静息状态下,正常肌肉不会有活动表现为一条直线,称为电静息。)
(2)轻用力时运动单位电位: 肌肉轻度收缩状态下记录的一个运动神经元所支配的一群肌纤维所兴奋的电位称运动单位电位(MUP)。
(3)波形多为2-3相,5相以上为多相。多相波一般不超过15%,时限常在5-15ms之间;波幅多在100至数千微伏之间。每一块肌肉都有自己的正常值(波幅、时限、位相)
(4)大力时募集状态:当肌肉大力量收缩时,许多运动单位很快的发放冲动,由于许多不同的运动单位同时兴奋,因此不能辨认各个单独的MUP。
2、异常肌电图
(1)插入活动的异常:
①插入活动的减少和延长。
②出现自发电位:纤颤、正锐波、 束颤电位、肌强直样放电(复合性重复放电)、肌纤维颤搐
③肌强直放电。
(2)异常MUP
①短时限的MUP,指MUP平均时限小于同一年龄组肌肉的正常范围。常见于肌肉疾病和神经肌肉传递性疾病。
②长时限的MUP,指MUP平均时限大于同一年龄组肌肉的正常范围。这些MU P的波幅增高,时限的增宽,并伴有募集不良,常提示下运动神经元病变。如:运动神经元病、脊髓灰质炎、脊髓空洞症、周围神经病变,或神经损伤后的再支配等。
③多相电位 其数目增多,可见于肌病,也可见于运动神经元病周围神经病变。 (3)异常募集形式
募集形式决定于用力时发放的MU 数量以及MU发放的频率,下运动神经元病变时MU减少,病人客观上很用力,但MU也是减少型。表现为单纯相、混合相。
二、神经传导速度检查
1、神经传导检查是测定神经传导功能的一种方法。主要研究周围神经的运动和感觉兴奋传导功能。
①运动神经传导速度检查 刺激周围神经的某个刺激点,在该神经支配的远端肌肉产生一个肌肉复合动作电位(CMAP)即M波。在一个神经干两个不同部位进行刺激,测定两个刺激点之间的距离,然后以两个潜伏期的差除该段距离,得出这一段运动传导速度。 ②感觉神经传导速度检查 用环状电极刺激手指或足趾,在相应的神经近端记录动作电位(SNP),为顺向法;相反,在神经的近端刺激,手指或足趾记录为逆向法,用传导时间除相应的距离,就得出该神经的感觉传导速度。
2、神经传导速度减慢提示周围神经脱髓鞘病变,动作电位的波幅降低提示是轴索的损害。但要注意综合分析,严重的轴索的损害运动传导速度可以轻度减慢。
3、神经传导在临床上的应用
神经传导速度检测可用于:①弥漫性多发性神经病的诊断;②某个局灶病变的确定;③神经损伤的评价。根据传导速度减慢的程度及运动诱发波幅的降低,有时可区别轴索病变和脱髓鞘病变。严重的减慢通常提示髓鞘病变,波幅降低通常提示轴索病变。研究表明,神经传导这一检测技术所的出的结果与组织学检查的结果非常一致。
三、神经异常形式
A、神经失用:只有传导的阻滞没有轴索的断离。如果去除病因,神经可以在几天或几周后恢复。
B、神经脱髓鞘:神经传导减慢,CMAP波形离散,病变近端刺激的CMAP低于远端。也可因相位抵消出现CMA P波幅降低。
C、轴突变性:CMAP降低通常提示轴索的变性。
D、神经断伤:CMAP缺如。表明绝大多数神经纤维不能通过病变部位的传导。
四、F波、H 反射(略)
五、肌电图在各个疾病中的应用
(一)、脊髓和周围神经病
A、前角细胞病变
1、运动神经元病 ALS、SMA
①肌电图表现:广泛的失神经电位(纤颤、正尖波、)、束颤电位。宽时限、高波幅以及多相波增多。大力时运动单位电位减少、募集差、发放增快,构成单纯相 。
②神经传导检测:运动神经传导可有轻度减慢并伴有CMAP的降低。感觉神经电位的传导和波幅正常。
③H反射:刺激胫神经出现的H反射出现率增加。
ALS、SMA电生理诊断标准:①上下肢肌肉或者肢体及头部肌肉出现自发电位(三个肢体)②MUP的波幅增高、时限增宽;运动单位电位数减少。③MCV正常或轻度减慢;SCV正常。
