可以进行文本挖掘。文本挖掘是指对大规模自然语言文本进行智能分析、理解和提取知识的一项技术。在采集商家在线评论中,我们可以使用文本挖掘技术进行情感分析、词频统计、主题提取等操作,从而获取大量有价值的信息。但是需要注意的是,进行文本挖掘时需要遵守相关的法律法规和道德伦理,不能侵犯他人的隐私权等。
自然语言处理(NLP)是机器学习重要分支之一,主要应用于篇章理解、文本摘要、情感分析、知识图谱、文本翻译等领域。而NLP应用首先是对文本进行分词,当前中文分词器有Ansj、paoding、盘古分词等多种,而最基础的分词器应该属于jieba分词器(比较见下图)。
下面将分别应用R和python对jieba分词器在中文分词、词性标注和关键词提取领域的应用进行比较。
R实现
通过函数worker()来初始化分词引擎,使用segment()进行分词。有四种分词模式:最大概率法(MP)、隐马尔科夫模型(HMM)、混合模型(Mix)及索引模型(query),默认为混合模型。具体可查看help(worker)
#installpackages('jiebaR')library(jiebaR)mixseg <- worker()segment( "这是一段测试文本" , mixseg ) #或者用以下操作mixseg['这是一段测试文本']mixseg <= "这是一段测试文本"
python实现
python中需安装jieba库,运用jiebacut实现分词。cut_all参数为分词类型,默认为精确模式。
import jiebaseg_list = jiebacut(u"这是一段测试文本",cut_all = False)print("Full mode: "+ ","join(seg_list)) #默认精确模式
无论是R还是python都为utf—8编码。
R实现
可以使用<=tagger 或者tag 来进行分词和词性标注,词性标注使用混合模型模型分词,标注采用和 ictclas 兼容的标记法。
words = "我爱北京天安门"tagger = worker("tag") #开启词性标注启发器tagger <= words # r v ns ns # "我" "爱" "北京" "天安门"
python实现
#词性标注import jiebaposseg as psegwords = psegcut("我爱北京天安门")for word,flag in words: print('%s, %s' %(word,flag))
R实现
R关键词提取使用逆向文件频率(IDF)文本语料库,通过worker参数“keywords”开启关键词提取启发器,topn参数为关键词的个数。
keys = worker("keywords",topn = 5, idf = IDFPATH)keys <= "会议邀请到美国密歇根大学(University of Michigan, Ann Arbor)环境健康科学系副教授奚传武博士作题为“Multibarrier approach for safe drinking waterin the US : Why it failed in Flint”的学术讲座,介绍美国密歇根Flint市饮用水污染事故的发生发展和处置等方面内容。讲座后各相关单位同志与奚传武教授就生活饮用水在线监测系统、美国水污染事件的处置方式、生活饮用水老旧管网改造、如何有效减少消毒副产物以及美国涉水产品和二次供水单位的监管模式等问题进行了探讨和交流。本次交流会是我市生活饮用水卫生管理工作洽商机制运行以来的又一次新尝试,也为我市卫生计生综合监督部门探索生活饮用水卫生安全管理模式及突发水污染事件的应对措施开拓了眼界和思路。"#结果:# 488677 234784 221402 20326 185354 # "饮用水" "Flint" "卫生" "水污染" "生活"
python实现
python实现关键词提取可运用TF-IDF方法和TextRank方法。allowPOS参数为限定范围词性类型。
#关键词提取import jiebaanalysecontent = u'会议邀请到美国密歇根大学(University of Michigan, Ann Arbor)环境健康科学系副教授奚传武博士作题为“Multibarrier approach for safe drinking waterin the US : Why it failed in Flint”的学术讲座,介绍美国密歇根Flint市饮用水污染事故的发生发展和处置等方面内容。讲座后各相关单位同志与奚传武教授就生活饮用水在线监测系统、美国水污染事件的处置方式、生活饮用水老旧管网改造、如何有效减少消毒副产物以及美国涉水产品和二次供水单位的监管模式等问题进行了探讨和交流。本次交流会是我市生活饮用水卫生管理工作洽商机制运行以来的又一次新尝试,也为我市卫生计生综合监督部门探索生活饮用水卫生安全管理模式及突发水污染事件的应对措施开拓了眼界和思路。'#基于TF-IDFkeywords = jiebaanalyseextract_tags(content,topK = 5,withWeight = True,allowPOS = ('n','nr','ns'))for item in keywords: print item[0],item[1] #基于TF-IDF结果# 饮用水 0448327672795# Flint 0219353532163# 卫生 0203120821773# 水污染 0186477211628# 生活 0170049997544
