第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。
英文已经有伟大词典资源:SentiWordNet 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。
但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。
中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。
第二步,就是识别一个句子是积极还是消极,是主观还是客观。
有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。
但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。
如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。
分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。
中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。
另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。
到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。
这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。
这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。
分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。
接下来还可以对比不同产品的评价,并且可视化出来。如图。
这一步的主要在于准确挖掘产品属性(一般用关联规则),并准确分析对应的情感倾向和情感强度。因此这需要情感分析作为基础。首先要找到评论里面的主观句子,再找主观句子里的产品属性,再计算属性对应的情感分。所以前面基础不牢固,后面要准确分析就有难度。
中文这个领域的研究其实很完善了,技术也很成熟。但需要完善前期情感分析的准确度。
总的来说,就是中文词典资源不好,工作做得不是很细很准。前期的一些基础不牢固,后面要得到准确的分析效果就不容易了。
由于语料缺乏,前期若使用到情感分析,建议暂时使用SnowNLP(此模块主要使用淘宝评论语料)做情感挖掘,但不仅仅为单纯调用,需要优化,下面是一些实践思考:
可在此基础上优化,比如文本需要特别处理,除了平常的去停用词外,还可以需要对输入的文本结合词性等进行处理。
下面是一些常识:
一)无情感的词语(如去停用词,去掉语气词,无词性标签的词语)
二)对于文本过长,则可以考虑提取关键词或抽取文本摘要后再提取关键词
对于后者实践结果差异明显:
以"发布了头条文章: 《5分钟11亿!京东双11场景化产品消费增长明显》 5分钟11亿!京东双11场景化产品消费增长明显 "为例子, 显然该文本为“积极”文本。
1)s = SnowNLP("发布了头条文章:《5分钟11亿!京东双11场景化产品消费增长明显》 5分钟11亿!京东双11场景化产品消费增长明显")
得分为05,明显不符合
2)s = SnowNLP(“ ”join(jiebaanalysetextrank("发布了头条文章:《5分钟11亿!京东双11场景化产品消费增长明显》 5分钟11亿!京东双11场景化产品消费增长明显")))
而对于文本特别长的,则可以先抽取摘要,再对摘要提取关键词。
这主要由于此SnowNLP主要用贝叶斯机器学习方法进行训练文本,机器学习在语料覆盖上不够,特征上工程处理不当会减分,也没考虑语义等。
为何要考虑语义层面:
以“ 苏宁易购,是谁给你们下架OV的勇气” 中的“ 下架”其实才是中心词(为表达愤怒的文本),但“ 勇气 ”为下架的宾语(其为积极的文本),此句应该结果小于05,但实际为088,去掉“苏宁易购”则为06>
情感分析自从2002年由Bo Pang提出之后,获得了很大程度的关注,特别是在在线评论的情感倾向性分析上获得了很大的发展。本文主要关注无监督的情感分析方法,由于不需要大量标注语料,无监督情感分析方法一直受到许多研究者的青睐,但同时效果也低于有监督的情感分析方法。
Turney首次提出基于种子词的非监督学习方法,使用“excelent”和“poor”两个种子词与未知词在搜索网页中的互信息来计算未知词的情感极性,并用以计算整个文本的情感极性。后续的非监督情感分析方法大都是基于生成或已有的情感词典或者相关资源进行情感分析。
