力矩与角动量的关系

力矩与角动量的关系,第1张

质点对参考系的角动量M对时间的变化率等于作用于该质点的合力对这个质点的力矩L,就是角动量定理,M=dL/dt。就是L对时间t的微分就是M,M和L都是有方向的。

力矩

力矩表示力对物体作用时所产生的转动效应的物理量。力和力臂的乘积为力矩。力矩是矢量。力对某一点的力矩的大小为该点到力的作用线所引垂线的长度(即力臂)乘以力的大小,其方向则垂直于垂线和力所构成的平面用力矩的右手螺旋法则来确定。力对某一轴线力矩的大小,等于力对轴上任一点的力矩在轴线上的投影。

国际单位制中,力矩的单位是牛顿·米。常用的单位还有千克力·米等。力矩能使物体获得角加速度,并可使物体的动量矩发生改变,对同一物体来说力矩愈大,转动状态就愈容易改变。

法拉第定律是为了什么

重大意义法拉第电解法定律是光电催化中的关键定律,在热电生产过程中常常使用它。在历史上,法拉第电解法定律曾启迪科学家产生正电荷具备分子性的概念,这对造成基本上电荷e的发现及其创建的物质电结构理论具备积极意义。在RA密立根测量电子的电荷e之后,曾依据电解法定律得到的结果测算阿伏伽德罗常量Nₒ。

法拉第定律的公式计算

M=KQ=KIt公式中,M—进行析出金属品质;K—占比常量(热电剂量);Q—申请的用电量;I—电流值;t—通电时间。

角动量守恒定律的前提条件

角动量守恒定律的标准是合外力矩等于零。角动量守恒定律是物理学的广泛定律之一,体现质点和质点系紧紧围绕一点或一轴的运动基本规律。假如合外力矩零(即M外=0),则L1=L2,即L=常矢量素材。换句话说,对一固定不动点o,质点所受到的合外力矩为零,则此质点的角动量矢量素材保持一致。这一结果称为质点角动量守恒定律。

角动量守恒定律的关系式

角动量中惯性力矩的算法有一些必须微积分基础,这儿得出质点:J=mr^2。针对质点,角动量定律可描述为:质点对定位点的角动量时间观念的微商代理,相当于应用于该质点里的力对于该点力矩。假如合外力矩零(即M外=0),则L1=L2,即L=常矢量素材。

角动量守恒定律这个概念

角动量守恒定律是物理学的广泛定律之一,体现质点和质点系紧紧围绕一点或一轴的运动基本规律;体现不会受到外力的作用或受到诸外力作用对某个指定(或定轴)的合力矩自始至终等于零的质点和质点系紧紧围绕该点(或轴)的运动基本规律。角动量守恒定律是对质点,角动量定律可描述为质点对定位点的角动量时间观念的微商代理,相当于应用于该质点里的力对于该点力矩。

这个是狭义相对论,证明如下:

狭义相对论公式及证明

单位 符号 单位 符号

坐标: m (x,y,z) 力: N F(f)

时间: s t(T) 质量:kg m(M)

位移: m r 动量:kgm/s p(P)

速度: m/s v(u) 能量: J E

加速度: m/s^2 a 冲量:Ns I

长度: m l(L) 动能:J Ek

路程: m s(S) 势能:J Ep

角速度: rad/s ω 力矩:Nm M

角加速度:rad/s^2α 功率:W P

一:

牛顿力学(预备知识)

(一):质点运动学基本公式:(1)v=dr/dt,r=r0+∫rdt

(2)a=dv/dt,v=v0+∫adt

(注:两式中左式为微分形式,右式为积分形式)

当v不变时,(1)表示匀速直线运动。

当a不变时,(2)表示匀变速直线运动。

只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。

(二):质点动力学:

(1)牛一:不受力的物体做匀速直线运动。

(2)牛二:物体加速度与合外力成正比与质量成反比。

F=ma=mdv/dt=dp/dt

(3)牛三:作用力与反作与力等大反向作用在同一直线上。

(4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。

F=GMm/r^2,G=66725910^(-11)m^3/(kgs^2)

动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)

动量守恒:合外力为零时,系统动量保持不变。

动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)

机械能守恒:只有重力做功时,Ek1+Ep1=Ek2+Ep2

(注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)

二:

狭义相对论力学:(注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)

(一)基本原理:(1)相对性原理:所有惯性系都是等价的。

(2)光速不变原理:真空中的光速是与惯性系无关的常数。

(此处先给出公式再给出证明)

(二)洛仑兹坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

(三)速度变换:

V(x)=(v(x)-u)/(1-v(x)u/c^2)