2、脊髓灰质炎:急性期募集型的减少,出现自发电位,随着运动轴索的变性出现自发电位(纤颤正尖)。获得神经再支配后,自发电位减少,而出现高波幅和长时限的大的运动单位电位。募集型波幅明显增大。神经传导速度正常,但运动诱发波幅降低。
3、脊髓空洞症:可出现脊髓相应节段水平支配肌肉的大波幅、长时限的运动单位电位以及募集型减少的神经原损害。神经传导速度一般正常,但受累肢体的运动诱发波幅可降低。SEP:由于临床上所出现的感觉缺失是感觉通路的节前纤维,故周围感觉神经电位是正常的,但可显示中枢传导的阻滞。
B、周围神经病变
1、臂丛神经损伤
(1)臂丛神经损伤分为外伤性臂丛神经损伤和非外伤性臂丛神经损伤。
①外伤性臂丛神经损伤:, 战争时期主要有外伤、器械伤、枪弹伤。在和平时期主要有车祸。其他如产伤、牵拉颈部和上肢、肱骨骨折、肩关节脱臼也会损害臂丛。②非外伤性臂丛神经损伤:特发性臂丛神经病或称痛性肌萎缩,麻醉药注射、放射性臂丛神经损害、家族性臂丛神经病、肿瘤压迫等。
(2)神经传导速度异常表现为:①在病损近端刺激引起CMAP和SAP明显减小,而病损远端波幅较大;②在跨过病损的传导速度减慢,说明病灶处有局灶性脱髓鞘和神经阻滞,有时可伴有轴索损害,各指SCV 对了解损害的部位有帮助。
多条神经通过Erb′S点(腋、肌皮、挠、肩胛上、下、肩胛背、副、正中、尺、胸长神经),刺激这些神经收集到的神经传导速度,根据MCV 及CMAP的情况和多肌肉的神经源性损害 ,可以判断其损害的范围及程度。
2、多发性神经病
多发性神经病一般呈慢性进行,但也有急性发病,如GBS,各种原因的中毒等。大多数多发性神经病同时损害运动和感觉神经纤维。有的病如GBS、卟啉病、乙烷中毒等引起的周围神经病以运动神经受累为主;急性特发性感觉神经病、遗传性感觉神经病、糖尿病周围神经病、淀粉样变性、癌性或麻疯病性周围神经病、痢特灵周围神经病、维生素B6中毒以感觉神经受累多见。
3、遗传性多发性神经病(HMSNⅠ型及Ⅱ型)
HMSNⅠ型即肥大型(脱髓鞘型):末端潜伏期延长(比正常延长116-119%,MCV减慢(比正常减慢52-64%)。
HMSNⅡ型(轴索型):末端潜伏期正常,MCV正常或轻度减慢(不低于正常值的
40%);CMAP下降(比正常下降50%)。
针极肌电图呈慢性神经源型损害。纤颤、正尖、束颤电位,可有巨大电位,大力收缩可见MUP明显减少。F波和瞬目反射可受累。有一部分病人BAEP、VEP、SEP有异常。
4、肥大性多发性神经病(HMSNⅢ型):婴儿期发病,患儿发育迟缓,走路困难,先累及双下肢后及上肢,肌无力、肌萎缩、四肢末端感觉障碍,深感觉有障碍。PRO升高。 肌电图慢性神经源性损害。MCV、SCV明显减慢。
5、急性炎性脱髓鞘性多发性神经根神经病(AIDP)
1997年Cornblath总结运动神经传导诊断标准:
(1)AIDP标准
发病两周内病人二条或二条以上,至少符合下列一项:
A、如果波幅高于正常下限的50%,传导速度低于正常下限的95%,如果波幅低于正常下限的50%,传导速度低于正常下限的85%;
B、如果波幅正常,末端潜伏期大于正常上限的110%,如果波幅于低正常下限,末端潜伏期大于正常上限的120%;
C、明确的暂时性波形离散;
D、F波潜伏时大于正常上限的120%;
(2)轴索型GBS标准
A、没有以上所述的脱髓鞘证据;
B、波幅低于正常下限的80%。
6、慢性炎性脱髓鞘型多发性神经根神经病(CIDP)
Albers1985总结运动神经传导诊断标准为:
(1)传导速度慢于正常低限的75%(2条神经以上);
(2)远端潜伏期长于正常高限的130%(2条神经以上);
