鸡胸肉为什么能撕成丝状 肌细胞?

鸡胸肉为什么能撕成丝状 肌细胞?,第1张

不管你是要做凉拌鸡丝、鸡丝饭、鸡丝沙拉或是鸡丝面,都需要将鸡胸肉弄成丝。今天就来跟大家分享3个把鸡胸肉快速做成鸡丝的方法,跟着学做起来吧!

  

  第1步:先将鸡胸肉煮熟

  

  鸡胸肉要先煮熟才能弄成丝,至于要怎么弄熟,各种方法都可以,你可以用烤的、用蒸的、用水煮等等都行。如果家里有铸铁锅,也可以将鸡胸肉快速煎熟,只要在锅内倒入一点油,再以中火煎鸡胸肉,两面都煎3~4分钟左右,直到鸡胸肉都熟透为止。如果你想在做熟的过程中,用盐和胡椒粉帮鸡胸肉做调味,只要在鸡肉下锅前将调味粉洒在鸡肉上即可。

  

  第2步:把鸡胸肉稍微放凉

  

  鸡胸肉做熟后,先把它摆在盘子上稍微放凉,等2分钟左右即可,等到鸡胸肉没那么烫,再将它弄成鸡丝比较好,但是也不要放太久让它完全变凉,因为鸡胸肉凉透了就变硬了,不如温温的时候容易弄成丝。

  

  第3步:将鸡胸肉做成鸡丝

  

  终于到了要把鸡胸肉弄成鸡丝的步骤了,下面3个方法都可以轻松完成。

  

  方法1:叉子

  

  只要用厨房里有餐具叉子,就可以快速将鸡胸肉弄成丝。首先两只手各握住一只叉子,然后一边将叉子插入鸡胸肉中,一边将肉撕开,直到鸡丝被撕成你想要的厚度就行了,可粗可细,看个人喜好,当然厚度不同吃起来的口感也会有些不同。

  

  方法2 :手撕

  

  家里没有叉子时,就豪迈一点直接用手撕吧!首先确认一下煮好的鸡胸肉是否已经不会烫手再开始撕。家里有小朋友的话,也可以让他们一起撕鸡丝,增加亲子同乐的料理时间。

  

  方法3 :搅拌机

  

  家里有桌上型电动搅拌机的话,除了可以用来做面团,还可以把鸡胸肉弄成丝,有搅拌机的人大多都会选择这个方法,因为不需要自己出力,而且鸡胸肉不只1块的话,也可以将数块鸡胸肉一次放入搅拌盆内,一起打成鸡丝,不到一分钟就可以完成。

  

  使用搅拌机是做鸡丝这3种方法中,最省时省力的一种,虽然清洗搅拌机有点麻烦,但只要在打完鸡丝后马上清洗,就很容易洗干净。此外,用搅拌机打鸡丝时,建议用低速来打,打到你想要的鸡丝厚度为止。

  

  第4步:料理鸡丝

  

  我们可以把鸡丝和各种酱汁拌匀,做成开胃的凉拌鸡丝,或是把鸡丝当成配菜,放入干面或汤面中一起吃,还可以把鸡丝调味后放在饭上拌着吃,总之鸡丝有各式各样的料理法!

  

  第5步:保存鸡丝

  

  用剩下的鸡丝,如果在接下来的3~4天内就会用完的话,建议先放进食物保鲜袋或保鲜盒中,封住口再放进冰箱冷藏保存;但如果鸡丝在4天内都不会使用,就要放进可冷冻的保鲜袋或保鲜盒中封好,再放进冰箱冷冻室,约可保存2~3个月。

增肌训练后如何全面的补充营养这个问题真的需要好好了解一下,如果你是增肌训练的话,先得说训练后的补充时间,多长时间之内补充效果最好,大家一定要记住这个时间,这绝对是重点考试,训练后45分钟之内,45分钟之内补充是最有效的。

