为了保护自己。
大多数昆虫常被人们称为“虫子”,但是许多被人们称为“虫子”的动物却并不都是昆虫。例如在石块下、潮湿阴暗的角落里爬行的蜈蚣、马陆,拖着长刺蛰人的蝎子,在屋角拉丝结网的蜘蛛,家中凉席、地毯或花盆上出现的肉眼几乎难以看见的微小的螨虫,藏在土壤中的蚯蚓,寄生在人体中的蛔虫、蛲虫,以及在清清溪水中游动的小虾,还有海边沙滩上的寄居蟹……,它们的体形都不大,常常也被归为“虫子”一类,但它们都不是昆虫!
所谓昆虫,应该具备以下几个特征:(一)身体由若干环节组成,这些环节集合成头、胸、腹三个部分;(二)头部不分节,是感觉与取食的中心,具有口器和1对触角,通常还有复眼和单眼;(三)胸部分为3节,可能某些种类其中某一节特别发达而其他两节退化得较小。胸部是运动的中心,具有3对足,一般成虫还有2对翅,也有一些种类完全退化;(四)腹部应该分为11节,但也常常演化为8节、7节或4节。分节数目虽不相等,但都没有足或翅等附属器官着生。腹部是生殖与营养代谢的中心,其中包含着生殖器官及大部分内脏;(五)昆虫在生长发育过程中,通常要经过一系列内部及外部形态上的变化,即变态过程。
根据这些外部形态特征,特别是足的数目,就不难将昆虫与其他被称为“虫子”的动物区分开来了。例如上面所提到的那些动物,足的数目不是少于就是多于3对,因此它们自然也就不属于昆虫了。
昆虫整个身体表面都硬化成体壁,这样包住身体的一层壳被称为“外骨骼”。这种象盔甲一样的含有几丁质的体壁,结构非常复杂,既坚硬、严密又有弹性,具有不透水、防御和骨骼支撑等功能,保护着里面柔软的身体和重要的内脏器官。由于昆虫的身体是分成一节一节的,每两节之间由柔软、能伸缩的膜相连,这样就可以在外骨骼的保护下,自由活动身体的各个部分了。由于坚硬的外骨骼不会跟着身体一起长大,许多昆虫随着身体的成长必须一次次褪掉它们的外壳。
许多昆虫的外骨骼往往具有五彩斑斓的色彩,甲虫背部闪耀的金属光泽,蝴蝶翅膀上美丽的图案……这些色彩的产生是因为不同昆虫表面结构的凹凸、沟脊折射光线各有不同,当光照射在上面时即产生折射、反射及干扰,从而形成了各种变幻绚烂的色彩,这种颜色叫结构色或物理色,例如许多昆虫背上美丽的闪光便是由密集的纹路产生的,随着对光线角度的改变,所看到的颜色也变幻为忽紫忽蓝的光泽。有的颜色则是因积累在体壁上一定部位的色素化合物如黑色素、类胡萝卜素、蝶定素等,吸收某种光波而反射其他光波产生的,叫色素色或化学色,如蝴蝶绚丽多彩的翅色和斑纹。需要注意的是,许多色彩其实是由结构色和色素色共同生成的。
很多昆虫依靠它们身上漂亮的彩衣来吸引异性,繁衍后代。有的昆虫则专门积累某类物质,形成与周围环境一致的外衣颜色,将自己隐藏起来,避免被敌害发现,或示威避敌,形成“保护色”来保护自己。对有的种类来说,表面的色素沉着还可以防止紫外线的的害,使内部柔软的身体不受侵
在曼哈顿神奇漫画公司总部,《钢铁侠》漫画主编汤姆·布雷夫特对我简短介绍了托尼·斯塔克:麻省理工学院毕业生、明星科学家/工程师、富有的继承人、花花公子、酒鬼。后来,坏蛋绑架了斯塔克,胁迫他为他们制造一种致命武器。结果,他却建造了一件金属铠甲。逃脱后,他幡然醒悟,改进铠甲,自己也从一个自私的天才变成真正的超级英雄。
铁人的速度超过喷气飞机,可举起1000吨重物,闯入重重设防的电脑。像是天方夜谭?当然,布雷夫特说,这才是幻想的魅力,“铁人必须永远走在现实之前,否则用漫画标准他就成化石了。”
1963年,当这个角色最早出现时,军队也在构想自己的“铁人”。同一年,美国陆军武器研究者谢尔盖·扎鲁德尼发表了一份报告,描述他设计的可穿戴机器外衣,它将使穿着者获得绿巨人式的力量,但是当时还不存在实现这个构想的技术。除了少数非军事设计外,真正超能外衣的前景渺茫,直到2000年,Darpa开始为期7年投资7500万美元的机械外骨骼研究计划。那时,少数机械外骨骼支持者认为———包括美国陆军上校杰克·奥布瑟克———技术终于追赶上构想。从1995年起,奥布瑟克就协助推进外骨骼研究。他说,随着感应器日益变得更小,功能更全面,处理器速度加快,他和其他支持者有理由相信机械外骨骼有可能成为现实。