#基于TextRankkeywords = jiebaanalysetextrank(content,topK = 5,withWeight = True,allowPOS = ('n','nr','ns'))for item in keywords: print item[0],item[1] #基于TextRank结果:# 饮用水 10# 美国 0570564785973# 奚传武 0510738424509# 单位 0472841889334# 讲座 0443770732053
写在文后
自然语言处理(NLP)在数据分析领域有其特殊的应用,在R中除了jiebaR包,中文分词Rwordseg包也非常常用。一般的文本挖掘步骤包括:文本获取(主要用网络爬取)——文本处理(分词、词性标注、删除停用词等)——文本分析(主题模型、情感分析)——分析可视化(词云、知识图谱等)。本文是自然语言处理的第一篇,后续将分别总结下应用深度学习Word2vec进行词嵌入以及主题模型、情感分析的常用NLP方法。
参考资料
Introduction · jiebaR 中文分词 https://qinwenfengcom/jiebaR/segmenthtml
知乎:文本分析利用jiebaR进行中文分词 https://zhuanlanzhihucom/p/24882048
雪晴数据网:全栈数据工程师养成攻略 http://wwwxueqingtv/course/73
搜狗实验室,词性标注应用 http://wwwsogoucom/labs/webservice/
R文本挖掘中文分词Rwordseg http://blog163com/zzz216@yeah/blog/static/162554684201412895732586/
分析和研究人的情感是一个复杂的过程,需要结合多个因素和方法。以下是一些常见的方法和技巧:
观察非语言表达:情感通常通过非语言表达来展示,包括面部表情、姿势、手势、眼神等。观察这些非语言信号可以提供关于一个人情感状态的线索。
倾听和观察语言表达:人们在语言中常常流露出情感,包括词语的选择、语调、语速等。倾听和观察一个人的语言表达可以帮助你了解他们的情感体验。
提问和探索:与他人进行深入的对话,提出开放性的问题,探索他们的情感体验和内心感受。通过主动与他人交流,你可以更好地了解他们的情感世界。
了解背景和经历:一个人的情感体验通常受到他们的背景和经历的影响。了解一个人的背景故事、家庭环境、教育背景等,可以提供更多的背景信息来理解他们的情感。
使用情感分析工具:一些科学研究和心理学领域的专业人士使用情感分析工具来研究和测量情感。这些工具可能包括问卷调查、心理测量仪器、脑部扫描等,通过客观的数据来分析和研究情感。
学习心理学和情感科学知识:深入学习心理学和情感科学领域的知识可以提供更多的理论框架和研究成果,帮助你理解情感的本质和影响因素。
需要注意的是,分析和研究他人的情感是一项复杂的任务,需要综合考虑多个因素,并且要尊重他人的隐私和个人边界。在进行情感分析时,保持尊重、开放和理解的态度非常重要。
自然语言处理的工作包括:
1、句法语义分析:对于给定的句子,进行分词、词性标记、命名实体识别和链接、句法分析、语义角色识别和多义词消歧。
2、信息抽取:从给定文本中抽取重要的信息,比如,时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词等等。通俗说来,就是要了解谁在什么时候、什么原因、对谁、做了什么事、有什么结果。涉及到实体识别、时间抽取、因果关系抽取等关键技术。
3、文本挖掘(或者文本数据挖掘):包括文本聚类、分类、信息抽取、摘要、情感分析以及对挖掘的信息和知识的可视化、交互式的表达界面。目前主流的技术都是基于统计机器学习的。
4、机器翻译:把输入的源语言文本通过自动翻译获得另外一种语言的文本。根据输入媒介不同,可以细分为文本翻译、语音翻译、手语翻译、图形翻译等。机器翻译从最早的基于规则的方法到二十年前的基于统计的方法,再到今天的基于神经网络(编码-解码)的方法,逐渐形成了一套比较严谨的方法体系。
5、信息检索:对大规模的文档进行索引。可简单对文档中的词汇,赋之以不同的权重来建立索引,也可利用1,2,3的技术来建立更加深层的索引。在查询的时候,对输入的查询表达式比如一个检索词或者一个句子进行分析,然后在索引里面查找匹配的候选文档,再根据一个排序机制把候选文档排序,最后输出排序得分最高的文档。
6、问答系统:对一个自然语言表达的问题,由问答系统给出一个精准的答案。需要对自然语言查询语句进行某种程度的语义分析,包括实体链接、关系识别,形成逻辑表达式,然后到知识库中查找可能的候选答案并通过一个排序机制找出最佳的答案。
7、对话系统:系统通过一系列的对话,跟用户进行聊天、回答、完成某一项任务。涉及到用户意图理解、通用聊天引擎、问答引擎、对话管理等技术。此外,为了体现上下文相关,要具备多轮对话能力。同时,为了体现个性化,要开发用户画像以及基于用户画像的个性化回复。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)