(3)肯定的一过性离散或近端-远端波幅比低于0 7(1条神经以上); (4)F波潜伏期长于正常高限的130%(1条神经以上);
符合上述4条标准中的3条以上,可诊断有髓鞘脱失。
7、多灶运动神经病(MMN)
多条神经在不同节段运动神经传导阻滞,波形离散,MCV减慢。远端SCV正常(运动阻滞的节段中,SCV也正常)。
8、糖尿病性周围神经病
最先表现SCV减慢SAP降低,严重时MCV减慢;下肢比上肢阳性率高,病程越长NCV异常率越高。肌电图神经源性损害。SEP有明显肢体深感觉障碍可呈周围段异常。 9、尿毒症性周围神经病
严重时MCV、SCV减慢;有些病人出现CMAP降低,提示有轴索损害;肌电图慢性神经源性损害;大多数尿毒症病人VEP、SEP有异常。
10、癌性神经病
NCV正常或轻度减慢,有显著的CMAP、SAP的低下或消失。肌电图神经源性损害。也有引起副肿瘤性感觉神经元病,其电生理特点为SA P波幅降低或引不出,SCV可减慢;而MCV、潜伏期和CMAP波幅正常。
11、中毒性神经病
常见的有各种药物与工业用的化学制剂,可引起远端轴突病。如氯霉素、雷米封、长春新碱、痢特灵等。工业用的化学制剂,二硫化碳、无机汞;铅中毒、砷中毒,农药中毒等。电生理测定则呈现为CMAP和SAP波幅的降低。由于相当数量的快传导的大纤维变性,
可引起末端潜伏期轻度延长和MCV的轻度减慢。肌电图神经源性损害。
12、单神经和嵌压性神经病
(1)正中神经:
①旋前圆肌综合征:神经传导检测为近端段(肘-腕)MCV减慢,而远端段(腕部)运动的潜伏期和SCV正常。旋前圆肌可显示神经原性异常。
②腕管综合征:神经传导检测为远端段(腕-拇短展肌)潜伏期的延长或CMAP的降低或消失,SCV减慢或SAP降低或消失。大鱼际肌神经源性异常;同侧的尺神经及正中神经近端段(肘-腕)MCV、SCV正常。
(2)尺神经:
①肘管综合征:神经传导检测为跨越肘部的运动或感觉神经传导速度减慢,受压部位CMAP较远端降低;小鱼际肌及第一骨间肌神经源性异常。
②在Guyon管内的挤压(腕尺管综合征):可出现尺神经支配的手固有肌的力弱和萎缩,并显示失神经支配的肌电图表现;但尺侧腕屈肌和指深屈肌肌功能正常。尺神经SCV波幅降低或波幅消失,而腕-肘段传导正常。潜伏期延长。
③掌皮支病变:尺神经肘-腕MCV及腕-小指展肌末端潜伏期正常;而腕-第一骨间肌的末端潜伏期延长CMAP降低。小鱼际肌及第一骨间肌神经源性异常。
(3)挠神经:神经传导检测为MCV及SCV减慢或CMAP、SAP减低或消失。 (4)股神经:股神经潜伏期的延长或CMAP的降低或消失。股四头肌神经源性异常。 (5)坐骨神经:神经传导检测为MCV及SCV减慢或CMAP、SAP减低或消失。胫前肌、腓肠肌、股二头肌神经源性异常。
(6)腓神经:神经传导检测为MCV及SCV减慢或CMAP、SAP减低或消失。跨越膝部的运动神经传导速度减慢,受压部位CMAP较远端降低;胫前肌、腓骨长短肌神经源性异常。
(7)胫神经:肌电图显示胫神经所支配的足固有肌的失神经电位;胫神经潜伏期的延长或传导的减慢。
(二)肌电图在肌病中的应用
1、肌病是指原发于骨骼肌细胞的肌病,既往人们对肌病的理解大多认为,其临床多为慢性起病,进行性对称性近端及骨盆带的肌无力和萎缩,腱反射可正常或减弱,感觉功能正常,没有肌束震颤。电生理测定显示。运动和感觉传导速度正常,重复神经电刺激正常,同心圆针极肌电图可见纤颤电位、正尖电位,MUP平均时限缩短,波幅降低,多相波增多。 2、常见的遗传性肌病
①Duchenne型进行性肌营养不良、Becker型进行性肌营养不良、面肩肱型肌营养不良,典型的肌源性改变,运动和感觉传导速度正常。