但是Darpa野心勃勃的目标谁看了都觉得不切实。它想要一种神奇的机器,它能让士兵连续几天拖着几百磅重物奔跑,却不觉疲惫;它能让士兵灵活操作通常需要两人驾驭的武器;能够背着两名负伤的战友轻松撤离战场。他们要求这套机械外衣能附带装甲,让敌人炮火对它无可奈何。他们甚至希望它能帮助士兵跳得更高。总而言之,他们想要漫画中的铁人。
启动计划前,Darpa咨询的一些顾问立刻指出他们的构想不切实际。初期负责Darpa铁人计划的康沃尔大学工程师伊夫拉辛·加西亚说,“我询问的人之中,一半对它笃信不疑,另一半认为它根本就是浪费时间、金钱和资源。”那些泼冷水的人并没有错,他补充说,“这确实是一项艰巨挑战。”机械外骨骼将需要一套轻盈的动力系统,能够连续几天提供电能;它还需要小巧强大的人工肌肉;一套复杂的动作控制系统。它还必须行动灵敏、反应迅速。
外骨骼必须成为士兵的机械影子,能够读懂他的一举一动,及时地模仿他的每个动作,即使是毫秒的迟疑也会造成负担,让士兵感觉像行走在水中一样费力。这套机械外衣的感应器必须能够以每秒几千次的速度读懂施加在它全身的每个轻微动作,它的微处理器必须足够强大,能把这些数据及时转换成指令传送给机械四肢,使它们与内部穿着者的行动协调一致。
解决这些问题,琢磨出如何将这一系统装进一台兼具速度、灵敏、力量、耐力的机器,需要一个像托尼·斯塔克式的天才。但是,这个人并非武器设计者,而是一个以建造机械恐龙为职业的人。 史蒂夫·雅各布森的简历丰富多彩。过去35年里,他的作品包括一只80吨重的机器恐龙,贝拉吉奥赌场的喷泉。可是,他本人看上去更像一位和蔼可亲的教授而不是科学狂人。他高个子、宽肩、腰板笔直、灰白头发。在介绍XOS前,他先领我去参观他所谓的“恐怖隧道”。从外面看,很容易被人当做牙医诊所,但这个洞穴式的房间其实是萨科斯公司总部,也是犹他大学工程学院的研发部。他经常在这里教学。虽然曾经为不少出名挑剔的顾客造机器人———他暗示迪士尼公司和美国军方一样苛刻———在心里雅各布森仍然是一个学术研究者。他把自己的头脑叫做能一起玩耍的朋友,他似乎更关心问题的解决,而不是解决方案最终的应用。经过一个会打乒乓球的人形机器人后,他停留在一对会唱歌的机械犀鸟面前。它们是为当地一家酒店建造的。难度在于让它们的动作栩栩如生,宛如真鸟。他说,“我们只接我们想做的活,因为它们能引起我们的兴趣。”
他侃侃而谈,话题从工程学转到节能生物系统(用胡萝卜为动力的人!)他的健谈可能给人误导。实际上,他是个喜欢保密的人,很少接受媒体采访,甚至不愿意泄露他的年龄。参观的时候,他指着一个无人操作小型地面车辆(外骨骼腿部的一种新设计)兴奋地讲解起来。末了他叮嘱我不要在文章中提到这东西。我想他的顾虑可能因为好多个项目由军队资助,另一方面,他也像个不愿意透露太多秘密的魔术师。
萨科斯的研究项目———也包括假肢和纳米马达———似乎五花八门,毫无规律。但是,伊夫拉辛·加西亚说,正因为兴趣广博,使雅各布森成为接受外骨骼挑战的最理想人选。他在软件和机械工程方面都已证明自己的能力,更难得的是,他还能根据需要不断发明新东西。“他能自己设计传动装置;能设计控制系统;能设计一台机器和它的所有零件。”加西亚说。这样的全能天才绝对是设计XOS所需要的。
“设计像外骨骼一类东西时,”雅各布森说,“有25个亚系统,完成它们才能继续下一步。虽然两大主要设计目标是力量和耐力,但是,它还必须能干75样不同的事情。”在他设计的所有机器人中,XOS由于挑战最大,问题最多,显然是他最喜欢的作品,他视之为自己的“儿子”。“其他的都没有如此宏伟的目标。其他的都不需要如此完备独立的系统,不需要达到这样的力量、速度、耐力和灵敏度。 2000年,萨科斯申请Darpa投资。雅各布森认为他找到了Darpa悬赏解决问题的答案。这个问题是如何让操作者与机器人互动。为证实自己的直觉,雅各布森请公司摄影师乔恩·普莱斯和他的女儿一起帮他做个实验。