45分钟之内咱们管它叫做开窗期,这段时间是身体最需要,营养最虚弱,免疫力也比较低的时候,那需要补充什么呢,大家记住,有几种东西是必须要补充的。

其中之一叫碳水化合物,也叫糖,碳水化合物的话,你必须得吃吸收快的,比如饮料里的糖就吸收快,超市卖的葡萄,同样吸收也很快,还有像香蕉,里边的糖吸收也快,训练后可以选择这些水果饮料都可以。

还有第二个要补充的是蛋白质,蛋白质也要补充吸收快的,酱牛肉里有蛋白质,鸡腿儿里也有蛋白质,但是这时候却并不适合吃这些食物,那么哪些蛋白质吸收非常快呢,建议大家可以选择乳清蛋白粉。

第三个要补充的是抗氧化剂,练后一定要补充抗氧化剂,那么什么食物中有抗氧化剂的作用呢,简单来说,常见的抗氧化剂有维生素a,维生素c维生素e。

增肌训练之后,你需要补充的三种营养素是,碳水化合物也叫糖,蛋白质,和抗氧化剂

总结:

1补充能快速吸收的碳水,如葡萄糖,香蕉。

2补充能快速吸收的蛋白粉,如乳清蛋白。

3补充抗氧化剂,如维生素a维生素c维生素e。

骨骼肌中的横纹是指横纹肌。

骨骼肌和心肌的肌纤维都有明暗相间的横纹,故称横纹肌,又称骨骼肌(skeletalmuscle),由多核而成束状排列的横纹肌纤维组成,它是构成每块骨骼肌的主要成分。

因主要附着于骨骼上,而在显微镜下观察又呈现明暗相间的横纹而得名。除受神经支配外,还受意识控制,完成人体的各种随意运动,故又称随意肌。

扩展资料:

组织学结构

肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(I带)及暗带(A带)。明带染色较浅,而暗带染色较深。

暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个Z线之间的区段,叫做一个肌节,长约15~25微米。相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。

—骨骼肌

—横纹肌

骨骼肌的一般形态特征

肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(Ⅰ带)及暗带(A带)。明带染色较浅,而暗带染色较深。暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个z线之间的区段,叫做一个肌节,长约1.5~2.5微米。

相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。骨骼肌细胞构成骨胳肌组织,每块骨骼肌主要由骨骼肌组织构成,外包结缔组织膜、内有神经血管分布。骨骼肌收缩受意识支配,故又称“随意肌”。收缩的特点是快而有力,但不持久。

运动系统的肌肉muscle属于横纹肌,由于绝大部分附着于骨,故又名骨骼肌。每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布,在躯体神经支配下收缩或舒张,进行随意运动。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度。肌肉的弹性可以减缓外力对人体的冲击。肌肉内还有感受本身体位和状态的感受器,不断将冲动传向中枢,反射性地保持肌肉的紧张度,以维持体姿和保障运动时的协调。

大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。

诺贝尔研究骨骼肌对血糖的利用机能

骨髓肌是具有收缩能力的肌细胞(由于其形状成幼长的纤维状,所以亦称作肌纤维)所组成。任何的身体活动和体育活动,都是骨骼肌收缩的完成,直接影响人体的力量和耐力。

诺贝尔生理学奖获得者、意大利科学家Daniel Bovet经大量研究证实:骨骼肌在血糖利用方面作用极其重要,人体85%的血糖转化和71%的糖元储存由骨骼肌完成。骨髓肌——是具有收缩能力的组织之一,人体所有的活动几乎都是由骨骼肌收缩来完成,其强弱直接影响人体的力量和耐力。人体85%以上的糖分是供给骨骼肌转化成能量和体力的,是人体力量的主要能源。那么糖尿病患者的骨骼肌是什么状况呢?