②先天性肌病:中央轴空病、线状体肌病、肌管肌病。
③炎性肌病:多发性肌炎和皮肌炎。
④代谢性肌病:糖原累积病、线粒体肌病和脑肌病。
⑤内分泌性肌病:甲状腺机能亢进性肌病、甲状腺机能低下性肌病。
(三)重复神经电刺激
1、重复神经刺激(RNS)技术用来研究神经肌肉传递障碍性疾病。神经肌肉传递障碍性疾病可分为三种不同类型:①突触后异常;②突触前异常;③既有突触后又有突触前混合性异常。MG是大家最熟悉的一种突触后异常,是乙酰胆碱受体减少所致,以骨骼肌易疲劳为特征。肌无力综合征为典型的突触前异常,主要发病机制是突触前膜中乙酰胆碱释放不
足,主要症状是易疲劳和近端肢体力弱。另一种突触前异常的疾病是肉毒中毒,其作用机制是乙酰胆碱受到抑制。既有突触前、突触后异常,最常见的是氨基糖甙类抗生素引起的肌无力综合征。上述疾病通过RNS技术以及单纤维肌电图等电生理技术,可进行诊断和鉴别诊断。
2、生理学原理
当给予小于5HZ的低频刺激时,突触前膜中即刻用的乙酰胆碱量子迅速耗竭,乙酰胆碱量子数释放减少,结果终板电位的波幅逐渐下降。在MG ,由于突触后皱褶扁平,量子反应减少,终板电位的波幅逐渐下降。当终板电位的波幅下降到阈值以下时,其波幅的降低可使得随后一些纤维得收缩发生阻滞,最终导致CMAP的递减反应。然而,在LEMS,刺激神经所致乙酰胆碱量子释放减少,导致肌纤维收缩不能,从而产生递减反应。
当给予大于10HZ的高频刺激时,突触前神经终末端Ca离子的积聚增加,促进乙酰胆碱的释放,随之导致终板电位的波幅增加。在病情较轻的MG,高频刺激时,通过正常生理机制所致乙酰胆碱量子性释放的增加,能够补偿量子反应的减少,因此成为正常反应 在重的MG,由于神经肌肉接头严重阻滞,生理性增加的乙酰胆碱的释放,不能补偿量子反应的显著减小,因此产生递减反应。在肌无力综合征,其基本的异常机制是乙酰胆碱释放的减少;高频刺激所致乙酰胆碱释放的生理性增加。使连续增加的EPP 波幅足以激活阈下肌纤维的兴奋,从而产生递减反应。
3、重复神经刺激的临床应用
(1)、重症肌无力(MG)
MG是一种获得性自身免疫性疾病。临床特征为部分或全身骨骼肌易于疲劳,通常在活动后加重,休息后减轻。
其发病机制为体内产生了乙酰胆碱受体抗体,在补体的参与下和乙酰胆碱受体发生免疫应答,破坏了大量的乙酰胆碱受体,导致突触后膜传递障碍而产生肌无力。一般检查为新斯的明试验、血清乙酰胆碱受体抗体试验、单纤维肌电图、重复神经刺激。
典型的突触后神经肌肉传递阻滞:在RSN检测的表现为①CMAP波幅正常。②低频刺激出现递减反应。③高频刺激反应正常或出现递减反应。低频刺激出现递减反应是MG最常见的具有特征意义之所见。
(2)、肌无力综合征(LEMS)
肌无力综合征是一种自身免疫性疾病。临床特征为易疲劳,近端肌无力,很少出现眼部和球部症状。可有反射减弱。主要异常是突触前膜中乙酰胆碱的释放减少。目前,LEMS的诊断主要依赖于RNS。
特征性突触前神经肌肉传递阻滞:①CMAP波幅低;②低频刺激出现递减反应;③高频刺激显著递增反应。④肌源性异常肌电图。
(四)肌电图在强直性疾病中的应用
强直性疾病为肌肉兴奋性异常的神经肌肉疾病。
肌强直综合征:肌强直是指肌肉兴奋之后肌肉松弛延迟的临床现象。
1、肌强直性肌营养不良(MYD) 为常染色体显性遗传的多系统病。典型的临床表现为隐袭发展的肌强直和远端肌无力。有时表现为无性欲和性格改变,白内障、心脏病、睾丸萎缩、习惯性流产。肌无力在受冷时加重。肌无力肌萎缩首先出现在面部。
肌电图表现:可出现典型肌强直电位,肌源性改变,神经传导速度正常。也有报道周围神经受损。
