如何判断收敛性?

如何判断收敛性?,第1张

比较判别法的极限形式:lim(1/ntan1/n)/(1/n^2)=lim(tan1/n)/(1/n)=1。

所以  1/ntan1/n与1/n^2敛散性相同,1/n^2收敛,所以原级数收敛。

是P级数的问题(P-series)。

P级数是发散级数,证明的方法,可以各式各样。

运用的缩小法;缩小后依然发散。

那么P级数肯定发散。

判定正项级数的敛散性

先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;

若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的;

如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。

内容如下:

1、当n<1时,n的a次方分之一是发散的,当n接近于0时,级数趋近正无穷,发散。

2、当n=1时,既不发散也不收殓,n的a次方分之一始终等于1。

3、当n>1时,n的a次方分之一是收殓的,当n足够大时,收殓与0 。

因为a在1到2,所以当n为负数时,n的a次方是不存在的,所以n不能为负数。由因为n的a次方是作为分母,所以n不能为0。

相关信息:

有无穷多项为正,无穷多项为负的级数称为变号级数,其中最简单的是形如∑[(-1)^(n-1)]un(un>0)的级数,称之为交错级数。判别这类级数收敛的基本方法是莱布尼兹判别法 :若un ≥un+1 ,对每一n∈N成立,并且当n→∞时lim un=0,则交错级数收敛。

例如∑[(-1)^(n-1)](1/n)收敛。对于一般的变号级数如果有∑|un|收敛,则称变号级数绝对收敛。如果只有 ∑un收敛,但是∑|un|发散,则称变号级数条件收敛。例如∑[(-1)^(n-1)](1/n^2)绝对收敛,而∑[(-1)^(n-1)](1/n)只是条件收敛。

判断函数数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

扩展资料:

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数  和  ,也就是说该级数的部分和序列没有一个有穷极限。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数调和级数的发散性被中世纪数学家奥里斯姆所证明。

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,这个事实一般并不怎么有用,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

发散级数的求和作为数值技巧也与插值法和序列变换相关,这类技巧的例子有:帕德近似、Levin类序列变换以及与量子力学中高阶微扰论的重整化技巧相关的依序映射。

收敛数列

令{  }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|  -A|<b恒成立,就称数列{  }收敛于A(极限为A),即数列{  }为收敛数列。

函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)至un(x) 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)++un(x)+⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)++un(x0)+ (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。

函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)++un(x)+把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

参考资料:

-收敛 -发散

比式判别法公式如下:

有一个级数

该级数可以是实数或者复数,该级数是收敛或者发散,取决于:

如果l>1,那么该级数发散;

如果l<1,那么该级数收敛。

比较判别法(comparison test),是判别正项级数收敛性的基本方法。

比较判别法(comparison test)判别正项级数收敛性的基本方法。

其一般形式是:若a,O,b‑,0,且n充分大时,有a‑镇Cb‑(C>0)或(a‑+ila‑)}(b‑+,/b‑),则}b。收敛时艺a。收敛,}a。发散时艺b,发散。它的极限形式是:若lima‑/b‑)<},且}b。收敛,则}a。收敛;若lim(a‑/b‑)>0,且}b‑一二,则艺a‑-二,用作比较的级数艺b,称为比较级数。若a n>0}a‑-}(n一p)(n~二),则当p>1时艺a。收敛。

比较判别法可移植到广义积分。

比较通俗地讲,就是,都为正项级数的情况下,大收推小收,小发推大发。

正项级数四种判别方法

1、比较原则;

2、比式判别法,(适用于含n!的级数);

3、根式判别法,(适用于含n次方的级数);(注:一般能用比式判别法的级数都能用根式判别法)

4、比较判别法的极限形式。

第一个其实就是正项的等比数列的和,公比小于1,是收敛的。

第二个项的极限是∞,必然不收敛。

简单的说

有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。

f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{ }收敛于a,那么它的任一子数列也收敛于a。

发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。

然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/6301169.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-06
下一篇2023-09-06

发表评论

登录后才能评论

评论列表(0条)

    保存