专家研究发现,998%的糖尿病人骨骼肌出现弱化甚至萎缩现象,骨骼肌的弱化,一方面不能将糖分转化为能量和体力,从而造成糖尿病人长期感觉疲惫、虚弱、乏力;另一方面由于糖分不能被骨骼肌完全利用,而在体内堆积,造成血糖升高。

同时,骨骼肌还是人体糖分主要的储存场所,承担了71%以上糖分的储存,对人体血糖平衡具有极其重要的缓冲作用。一方面可以在血糖增多时将多余糖分转运存储在骨骼肌中,避免糖分堆积在血液中使血糖升高;另一方面,当血糖过低时,骨骼肌释放存储的糖分,维持人体正常能量的需要,防止血糖过低。所以只有修补骨骼肌,才能打通人体用糖渠道,使血糖通过利用达到平衡,防止血糖淤积,平衡血糖代谢,防止并发症。

2006年,英国皇家糖尿病协会JRKantor教授的糖尿病研究证实:自然界中有一种神奇物质——L阿拉伯糖,具有修补骨骼肌的显著作用。2007年国际糖尿病联盟(IDF)研究证实:L阿拉伯糖可以修补骨骼肌,有助于骨骼肌的恢复,加强骨骼肌对血糖的利用和存储。国内由山东糖科院糖尿病研究中心的专家带头,经过科研和实验证明了以上结论,即998%的糖尿病人骨骼肌出现弱化甚至萎缩现象,而且骨骼肌确实承担了71%以上糖分的储存,对人体血糖平衡具有极其重要的缓冲作用。

骨骼肌就是指控制骨骼运动的肌肉。

它位于骨骼的旁边,通过肌腱与骨骼相连接。

作用就是控制身体骨骼的运动。

骨骼肌又称横纹肌,肌肉中的一种。人体大约有600多块骨骼肌。

骨骼肌的一般形态特征  肌细胞呈纤维状,不分支,有明显横纹,核很多,且都位于细胞膜下方。肌细胞内有许多沿细胞长轴平行排列的细丝状肌原纤维。每一肌原纤维都有相间排列的明带(Ⅰ带)及暗带(A带)。骨骼肌

明带染色较浅,而暗带染色较深。暗带中间有一条较明亮的线称H线。H线的中部有一M线。明带中间,有一条较暗的线称为Z线。两个z线之间的区段,叫做一个肌节,长约1.5~2.5微米。 相邻的各肌原纤维,明带均在一个平面上,暗带也在一个平面上,因而使肌纤维显出明暗相间的横纹。骨骼肌细胞构成骨胳肌组织,每块骨骼肌主要由骨骼肌组织构成,外包结缔组织膜、内有神经血管分布。骨骼肌收缩受意识支配,故又称“随意肌”。收缩的特点是快而有力,但不持久。 运动系统的肌肉muscle属于横纹肌,由于绝大部分附着于骨,故又名骨骼肌。每块肌肉都是具有一定形态、结构和功能的器官,有丰富的血管、淋巴分布,在躯体神经支配下收缩或舒张,进行随意运动。肌肉具有一定的弹性,被拉长后,当拉力解除时可自动恢复到原来的程度。肌肉的弹性可以减缓外力对人体的冲击。肌肉内还有感受本身体位和状态的感受器,不断将冲动传向中枢,反射性地保持肌肉的紧张度,以维持体姿和保障运动时的协调。 大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。 诺贝尔研究骨骼肌对血糖的利用机能 骨髓肌是具有收缩能力的肌细胞(由于其形状成幼长的纤维状,所以亦称作肌纤维)所组成。任何的身体活动和体育活动,都是骨骼肌收缩的完成,直接影响人体的力量和耐力。 诺贝尔生理学奖获得者、意大利科学家Daniel Bovet经大量研究证实:骨骼肌在血糖利用方面作用极其重要,人体85%的血糖转化和70%的糖元储存由骨骼肌完成。骨髓肌——是具有收缩能力的肌细胞,人体所有的活动几乎都是由骨骼肌收缩来完成,其强弱直接影响人体的力量和耐力。人体85%以上的糖分是供给骨骼肌转化成能量和体力的,是人体力量的主要能源。那么糖尿病患者的骨骼肌是什么状况呢? 专家研究发现,998%的糖尿病人骨骼肌出现弱化甚至萎缩现象,骨骼肌的弱化,一方面不能将糖分转化为能量和体力,从而造成糖尿病人长期感觉疲惫、虚弱、乏力;另一方面由于糖分不能被骨骼肌完全利用,而在体内堆积,造成血糖升高。 同时,骨骼肌还是人体糖分主要的储存场所,承担了70%以上糖分的储存,对人体血糖平衡具有极其重要的缓冲作用。一方面可以在血糖增多时将多余糖分转运存储在骨骼肌中,避免糖分堆积在血液中使血糖升高;另一方面,当血糖过低时,骨骼肌释放存储的糖分,维持人体正常能量的需要,防止血糖过低。所以只有修补骨骼肌,才能打通人体用糖渠道,使血糖通过利用达到平衡,防止血糖淤积,平衡血糖代谢,防止并发症。 2006年,英国皇家糖尿病协会JRKantor教授的糖尿病研究证实:自然界中有一种神奇物质——L阿拉伯糖,具有修补骨骼肌的显著作用。2007年国际糖尿病联盟(IDF)研究证实:L阿拉伯糖可以修补骨骼肌,有助于骨骼肌的恢复,加强骨骼肌对血糖的利用和存储。