2、先天性肌强直 常染色体显性遗传病。主要表现为动作开始时肌肉强直,重复活动后减轻,静止休息后加重。肢体僵硬,动作笨拙,久坐后不能立即站起,静止后立即起步,握拳后不能立即撒开,发笑后不能立即停止,打喷嚏后眼睛不能立即睁开等;查体发现,肌肉发育良好,伴有假肥大。扣击舌肌和肌肉可出现肌球。
肌电图表现:可出现典型肌强直电位,无肌源性改变,神经传导速度正常。
3、先天性副肌强直:常染色体显性遗传病。婴儿或幼年发病,肌强直首先累及面、舌、咽、颈及双手。其特点是,运动后肌强直不缓解,反而加重,遇冷后明显加重。 可出现典型肌强直电位,无肌源性改变,神经传导速度正常。
(五)诱发电位的临床应用
诱发电位(EP)是指神经系统在感受外在或内在刺激过程中产生的生物电活动。在没有任何人为刺激的状态下,神经系统可自发出现电活动,在头部记录下来为脑电图。外界发生的事件,以不同形式刺激人体的感觉器官也可产生神经冲动,在神经冲动传导的不同节段上,有关的神经结构都会产生与刺激相关的电位活动,如果在头皮或身体其它部位放臵电极,上述生物电活动就被记录下来,既诱发电位。分为感觉诱发电位、运动诱发电位、事件相关电位。
A、依受检神经划分
1、感觉诱发电位:主要有躯体感觉、听觉和视觉三种。以电脉冲刺激诱发躯体感觉诱发电位(SEP)、以特定声音刺激诱发听觉诱发电位(AEP)、以闪光或图形翻转刺激诱发视觉诱发电位(VEP)。
2、运动诱发电位:电流或磁场经颅骨或椎骨刺激人大脑运动皮质或脊髓所记录到的肌肉动作电位,称为运动诱发电位(MEP)。
3、事件相关电位:人脑对某一刺激信息进行认知加工时,在头皮记录到的电位变化,称为事件相关电位(ERP)。
B、依分析时间划分可分为短潜伏期、中潜伏期、长潜伏期诱发电位。
临床上,短潜伏期躯体感觉诱发电位(SLSEP)、脑干听觉诱发电位(BAEP)、闪光或图形翻转听觉诱发电位(F-VEP ,PRVEP)。
C、临床应用
1、短潜伏期躯体感觉诱发电位(SLSEP)的临床应用:
①周围神经损伤:特别以感觉神经障碍为主者,表现为峰潜伏期延长,波幅降低,严重的波形消失。糖尿病或尿毒症SEP异常率增高。
②脊髓病变:脊髓空洞症常侵犯颈膨大,可见N11波幅减低及其以后的波峰潜伏期延长,脊髓压迫症及其脊髓损伤可导致潜伏期延长、波形消失。
③多发性硬化:SEP在诊断多发性硬化中占有重要的位臵,其主要作用在于肯定临床上不确切的病灶和发现亚临床病灶。一般下肢的SEP阳性率高于上肢,这可能由于病变易侵犯胸髓之故。异常表现为潜伏期延长、波幅减低或波形消失。
2、视觉诱发电位(VEP)
①视神经炎和球后视神经炎:本病最突出的变化是P100潜伏期延长,P100潜伏期延长可持续多年。
②多发性硬化(MS):VEP在本病的异常率较高,特别是球后视神经炎MS患者最常见和最有价值的是P100潜伏期延长。
③视神经或前视路的压迫性病变:VEP对此敏感,以波幅降低为主。
④弥漫性神经系统病变:脊髓小脑变性如少年脊髓型遗传性共济失调症(Feied Reich 共济失调)阳性率大约在2/3。
⑤腓骨肌萎缩症:P100潜伏期延长,波幅降低。
3.运动诱发电位(MEP)的临床应用
①脑血管病
②运动神经元病
③多发性硬化症
④脊髓病
运动波幅降低运动受累能恢复。肌肉运动单位募集的增加和神经冲动频率的增高,可增加肌张力、减慢运动单位电位的传导速度和增加肌肉释放的肌电信号的振幅。运动波幅降低是由于神经传导速度减慢或肌电信号振幅降低导致的,如果针对这些因素进行训练和治疗,如通过锻炼增加神经传导速度或通过康复训练增加肌肉力量和耐力,可以恢复运动受累。因此,运动波幅降低运动受累能恢复。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)