这个实验让普莱斯扮演外骨骼,他的女儿扮演内部操作者。她背对父亲,站到他脚上,她的脚趾压在他的脚趾上。他们握着手帮助平衡。她开始朝前行走。普莱斯的任务就是和女儿保持同步,让自己的脚始终保持在她脚下。几分钟后,他们的行动宛如一人。他女儿完全掌握决策———走多快,什么时候转弯———普莱斯只是一步一步地努力模仿她。
该演示向雅各布森证明,只需要几个接触点———比如脚和手———一台聪明的机器就能明白绑在它身上的操作者的动作意图,并配合行动。理论虽然简单,实践却相当困难。在完成XOS的过程中,雅各布森和他的小组重新设计了微型传动装置,改进了压力感应器,发明了更高效的液压阀门,甚至设计了机器人的铝脚板。但是,被设计者叫做“扫清道路”的控制系统才是把所有零件整合一体的关键,是把他设计的又一个机器人提升到“超人外衣”的核心。曾亲身试穿XOS的奥布瑟克完全赞同:“稍微负重,人体就很容易疲劳。”但是,XOS的控制系统让人体负担减轻到接近零。
正是这个控制系统使演示操作员詹姆森能连续50次举起200磅杠铃,心率却不加快。当他从架子上拉下杠铃时,手上的感应器立刻检测到扭矩的变化。假如没有外骨骼帮助,感应器将显示,他每只手试图拉下100磅重量。但是,雅各布森解释说,该系统的目标是让这些感应器感受的压力接近于零,如此才能让XOS发挥作用。
那些手上的感应器以每秒几百次甚至几千次的速度把测量到的数据传给中央处理器。这一系统把数据输入一系列计算外骨骼手臂、腿和背部方位和运动的公式。最终认识到詹姆森想要把手放下,计算出要模仿他的动作,每个关节内的每条人工肌肉需要如何运动。詹姆森从未感到一点儿负担,因为在他真正用力前,系统已经指挥机械手臂代为拿下杠铃。在举动练习后,他卸下XOS,毫无喘气迹象。我问他感觉如何。“很好,”他说着耸了耸肩。
詹姆森演示的XOS大约是第4版。雅各布森带我参观一个房间,里面,前3套机械外衣原型像木偶一样挂在架子上。让我立刻联想到铁人的“装甲厅”———斯塔克保管他的铁甲衣的房间。第一件机械衣建造于2002年,没有动力。萨科斯小组建造它的目的,是证明外骨骼能像人体一样自如行动。雅各布森把一名工程师绑在衣服内,让他尝试各种复杂动作,比如踢球、跑步、爬进汽车驾驶室。通过这一系列实验,他们证实在恰当的地方采用了恰当关节。
让这些关节以恰当的速度和力量开合则比较困难。2003年,萨科斯开始用水压驱动传动器做人工肌肉。这一方法并非他首创。事实上,另一位外骨骼研究者认为,XOS对水压装置的依赖最终将导致它的失败。这位不愿透露姓名的工程师没有亲眼见过XOS,只是在YouTube上见过一个新闻短片。他说,水压装置太耗电。他认为,电传动器比较好,因为它们消耗能量与行动相符。但是,雅各布森不耐烦地反驳了这种批评。“你喜欢你的汽车刹车吗?你是否希望你乘坐的飞机着陆系统正常工作?它们都是水压的。”之后他又补充说,他已经解决了能量浪费问题。但是他不愿解释细节,只是说萨科斯重新设计了控制液体流动的阀门,使之只在需要的情况下才启动,所以在机械衣运动的情况下才消耗能量。
虽然在举重项目上令人刮目相看,XOS并没有达到Darpa的全部目标。它不能使你腾空灌篮,不能帮你跑得更快,还不能把你变成赫拉克勒斯(大力神)。但是,奥布瑟克说,Darpa当初的目标之一就是看它开列的愿望清单上是否有一项能够实现。在3个参加该项目的团队中(萨科斯、奥克里奇国家实验室和加州大学伯克莱分校),XOS于2005年脱颖而出,最接近五角大楼构想的,成为美军批准进入下一阶段研究的全身外骨骼。萨科斯已经获得陆军1000万美元经费,覆盖两年研究。