编辑本段构造和形态

  人体肌肉众多,但基本结构相似。一块典型的肌肉,可分为中间部的肌腹和两端的肌腱。肌腹venter是肌的主体部分,由横纹肌纤维组成的肌束聚集构成,色红,柔软有收缩能力。肌腱tendo呈索条或扁带状,由平行的胶原纤维束构成,色白,有光泽,但无收缩能力,腱附着于骨处与骨膜牢固地编织在一起。阔肌的肌腹和肌腱都呈膜状,其肌腱叫做腱膜aponeurosis。肌腹的表面包以结缔组织性外膜,向两端则与肌腱组织融合在一起。骨骼肌

肌的形态各异,有长肌、短肌、扁肌、轮匝肌等基本类型。长肌多见于四肢,主要为梭形或扁带状,肌束的排列与肌的长轴相一致,收缩的幅度大,可产生大幅度的运动,但由于其横截面肌束的数目相对较少,故收缩力也较小;另有一些肌有长的腱,肌束斜行排列于腱的两侧,酷似羽毛名为羽状肌(如股直肌),或斜行排列于腱的一侧,叫半羽状肌(如半膜肌、拇长屈肌),这些肌肉其生理横断面肌束的数量大大超过梭形或带形肌,故收缩力较大,但由于肌束短,所以运动的幅度小。短肌多见于手、足和椎间。扁肌扁薄宽阔,多分布于胸、腹壁,收缩时除运动躯干外,还对内脏起保护作用。长肌的腱多呈条索状,扁肌的腱呈薄膜状称腱膜。阔肌多位于躯干,组成体腔的壁。轮匝肌则围绕于眼、口等开口部位。骨骼肌中含有肌肉组织,神经组织,以及结缔组织。

编辑本段命名原则

  肌肉可根据共形状、大小、位置、起止点、纤维方向和作用等命名。依形态命名的如斜方肌、菱形肌、三角肌、梨状肌等;依位置命名的如肩胛下肌、冈上肌、冈下肌、肱肌等;依位置和大小综合命名的有胸大肌、胸小肌、臀大肌等;依起止点命名的如胸锁乳突肌、肩胛舌骨肌等;依纤维方向和部位综合命名的有腹外斜肌、肋间外肌等;依作用命名的如旋后肌、咬肌等;依作用结合其它因素综合命名的如旋前圆肌、内收长肌、指浅屈肌等。