V(y)=v(y)/(γ(1-v(x)u/c^2))

V(z)=v(z)/(γ(1-v(x)u/c^2))

(四)尺缩效应:△L=△l/γ或dL=dl/γ

(五)钟慢效应:△t=γ△τ或dt=dτ/γ

(六)光的多普勒效应:ν(a)=sqr((1-β)/(1+β))ν(b)

(光源与探测器在一条直线上运动。)

(七)动量表达式:P=Mv=γmv,即M=γm

(八)相对论力学基本方程:F=dP/dt

(九)质能方程:E=Mc^2

(十)能量动量关系:E^2=(E0)^2+P^2c^2

(注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)

三:

三维证明:

(一)由实验总结出的公理,无法证明。

(二)洛仑兹变换:

设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0。可令x=k(X+uT),(1)又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K故有X=k(x-ut),(2)对于y,z,Y,Z皆与速度无关,可得Y=y,(3)Z=z(4)将(2)代入(1)可得:x=k^2(x-ut)+kuT,即T=kt+((1-k^2)/(ku))x,(5)(1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u)两式相乘消去t和T得:k=1/sqr(1-u^2/c^2)=γ将γ反代入(2)(5)式得坐标变换:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

(三)速度变换:

V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))

=(dx/dt-u)/(1-(dx/dt)u/c^2)

=(v(x)-u)/(1-v(x)u/c^2)

同理可得V(y),V(z)的表达式。

(四)尺缩效应:

B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ

(五)钟慢效应:

由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T

(注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)

(六)光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b))

B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为△t(a)=γ△t(b),(1)探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则△t(N)=(1+β)△t(a),(2)相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即ν(b)△t(b)=ν(a)△t(N),(3)由以上三式可得:ν(a)=sqr((1-β)/(1+β))ν(b)

(七)动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)

牛二在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛二都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。

牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)

(八)相对论力学基本方程:

由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛二的形式完全一样,但内涵不一样。(相对论中质量是变量)

(九)质能方程:

Ek=∫Fdr=∫(dp/dt)dr=∫dpdr/dt=∫vdp=pv-∫pdv

=Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2sqr(1-v^2/c^2)-mc^2

=Mv^2+Mc^2(1-v^2/c^2)-mc^2

=Mc^2-mc^2

即E=Mc^2=Ek+mc^2

(十)能量动量关系:

E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2

四:

四维证明:

(一)公理,无法证明。

(二)坐标变换:由光速不变原理:dl=cdt,即dx^2+dy^2+dz^2+(icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,dS^2=dx^2+dy^2+dz^2+(icdt)^2,(1)则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2〉0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。

由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)

X=xcosφ+(ict)sinφ

icT=-xsinφ+(ict)cosφ

Y=y

Z=z

当X=0时,x=ut,则0=utcosφ+ictsinφ

得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:

X=γ(x-ut)

Y=y

Z=z

T=γ(t-ux/c^2)

(三)(四)(五)(六)(八)(十)略。

(七)动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)

令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。

则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)

四维动量:P=mV=(γmv,icγm)=(Mv,icM)

四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)

四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)

则f=mdV/dτ=mω

(九)质能方程:

fV=mωV=m(γ^5va+i^2γ^5va)=0

故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)

由fV=0得:γ^2mFv+γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))

故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2

故E=Mc^2=Ek+mc^2

对刚体,力矩=角动量的变化率,这是在微积分的意义下牛顿第二定律和第三定律的直接推论。类比于力=动量的改变量它可以方便计算,比如说一个物体若只受重力(自由下落时),其实应该把物体看成无数个小质点来看它们受到的重力及彼此之间的内力,但是如果该物体可以看成刚体的话,就可以只用重力和重力矩来等效所有这些复杂的内力的作用。

力矩 角动量 冲量 动量 功 动能

这几组量的关系在牛顿力学里都是可以直接从牛顿第二定律得出的,理论上有了力,加速度和时间,没有必要引入上述几组量。但是事实上,现在认为即使牛顿力学不成立,动量守恒 能量守恒 角动量守恒作为时空对称性的体现是始终成立的。

题目存在问题,这根单跨外伸梁上作用有三个荷载。集中荷载F=qa、集中力偶矩

M=qa²/2、唯独没有标注均布荷载q!然而,题中说的是q(x), 就是说不是均布,其值随x变化,这与简图不符! 所谓‘载常数、形常数’,是解工程题目不可缺少的前提!

题目“根据载荷集度q(x)”这句话放在这里不知何意,根本念不通意思。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/10574853.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-09
下一篇2023-11-09

发表评论

登录后才能评论

评论列表(0条)

    保存