詹姆森再次穿上XOS,演示放松锻炼。我看着这套150磅重的机器外衣像影子一样模仿他的每个动作,而它们之间只有6个关节互相接触,想象到秒在每个感应器和中央处理器之间流动的海量数据,眼前的情景精彩程度不亚于《钢铁侠》影片中的特效。我几乎忍不住设想詹姆森飞身冲破房顶。但是,这不可能发生。要冲出洞穴,首先得切断连接XOS的电线。 外骨骼研究者的世界狭小、秘密、不乏明争暗斗。虽然,可能并不了解对手装置的工作原理,仍然会不失时机地冷嘲热讽。最常见的攻击方法是,“你问他打算怎么提供动力。”XOS和美国实验室中其他两套比较领先的外骨骼试图从不同的角度攻克这个难题。雅各布森决定,首先建造一套相当能干的衣服,然后再钻研如何给它提供4至24小时动力(Darpa提出的最低动力要求)。在我所见的所有演示中,詹姆森和XOS都连接着一个水力泵,通过它从外部电源获得电能。这套衣服可以用电池驱动,但是每次只能工作40分钟。另外两位外骨骼研究者———麻省理工学院的休·赫耳教授和加州大学伯克莱分校的哈马甬·卡兹鲁尼———已经开始解决动力问题。
赫耳正试图建造一台脚力驱动的机器,尽可能节省能源———启动时只需2瓦特,相当于便携收音机的耗能———但却能支持穿戴者所背负80磅重量的80%设计由于会影响穿着者的步态,穿上后消耗能量比没有穿时略多。但是,赫耳相信,在不久的未来,他能够改进机械结构,让机器最终帮助节省而不是消耗穿着者的体力。最终,他设想这套装置被用于娱乐,周末时,人们穿着它去爬山,奔跑一天也不觉得累。如果说赫耳的设想还比较遥远,卡兹鲁尼则向我暗示,在解决动力方面,他已经走到一半。
卡兹鲁尼说他的“人载重器”(HULC)下肢外骨骼可以连续工作20小时。它使穿着者能背负100磅重物,但却少消耗15%的氧气。
卡兹鲁尼的装置还不能对外演示。他只肯透露该系统的原理类似混合动力汽车。混合动力车转化刹车产生的能量用于给电池充电。HULC利用步行者换脚时地面传回的能量。行走这一动作本身就足以产生源源不断的动能。他已获得国家标准和技术学院提供的200万美元经费,用于改进系统。最终,HULC将帮助有行动障碍的人恢复行走。“这不是一台战争机器,”他说,“我们的机器可能替代轮椅。”
XOS最有力的竞争者也是一台医疗设备,但是位于太平洋彼岸的日本。2004年日本机器人专家山海嘉之创建了一个叫Cyberdyne的公司(和**《终结者》中导致机器人革命的公司同名),推销他的全身机械外骨骼HAL-5它没有采用XOS式的压力感应器,而是把感应器附着到穿着者身上,接收他(她)的肌肉信号,以确定他的行动意图。这套机械外衣的控制系统能够学习、模仿穿着者的自然姿态。这意味着,至少需要30分钟时间,两者才能协调一致———不能指望一穿上就行动自如。但是,HAL-5的主要用途是康复治疗辅助工具和护士的助手,所以半个小时的培训时间不构成问题。穿上这套电池驱动的大力服后,护士们能轻松抱起粗壮的病人,仿佛抱小孩一样轻松。山海嘉之已开始将HAL-5出租给顾客。 在《钢铁侠》漫画中,超级英雄被打倒,躺在敌人老巢的地板上,头盔内的显示器向他通报糟糕消息———电快用完了。但是仍然还有希望。他把手指插进混凝土地板,找到一条电线,迅速完成充电。
不幸的是,在现实世界,外骨骼充电要麻烦得多。因此,战场上的第一个XOS甚至可能是连接电缆的。奥布瑟克设想,这个原始版本更可能是一名工兵而非战士。连接上军舰或军车上的电源后,XOS可帮助一名士兵迅速从装载重武器的直升飞机上卸货,或者修复履带断裂的坦克。虽然美国陆军希望在2009年前,在战场上实验有线版的XOS,雅各布森和同事们仍在紧张研制自带电力版。
今年夏天,萨科斯将和一家引擎设计公司合作,开发一台能够连续几小时给XOS供电的发动机。此外,雅各布森不愿透露更多。他更愿意谈论另一个更有意思的挑战———与其建造强大发动机,不如减少XOS的能源胃口。
雅各布森给我演示了一台新的节省能量的机械腿,它模仿人腿驱动方式设计。行走时,我们的髋部产生了最大部分能量,当腿超前迈时,膝盖和其部位的小肌肉完全放松,确保我们的脚落到地面理想的位置。这种自由摆动技巧相当节省能量。卡兹鲁尼和赫耳已经把它设计进各自的下肢外骨骼中。雅各布森正将它设计进未来版本的XOS“下一步,”他说,也许在几年后,“将实现用1至3马力实现行走的目标。”此时只需要一个便携电池组就能提供持久动力。