编辑本段分布规律和相互关系

  人体肌肉中,除部分止于皮肤的皮肌和止于关节囊的关节肌外,绝大部分肌肉均骨骼肌

起于一骨,止于另一骨,中间跨过一个或几个关节。它们的排列规律是,以所跨越关节的运动轴为准,形成与该轴线相交叉的两群互相对抗的肌肉。如纵行跨越水平冠状轴前方的屈肌群和后方的伸肌群;分别从内侧和外侧与水平矢状轴交叉的内收肌群和具有外展功能的肌群;横行或斜行跨越垂直轴,从前方跨越的旋内(旋前)肌群和从后方跨越的旋外(旋后)肌群。一般讲几轴性关节就具有与几个运动轴相对应的对抗肌群,但也有个别关节,有的运动轴没有相应肌肉配布,如手的掌指关节,从关节面的形态看属于球窝关节,却只生有屈伸和收展两组对抗的肌肉,而没有与垂直轴交叉的回旋肌,所以该关节不能做主动的回旋运动,当然它有一定的被动的回旋能力。上述围绕某一个运动轴作用相反的两组肌肉叫做对抗肌,但在进行某一运动时,一组肌肉收缩的同时,与其对抗的肌群则适度放松并维持一定的紧张度,二者对立统一,相反相成。另外,在完成一个运动时,除了主要的运动肌(原动肌)收缩外,尚需其它肌肉配合共同完成,这些配合原动肌的肌肉叫协力肌。当然,肌肉彼此间的关系,往往由于运动轴的不同,它们之间的关系也是互相转化的,在沿此一轴线运动时的两个对抗肌,到沿彼一轴线运动时则转化为协力肌。如尺侧伸腕肌和尺侧屈腕肌,在桡腕关节冠状轴屈伸运动中,二者是对抗肌,而在进行矢状轴的收展运动时,它们都从矢状轴的内侧跨过而共同起内收的作用,此时二者转化为协力肌。此外,还有一些运动,在原动肌收缩时,必须另一些肌肉固定附近的关节,如握紧拳的动作,需要伸腕肌将腕关节固定在伸的位置上,屈指肌才能使手指充分屈曲将拳握紧,这种不直接参与该动作而为该动作提供先决条件的肌肉叫做共济肌。

编辑本段辅助装置

筋膜

  筋膜fascia可分为浅、深两层。浅筋膜superficial fascia为分布于全身皮下层深部的纤维层,有人将皮下组织全层均列属于浅筋膜,它由疏松结缔组织构成。内含浅动、静脉、浅淋巴结和淋巴管、皮神经等,有些部位如面部、颈部生有皮肌,胸部的乳腺也在此层内。 深筋膜profundal fascia又叫固有筋膜,由致密结缔组织构成,遍布全身,骨骼肌

包裹肌肉、血管神经束和内脏器官。深筋膜除包被于肌肉的表面外,当肌肉分层时,固有筋膜也分层。在四肢,由于运动较剧烈,固有筋膜特别发达、厚而坚韧,并向内伸入直抵骨膜,形成筋膜鞘将作用不同的肌群分隔开,叫做肌间隔。在体腔肌肉的内面,也衬以固有筋膜,如胸内、腹内和盆内筋膜等,甚而包在一些器官的周围,构成脏器筋膜。一些大的血管和神经干在肌肉间穿行时,深筋膜也包绕它们,形成血管鞘。筋膜的发育与肌肉的发达程度相伴行,肌肉越发达,筋膜的发育也愈好,如大腿部股四头肌表面的阔筋膜,厚而坚韧。筋膜除对肌肉和其它器官具有保护作用外,还对肌肉起约束作用,保证肌群或单块肌的独立活动。在手腕及足踝部,固有筋膜增厚形成韧带并伸入深部分隔成若干隧道,以约束深面通过的肌腱。在筋膜分层的部位,筋膜之间的间隙充以疏松结缔组织,叫做筋膜间隙,正常情况下这种疏松的联系保证肌肉的运动,炎症时,筋膜间隙往往成为脓液的蓄积处,一方面限制了炎症的扩散,一方面浓液可顺筋膜间隙的通向蔓延。

腱鞘

  一些运动剧烈的部位如手和足部,长肌腱通过骨面时,其表面的深筋膜增厚,并伸向深部与骨膜连接,形成筒状的纤维鞘,其内含由滑膜构成的双层圆筒状套管,套管的内层紧包在肌腱的表面,外层则与纤维鞘相贴。两层之间含有少量滑液。因此肌腱既被固定在一定位置上,又可滑动并减少与骨面的摩擦。在发生中滑膜鞘的两层在骨面与肌腱间互相移行,叫做腱系膜,发育过程中腱系膜大部分消失,仅在一定部位上保留,以引导营养肌腱的血管通过。

滑液囊

  在一些肌肉抵止腱和骨面之间,生有结缔组织小囊,壁薄,内含滑液,叫做滑液囊synovial bursa,其功能是减缓肌腱与骨面的摩擦。滑液囊有的是独立封闭的,有的与邻近的关节腔相通,可视为关节囊滑膜层的突出物。

骨骼肌

  骨骼肌细胞纵切面呈长条状; 核多,椭圆形,位于肌膜下方; 肌浆内肌原纤维沿细胞长轴平行排列,有明显横纹,染色较深的为暗带,较浅而发亮的为明带(HE染色)。肌纤维横切面呈不规则块状,肌原纤维断面呈细点状,核位于边缘(HE染色)。在特殊染色切片中,骨骼肌横纹尤其明显(PTAH染色 ,)。每条肌原纤维都有色浅的明带(I带)和色深的暗带(A带)交替排列,明带中央有一条色深的线为Z线、 暗带中部有色浅的H带,H带中央有一条色深的线为M线。相邻两个Z线之间的一段肌原纤维称为肌节,包括1/2 I带 + A带 + 1/2 I带,是骨骼肌收缩的基本结构单位。具体结构

编辑本段光镜结构

骨骼肌纤维

  为长柱形的多核细胞,长1~40mm,直径10~100μm。肌膜的外面有基膜紧密贴附。一条肌纤维内含有几十个甚至几百个细胞核,位于肌浆的周边即肌膜下方。核呈扁椭圆形,异染骨骼肌萎缩

色质较少,染色较浅。肌浆内含许多与细胞长轴平行排列的肌原纤维,在骨骼肌纤维的横切面上,肌原纤维呈点状,聚集为许多小区,称孔海姆区(Cohnheim field)。肌原纤维之间含有大量线粒体、糖原以及少量脂滴,肌浆内还含有肌红蛋白。在骨骼肌纤维与基膜之间有一种扁平有突起的细胞,称肌卫星细胞(muscle satellite cell),排列在肌纤维的表面,当肌纤维受损伤后,此种细胞可分化形成肌纤维。

肌原纤维

  肌原纤维(myofibril)呈细丝状,直径1~2μm,沿肌纤维长轴平行排列,每条肌原纤维上都有明暗相间、重复排列的横纹(cross striation)。由于各条肌原纤维的明暗横纹都相应地排列在同一平面上,因此肌纤维呈现出规则的明暗交替的横纹。横纹由明带和暗带组成。在偏光显微镜下,明带(light band)呈单折光,为各向同性(isotropic),又称I带;暗带(dark band)呈双折光,为各向异性(anisotropic),又称A带。在电镜下,暗带中央有一条浅色窄带称H带,H带中央还有一条深M线。明带中央则有一条深色的细线称Z线。两条相邻Z线之间的一段肌原纤维称为肌节(sarcomere)。每个肌节都由1/2I带+A带+1/2I带所组成。肌节长约2~25μm,它是骨骼肌收缩的基本结构单位。因此,肌原纤维就是由许多肌节连续排列构成的。