雅各布森把今天的版本看成一个基础模型,最终它将改造成各种版本,执行不同任务,无论是在医院里还是战场上。未来的模型甚至可能完全自动。“你走出去,告诉它,‘你自己走去那幢大楼吧,因为我懒得走’。”
后来,走过萨科斯公司大厅时,我看见平板电视上正放映用动画片描绘的未来XOS在一个片段中,穿着XOS的士兵肩扛导弹,飞身跳过高墙,甚至能做优雅的后空翻。虽然包裹在机械骨骼中,他们看上去像橄榄球侧卫一样灵活。他们看上去像铁人。
蚯蚓与青蛙、鸟、鱼的主要区别是身体背部没有脊柱。
蚯蚓属于无脊椎动物,体内没有脊柱,蚯蚓生活在富含腐殖质的、温度变化不大的湿润的土壤中,昼伏夜出,以植物的枯叶、朽根和其他腐烂有机物为食。
青蛙、鸟、鱼则属于脊椎动物。脊椎动物一般体形左右对称,全身分为头、躯干、尾三个部分,有比较完善的感觉器官、运动器官和高度分化的神经系统。包括圆口类、鱼类、两栖动物、爬行动物、鸟类和哺乳动物等六大类。
无脊椎动物的特点
无脊椎动物没有脊椎动物那一根背侧起支撑作用的脊柱和狭义的骨骼。广义的骨骼包括外骨骼(保护作用,不使水分蒸发)、内骨骼和水骨骼三种。而无脊椎动物拥有的正是这三种骨骼。
无脊椎动物的运动方式有多种:借助纤毛的摆动前进;没有刚毛,没有环形肌的线形动物通过两侧纵肌的交替收缩实现的蛇行;有刚毛有环形肌有纵肌的蚯蚓的蠕动。这是通过不同节段纵、环肌肉交替收缩实现的。
无脊椎动物的神经系统没有脊椎动物那么复杂多样。从最原始的神经细胞,到神经细胞集合成为神经节,到后来大脑的形成。其形式由弥散的神经网到有序的神经链,到中枢和梯状神经系统的出现,也经历了一个由简单到复杂的过程。
所有的蜘蛛都带有一定的毒性。
蜕皮时的蜘蛛通常都仰卧着,背部的外骨骼开始开裂,然后蜘蛛用步足把外皮一点点踢掉,蜘蛛蜕皮的过程就像脱去一件后面系扣的手术服一样。
蜘蛛的外骨骼起到了保护、支撑和运动等作用,坚硬的外骨骼又限制了蜘蛛本身的生长,因此在生长过程中出现了周期性的“蜕皮现象”。在脱去旧表皮、换上新表皮的间隙时间内进行体积的增长。蜘蛛在脱去旧表皮之前,上皮细胞先分泌新的上表皮,使原来的外骨骼与上皮细胞分离。
上皮细胞也同时分泌蜕皮液,其中含有几丁质酶及蛋白酶,这些酶通过新的上表皮而进入旧的内表皮内,并进行消化、分解与吸收。同时上皮细胞也开始不断地分泌新的内表皮,这时的蜘蛛实际上体表有两层外骨骼。随后沿身体的前端中线,旧表皮裂开,并脱去旧的外骨骼。
蝉为什么会蜕皮
蝉的外壳(外骨骼)是坚硬的,不能随着蝉的生长而扩大,当蝉生长到一定阶段时,蝉的外骨骼限制了蝉的生长,蝉将原有的外骨骼脱去,就是蝉蜕。
蝉为什么会蜕皮
蝉的外壳(外骨骼)是坚硬的,不能随着蝉的生长而扩大,当蝉生长到一定阶段时,蝉的外骨骼限制了蝉的生长,蝉将原有的外骨骼脱去,就是蝉蜕。
蝉怎么蜕皮的?
一般在晚上出洞,爬上树枝或者任何植物的枝,然后在午夜往后开始退壳。首先头上的壳裂成两瓣,头先出来,然后不停的挣,直至完全爬出壳外,等到天亮身上水汽一干,翅膀打开来,争翅一飞就走了,彻底告别了它们的幼年时代。
我把蝉带回家可为什么它蜕皮失败了
不能把蝉蛹放在水平面上,蝉蜕皮需要垂直的环境,你可以把蝉放在纱窗上,关灯并且不要打扰它。
从蝉的蜕皮过程我们能够体会到什么
蝉是大家熟悉的一种昆虫。每逢晴朗的夏日,蝉的鸣声到处可闻。趁其不备,从树上捉一个,你看它:浑身油黑发亮,个体较大;宽大、透明、翅脉清晰可见。这“嗓音”宏亮的威武将军,当它还是幼蝉,在土里生活时,却是其貌不扬呢!它是如何脱胎换骨成为威武的大将军的呢 我注意到,六月一过就是蝉大量羽化的时期。每到傍晚,在河边的柳树根附近,或在市区随便一棵大树下的松软土壤中,都可以找到蝉的老虫。我采到几只,把它们放在家里光线较暗的地方,开始了观察“蝉蜕”的工作。