编辑本段超微结构

肌原纤维

  肌原纤维是由上千条粗、细两种肌丝有规律地平行排列组成的,明、暗带就是这两种肌丝排布的结果。粗肌丝(thick filament)长约15μm,直径约15nm,位于肌节的A带。粗肌丝中央借M线固定,两端游离。细肌丝(thin filathent)长约1μm,直径约5nm,它的一端固定在Z线上,另一端插入粗肌丝之间,止于H带外侧。因此,I带内只有细肌丝,A带中央的H带内只有粗肌丝,而H带两侧的A带内既有粗肌丝又有细肌丝;所以在此处的横切面上可见一条粗肌丝周围有6条细肌丝;而一条细肌丝周围有3条粗肌丝。两种肌丝肌在肌节内的这种规则排列以及它们的分子结构,是肌纤维收缩功能的主要基础。

粗肌丝的分子结构

  粗肌丝是由许多肌球蛋白分子有序排列组成的。肌球蛋白(myosin)形如豆芽,分为头和杆两部分,头部如同两个豆瓣,杆部如同豆茎。在头和杆的连接点及杆上有两处类似关节,可以屈动。M线两侧的肌球蛋白对称排列,杆部均朝向粗肌丝的中段,头部则朝向粗肌丝的两端的两端并露出表面,称为横桥(cross bridge)。M线两侧的粗肌丝只有肌球蛋白杆部而没有头部,所以表面光滑。肌球蛋白头部是一种ATP酶,能与ATP结合。只有当肌球蛋白分子头部与肌动蛋白接触时,ATP酶才被激活,于是分解ATP放出能量,使横桥发生屈伸运动。

细肌丝的分子结构

  细肌丝由三种蛋白质分子组成,即肌动蛋白、原肌球蛋白和肌原蛋白。后二种属于调节蛋白,在肌收缩中起调节作用。肌动蛋白(actin)分子单体为球形,许多单体相互接连成串珠状的纤维形,肌动蛋白就是由两条纤维形肌动蛋白缠绕形成的双股螺旋链。每个球骨骼肌

形肌动蛋白单体上都有一个可以与肌球蛋白头部相结合的位点。原肌球蛋白(tropomyosin)是由较短的双股螺旋多肽链组成,首尾相连,嵌于肌动蛋白双股螺旋链的浅沟内。肌原蛋白(troponin)由3个球形亚单位组成,分别简称为TnT、 TnI和 TnC 。肌原蛋白借TnT而附于原肌球蛋白分子上, TnI是抑制肌动蛋白和肌球蛋白相互作用的亚单位, TnC 则是能与Ca2+相结合的亚单位。

横小管

  它是肌膜向肌浆内凹陷形成的小管网,由于它的走行方向与肌纤维长轴垂直,故称横小管(transverse tubule,或称T小管)。人与哺乳动物的横小管位于A带与I带交界处,同一水平的横小管在细胞内分支吻合环绕在每条肌原纤维周围。横小管可将肌膜的兴奋迅速传到每个肌节。

肌浆网

  肌浆网(sarcoplasmic reticulum)是肌纤维内特化的滑面内质网,位于横小管之间,纵行包绕在每条肌原纤维周围,故又称纵小管。位于横小管两侧的肌浆网呈环行的扁囊,称终池(terminal cisternae),终池之间则是相互吻合的纵行小管网。每条横小管与其两侧的终池共同组成骨骼肌三联体(triad)。在横小管的肌膜和终池的肌浆网膜之间形成三联体连接,可将兴奋从肌膜传到肌浆网膜。肌浆网的膜上有丰富的钙泵(一种ATP酶),有调节肌浆中Ca2+浓度的作用。

编辑本段收缩原理

  目前认为,骨骼肌收缩的机制是肌丝滑动原理(sliding filament mechanism)。其过程大致如下:①运动神经末梢将神经冲动传递给肌膜;②肌膜的兴奋经横小管迅速传向终池;③肌浆网膜上的钙泵活动,将大量Ca2+转运到肌浆内;④肌原蛋白TnC与Ca2+结合后,发生构型改变,进而使原肌球蛋白位置也随之变化;⑤原来被掩盖的肌动蛋白位点暴露,迅即与肌球蛋白头接触;⑥肌球蛋白头ATP酶被激活,分解了ATP并释放能量;⑦肌球蛋白的头及杆发生屈曲转动,将肌动蛋白拉向M线;⑧细肌丝向A带内滑入,I带变窄,A带长度不变,但H带因细肌丝的插入可消失,由于细肌丝在粗肌丝之间向M线滑动,肌节缩短,肌纤维收缩;⑨收缩完毕,肌浆内Ca2+被泵入肌浆网内,肌浆内C骨骼肌