在安适的低暗的环境中,一般在晚上九点到十点之间,蝉便开始蜕皮了—首先,它找到一个合适的地方,使自己的六只足都能抓得十分牢固,便一动不动地停四至五分钟,接着背部隆起来,中央裂开长给2CM的口子,两三分钟后,蝉的头和胸墓本突出丁:背裂缝。这时它稍稍休息一会儿—大约一分钟,在这短暂的时间内,它似乎在集聚著全身的力量。突然,它的身体一颤,用最大的力量,把那灰绿色的头和胸部用力向外翻,接着,两只前足也慢慢从蝉壳中抽出来;紧接着后面四 足也开始慢慢往外蜕。这些都不是容易的事,只见它的身体不停地颤动,动几下,停息一会,反复多次,才完全脱出中足和后足。算起来整整用了十五分钟,喘息未定,蝉的全身又开始 向后翻,直翻到前半个身躯与蝉壳垂直,于是静止不动了。几次我都以为它不再蜕皮了,但是我错了,在这样“静止”五至十分钟后,它仿佛缓过劲来了,身体又慢慢地翻回去,就像做体操一样,前足勾住壳;紧接着尾部慢慢隆起,尾尖从壳中蜕出,终于整个蝉从壳中蜕出,这个过程,又用了五分钟。
几次观察,得出的数据是:大约半小时左右,蝉可完成全部蜕壳过程。 完成蜕皮以后的蝉,依靠著三对足挂在原来的蜕壳上。这时的蝉,全身是淡绿色的,翅还没有伸展开,像两个小肉球,也是绿色的,随着清凉的夜风,两翅迅速伸展开来,由小变大,由络变平,由厚变薄,逐渐成为两对真正的透明的翅膀。这透明的膜质翅也是淡绿色的,十分好看。蜕出的“新翅”,跟空气接触了一段时间后,慢慢地变成翅色,到天亮的时候,蝉的身体和翅膀同时变硬了。等天太阳出来的时候,它便飞离蝉壳寻找食物去了,蝉蜕却留在原处,一般要挂几个月,甚至到冬天也不脱落。 经过多次观察,我发现蝉的蜕皮与光线有密切关系。蝉的老虫对光线十分敏感,我多次刨开地面观察过,每当它们发育成熟以后,便费很长时间,从地下深处掘到离地面很近的土层下面,并且留下一个极小的洞口与外界地面相通。
只有在黄昏以后,它们刁‘破土而出。趁著黑暗,完成蜕皮。如果错过时机,那么它将再也脱不出来,老死在蝉壳内。有时在树上偶尔能见到蜕去一半皮而全身变黑的死蝉。我认为蝉的这一特性,正是它们经历了漫长的进化过程,而产生的对环境的适应。试想,如果蝉蜕过程是在白天这样缓慢地进行,那么刚蜕出的柔软身体,就难免成为其他生物的美餐了。
蝉成长过程中要经过四次蜕皮蜕皮的原因是什么
蝉属于节肢动物门昆虫纲。与大多数昆虫的一生要经过卵-幼虫-蛹-成虫四个阶段的完全变态发育不同,蝉的生长发育属于不完全变态发育,它的一生只有卵-若虫-成虫三个阶段。从卵中孵化为若虫开始,蝉就像成虫一样具有硬的外骨骼。但外骨骼是不会生长的,在么骼形成时多大,就一直是多大。但若虫的身体是会长大的。身体长大到一定程度时,就会受到外骨骼大小的限制,身体就无法长大了。于是,它就会在身体表面与外骨骼之间再长出一层外骨骼,把老的一层外骨骼撑裂,让身体脱离“已经住不下的老房子”。新生的外骨骼比老的一层外骨骼大,于是,它就可以继续长大了。等到这层外骨骼又变得小了时,它就再长出一层更大一些的外骨骼,再从里面出来。所以,蝉在逐渐长大的过程中,会不断地脱壳,就像是蛇胶皮一样的道理
蝉在白天蜕皮会死吗?
不会
鱼的躯干部有(胸鳍 )和( 腹鳍)各一对,背部有(背鳍 )一个,尾部腹缘有(尾鳍 )一个,后端有(泄殖孔 )一个。
鱼体各部位及附属器官
鱼类的身体可分为头、躯干和尾三个部分。头部是指吻端到鳃盖后缘;躯干部是指鳃盖后缘至肛门一段;肛门以后至尾鳍基为尾部。鱼类的头部主要有口、须、眼、鼻孔和鳃孔等器官。淡水养殖鱼类的口一般位于吻端,由上下颁组成,它既是捕食器,也是鱼类呼吸时入水的通道。有些鱼类的口附近着生有须,如鲤鱼和鲇具须两对,埃及胡子鲇有须四对。须具有感觉和味觉作用,并可辅助寻觅食物。鱼类的眼睛位于头的两侧,没有眼睑,不能闭合,也不能较大的转动。眼的角膜平坦,水晶体呈圆球形,它的曲度不能改变,因此可以推测鱼类总是近视的。鱼眼的前上方左右各有一个鼻腔,其间有膜相隔,分为前后两鼻孔,后者不与口腔相通,故鱼类的鼻孔没有呼吸作用,只有嗅觉功能。头的后部两侧鳃盖后缘有一对鳃孔(只有鳝鱼特殊,其左右鳃孔合成一个,位于腹面),它是呼吸时出水的通道。鱼类的躯干部和尾部主要有鳍、鳞片和侧线器官。鳍是鱼类的运动器官,按其所着生的位置,可分为背鳍、胸鳍、腹鳍、臀鳍和尾鳍。鱼在水中游动时,各鳍相互配合,保持身体的平衡并起推进、刹制或转弯的作用。大多数鱼类的体表都披有坚实的鳞片,它是皮肤的衍生物,通常呈覆瓦状排列。有些鱼类(如鳗鲡和鳝鱼)的鳞片退化,也有残留少数鳞片的鱼类,如镜鲤则是典型的例子。不管有鳞或缺鳞的鱼类体表,都能分泌大量的粘液,无疑具有润滑和保护鱼体的作用。侧线是鱼类特有的感觉器官。它是深藏于皮下的管状系统结构-,与神经系统紧密联接。有许多小管穿过鳞片与外界相通。这些小孔在体侧表面排列成线状。常见的淡水鱼类之侧线只有一条,从头后部大致沿体侧中线直到尾鳍基部。但尼罗非鲫的侧线中断,分上下两段。侧线具有听觉和触觉功能,能感觉水的振动波、水流方向和水压的变化。
关于鱼体外形各部的测量和附属器官的位置。
全长:从吻端至尾鳍末端的距离(A—I);
体长:从吻端至尾鳍基部的距离(A——H);
体高:身体的最大高度(J-K);
头长:从吻端至鳃盖骨后缘的距离(A——D);
吻长:从吻端至眼眶前缘的距离(A--B);
眼径:眼眶前缘至后缘的距离(B--C);眼间距:左右两眼眶之间的直线距离;
尾柄长:从臀鳍基部后端至尾鳍基部垂直线的距离(G--H);
尾柄高:尾柄部分的最低高度(L--M)。
(三)鱼类的内部构造
1骨骼
骨骼是支持身体和保护体内器官的组织,它和动物体的运动也有密切关系。骨骼有内外之分,外骨骼包括鳞甲、鳍条和棘刺等;内骨骼通常是指埋在肌肉里的骨骼部分,包括头骨、脊柱和附肢骨骼。
头骨由脑颅和咽颅两部分组成、硬骨鱼类(常见的淡水养殖鱼类均为硬骨鱼类)的脑颅由许多骨片所合成,其主要作用是保护脑;咽颅由一对颌弓、一对舌弓和五对鳃弓所组成,分别具有支持颌、舌和鳃的功能。
脊柱由体椎和尾椎两种脊椎骨组成,体椎附有肋骨,尾椎无肋骨着生,两者容易区别。每个脊椎的椎体前后两面都是凹形的,故称之为双凹椎体,这是鱼类所特有。
附肢骨骼是指支持鱼鳍的骨骼,支持背鳍、臀鳍和尾鳍的骨骼是不成对的奇鳍骨骼;支持胸鳍和腹鳍的骨骼为成对的偶鳍骨骼。鱼类的偶鳍骨没有和脊柱联接,与其他陆生脊椎相比,显然又是一个特点。
2肌肉
鱼类的摄食、逃避敌害、繁殖等等一系列的生命活动,都要依靠肌肉的规律性收缩所起的运动来完成。
鱼类的躯干部和尾部的肌肉由许多肌节组成,肌节之间有隔膜连接而呈分节现象。体侧肌肉被一水平走向的肌隔分为两段,上段叫轴上肌,下段叫轴下肌。轴上肌分化出背鳍部分的肌肉。·尾部肌节分化出尾鳍肌。轴下肌分化为腹部与胸、腹鳍等部肌肉。
3消化系统
消化系统包括消化道和消化腺。消化道的起端为口,经口腔、食道、胃、肠而终于肛门。口腔内有齿和鳃耙等构造。一般鱼类具有颌齿和咽齿两种,前者多起摄取食物的作用,后者则有压碎和咀嚼食物的功能。鳃耙着生在鳃弓内缘,它是咽部的滤食器官。草食性和杂食性的鱼类(如草鱼、鲤、鲫等)的鳃耙较疏短,吃浮游生物的鱼类(如鲢鱼、鳙鱼等)的鳃耙则密而长。鱼类没有明显的舌,紧接口腔的一段为食道,一般短宽而壁厚,具有较强的扩张性,以利吞食比较大型的食物。胃在食道的后方,是消化道中最膨大的部分。鲤科鱼类通常没有明显的胃,其外表与食道并无多大差别,但鲇科鱼类等肉食性鱼类的胃却很发达,界线也很明显。胃后是肠,其长短因鱼的食性不同而有很大差别,偏于肉食性的鱼肠较短,偏于草食性和滤食浮游生物的鱼肠较长,杂食性鱼类的肠管适中。肠的末端由肛门开口通体外。
消化腺包括胃腺、肠腺、肝脏、胰腺和胆囊等。这些腺体能分泌各种消化液使食物消化。胃腺分泌的胃蛋白酶,肠腺分泌的肠蛋白酶和胰腺分泌的胰蛋白酶,均能消化各种蛋白质。肝脏和胰脏的分泌物含有较多的淀粉酶和脂肪酶,可分别把糖类和脂肪分解而被肠壁吸收。被消化后的食物残渣和不能消化的其他物质,则由肠的蠕动经肛门排出体外。
4呼吸器官