a2+浓度降低,肌原蛋白恢复原来构型,原肌球蛋白恢复原位又掩盖肌动蛋白位点,肌球蛋白头与肌动蛋白脱离接触,肌则处于松弛状态。 骨骼肌是体内最多的组织,约占体重的40%。在骨和关节的配合下,通过骨骼肌的收缩和舒张,完成人和高等动物的各种躯体运动。骨骼肌由大量成束的肌纤维组成,每条肌纤维就是一个肌细胞。成人肌纤维呈细长圆柱形,直径约60 μm,长可达数毫米乃至数十厘米。在大多数肌肉中,肌束和肌纤维都呈平行排列,它们两端都和由结缔组织构成的腱相融合,后者附着在骨上,通常四肢的骨骼肌在附着点之间至少要跨过一个关节,通过肌肉的收缩和舒张,就可能引起肢体的屈曲和伸直。我们的生产劳动、各种体力活动等,都是许多骨骼肌相互配合的活动的结果。每个骨骼肌纤维都是一个独立的功能和结构单位,它们至少接受一个运动神经末梢的支配,并且在体骨骼肌纤维只有在支配它们的神经纤维有神经冲动传来时,才能进行收缩。因此,人体所有的骨骼肌活动,是在中枢神经系统的控制下完成的。

编辑本段运动机理

  神经-骨骼肌接头处的兴奋传递 运动神经纤维在到达神经末梢处时先失去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称作终板的膜凹陷中,但轴突末梢的膜和终板膜并不直接接触,而是被充满了细胞外液的接头间隙隔开,其中尚含有成分不明的基质;有时神经末梢下方的终板膜还有规则地再向细胞内凹入,形成许多皱褶,其意义可能在于增加接头后膜的面积,使它可以容纳较多数目的蛋白质分子,它们最初被称为N-型乙酰胆碱受体,现已证明它们是一些化学门控通道,具有能与ACh特异性结合的亚单位。在轴突末梢的轴浆中,除了有许多线粒体外还含有大量直径约50nm的无特殊构造的囊泡(图2-19)。用组织化学的方法可以证明,囊泡内含有ACh;此ACh首先在轴浆中合成,然后贮存在囊泡内。据测定,每个囊泡中贮存的ACh量通常是相当恒定的,且当它们被释放时,也是通过出胞作用,以囊泡为单位“倾囊”释放,被称为量子式释放。在神经末梢处于安静状态时,一般只有少数囊泡随机地进行释放,不能对肌细胞产生显著影响。但当神经末梢处有神经冲动传来时,在动作电位造成的局部膜去极化的影响下,大量囊泡向轴突膜的内侧面靠近,通过囊泡膜与轴突膜的融合,并在融合处出现裂口,使囊泡中的ACh全部进入接头间隙。据推算,一次动作电位的到达,能使大约200~300个囊泡的内容排放,使近107个ACh分子被释放。轴突末梢处的电位变化引起囊泡排放的过程十分复杂,但首先是轴突末梢膜的去极化,引起了该处特有的电压门控式Ca2+通道开放,引起细胞间隙液中的Ca2+进入轴突末梢,触发了囊泡移动以至排放的过程。Ca2+的进入量似乎决定着囊泡释放的数目;细胞外液中低Ca2+或(和)高Mg2+,都可阻碍ACh的释放而影响神经-肌接头的正常功能。已故冯德培院士在30年代对神经-肌接头的化学性质传递进行过重要的研究。 大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管(图6-1)。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/11584145.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-12-04
下一篇2023-12-04

发表评论

登录后才能评论

评论列表(0条)

    保存