鱼类在从外界摄食获得营养维持其生命活动的过程中,必须有氧气供给才能维持其正常生理代谢。鱼类从水环境中吸取氧气,代谢活动所产生的废气(二氧化碳等)也是通过水体接触而排放出来。气体交换的任务,主要靠鱼类的鳃来完成。
硬骨鱼类的鳃位于头的两侧,外有鳃盖覆盖。鱼鳃主要由鳃弓、鳃片和鳃耙组成。鳃弓是支持鳃片的骨骼。鳃耙有过滤食物的功用,它和呼吸作用并无直接关系。鳃片由许多鳃丝组成,后者又由很多鳃小片构成,其上密布着无数的毛细血管,呼吸时的气体就在这里进行交换。当水通过鳃丝时,鳃小片上的微血管通过本身的薄膜摄取水中的溶解氧,同时排出二氧化碳。鱼类不断地用口吸水,经过鳃丝从鳃孔排出,就是进行呼吸的过程。一旦鱼离开了水,鳃就会因失水而互相粘合或干燥,从而失去交换气体的功能,势必使鱼窒息死亡。
有些鱼类,除了用鳃呼吸以外,还可用身体的其他部分进行“气呼吸”以辅助“水呼吸”的不足。这些用以辅助呼吸的器官,称为副呼吸器官。副呼吸器官分布着许多微血管,能进行气体交换,行使呼吸功能。例如,鳗鲡和鲇鱼都能用其皮肤呼吸;泥鳅能用肠呼吸(把空气吞入肠中,在肠道内进行气体交换);鳝鱼可以借助口咽腔表皮呼吸;乌鱼可以用咽喉部附生的气囊呼吸;埃及胡子鲇的鳃腔内也有树枝状的副呼吸器官等等。上述鱼类都可以在离水较长时间的情况下而不至于很快死亡。多数鱼类具有鳔。鳔呈薄囊形,位于体腔背方,一般为二室,里面充满气体。它是鱼体适应水中生活的比重调节器,可以借放气和吸气(但无呼吸作用),改变鱼体的比重,有助于上升或下降。但是鳔的这种调节作用,毕竟是一个较为缓慢的过程,如果鱼体需要快速升降,鳔的调节作用就无济于事了。
5血液循环
循环系统主要包括心脏、动脉、静脉等。鱼类的心脏位于最后一对鳃的后面下方,靠近头部,由一个心房和一个心室组成。血液由心室出,经过腹大动脉进入鳃动脉,深入鳃片中各毛细血管,其红血球在此吸收氧气,排出血液中的二氧化碳,使血液变得新鲜。此后,血流经出鳃动脉而归入背大动脉,再由许多分枝进入鱼体各部组织器官。然后转入静脉,再汇集到腹部的大静脉。静脉血液经过肾脏时被滤去废物,流经肝脏后重新进入心脏循环。
6排泄器官
鱼类的排泄器官主要是肾脏,位于腹腔的背部,呈紫红色。肾脏可分为前、中、后三部分。肾脏后部延伸出输尿管,左右输尿管在腹腔后部愈合,并突出一个不大的膀胱。总输尿管的末端与生殖输管相合,以一个尿殖孔开口或分开开口于肛门的后方。鱼的肾脏除了泌尿的功能以外,还可以调节体内的水分,使之保持恒定。另外,鱼鳃也有排泄作用,其主要排出物是氨、尿素等易扩散的氮化物和某些盐分。
7生殖系统
多数鱼类为雌雄异体,生殖腺成对,即精巢或卵巢都是左右各一,由系膜悬挂在腹腔背壁上。绝大部分鱼类是体外受精的,即精子和卵子均由亲鱼产出后在水中结合受精。下面以鲤鱼为例,简要介绍其生殖系统:
1.雄性生殖系统 一对精巢,位于鳔的两侧腹腔内。成体时,精巢为乳白色,内有许多精液。输精管紧接精巢,左右输精管后段合并为总输精管,其末端以尿殖孔开口在肛门之后。
2.雌性生殖系统 卵巢一对,与精巢的着生部位相同,性成熟时可以看到卵巢内有许多卵粒。卵巢有包膜向后延伸形成输卵管,末端由生殖孔通体外。
是虾的消化系。
虾体长而扁,外骨骼有石灰质,分头胸和腹两部分。头胸由甲壳覆盖。腹部由7 节体节组成。头胸甲前端有一尖长呈锯齿状的额剑及1对能转动带有柄的复眼。虾以鳃呼吸,鳃位于头胸部两侧,为甲壳所覆盖。虾的口在头胸部的底部。头胸部有2 对触角,负责嗅觉、触觉及平衡,亦有由大小颚组成的咀嚼器。头胸部还有3对颚足,帮助把持食物,有5对步足,主要用来捕食及爬行。
腹部有5对游泳肢及一对粗短的尾肢。尾肢与腹部最后一节合为尾扇,能控制虾的游泳方向。大而色白的虾;小且色青,生活在江湖中。都有胡须钩鼻,背弓呈节状,尾部有硬鳞脚多善于跳跃。它的子在腹外。所以受大庭广众的喜爱。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)