例 如,Kennedy和Inkpen考虑文本中词的极性转移关系并基于种子词集合进行词计数决定情感倾向。朱嫣岚等人将 一组已知极性的词语集合作为种子,基于HowNet对未知词语与种子词进行语义计算,从而判别未知词的极性。Lin等采用LSM 模型、JST模型、Reverse-JST模型构建了三种无监督的情感分析系统。但是由于深层情感分析必然涉及到语义的分析, 以及文本中情感转移现象的经常出现,所以基于深层语义的情感分析效果并不理想,本文针对中文文本中经常出现的情感转移现象提出情感极性转移模型,提高了深层语义情感分析的分析效果。
人工智能产品的定义较为广泛,智能硬件、机器人、芯片、语音助手等都可以叫做人工智能产品。本文讨论的人工智能产品主要是指在互联网产品中运用人工智能技术。
互联网产品主要着手与解决用户的痛点,对于C端产品来说,痛点就是指的个人想解决而无法解决的问题,如个人想要美化自己的照片,但是他不会复杂的PS软件,于是美图秀秀就可以解决这个痛点。从KANO模型中,就是满足用户的基本需求与期望需求。
人工智能产品(在互联网产品中运用人工智能技术)则是要满足用户的兴奋需求。如将情感分析运用到电商的产品评论中,用户则可以通过可视化的数据展示来大致对产品有个全面、直观的了解,而不再需要自己一页一页的翻看评论内容。
互联网产品主要关注点在于用户需求、流程设计、交互设计、商业模式等。着眼于用户需求,设计满足用户需求的产品,通过合理的流程设计、交互设计达到产品目标,进而实现商业目标。典型的思路是发现用户需求——>设计满足用户需求的产品——>迭代完善、产品运营——>商业变现。
人工智能产品关注点在于模型的构建,它不再是对于布局、交互的推敲,而是通过选择合适的数据,构建合适的模型,最终呈现出来的是好的效果。什么是好的效果呢?这就需要引入评测指标。互联网的评测指标有我们熟知的留存率、转化率、日活跃等,那么人工智能的产品主要是通过一些统计指标来描述,以情感分析为例,把情感分析看成一个分类问题,则可以使用P、R、A、F值来描述。
1)查准率(Precision):P值,衡量某类分类中识别正确的比例,如情感分析中,有10条被分类为“正向”,其中8条是分类正确的(由人工审核),那么P=8/10=80%
2)查全率(Recall):R值,又叫查全率,又叫召回度,指的是某类被被正确分类的比例,同样以情感分析为例,100条数据中有10条是正向的,机器分类后,这10条中有7条被分类为正向,则R=7/10=70%
3)F值,因为P值和R值通常是两个相互矛盾的指标,即一个越高另一个越低,F则是两者综合考虑的指标,不考虑调节P、R权重的情况下,F=2PR/(P+R)
4)精确度(Accuracy):这个最好理解,就是被准确分类的比例,也就是正确率。如100条数据,90条是被正确分类的,则A=90/100=90%。
以上指标越高,说明模型效果越好。
我们从上面内容可以知道,人工智能产品设计关注:数据——>模型——>效果评估。
现在我们以情感分析为例子说明产品设计的过程。
1)数据:
数据的选择对最终模型的结果有直接影响,情感分析,根据不同的目的,选择的数据也不同。如将情感分析运用于**票房预测,则一些更新及时、内容丰富的数据源,如微博,是比较好的选择。如果是应用于商品的评价,如电子产品,很多评测内容是无法在短短几句话内描述清楚的,这时候微博不是个好的选择,选择论坛上更新较慢、但是详细的内容就比较适合。
如果能在产品的早期就有引入人工智能的打算,则可以在产品中事先做好数据采集。
2)模型:
在选择模型中,产品需要了解不同的模型的优缺点,进而选择更加合适的模型。在情感分析中,NB、SVM、N-gram都是常用的模型,其中SVM效果最好(这是已有的结论),如果是其他的智能产品,可能需要算法团队进行实验,给出测试数据,进而选择合适的模型。
3)效果评估:
效果评估在上文中已经描述得比较清楚,具体指标不再赘述。
4)产品呈现:
最后这一步,是将结果展示给用户。在情感分析中,我们可以选择雷达图、词云、情感趋势图来展示结果。取决于产品属性,如电商产品评论挖掘,可以使用词云;
如舆论分析,可以使用情感趋势图。
人工智能产品的设计要关注:数据、模型、评判、呈现。
情感分析(又称为观点挖掘或感情AI)是指使用自然语言处理、文本分析、计算语言学和生物特征识别来系统地识别、提取、量化和研究情感状态和主观信息。情感分析广泛应用于分析客户的心声,如评论和调查回复,在线和社交媒体,以及从市场营销到客户服务再到临床医学的保健材料。
情感分析的一个基本任务是在文档、句子或特征/方面级别对给定文本的极性进行分类,判断在文档、句子或实体特征/方面中表达的意见是积极的、消极的还是中性的。高级的“超越极性”情感分类着眼于诸如“愤怒”、“悲伤”和“快乐”等情绪状态。
进行情感分析的先驱包括“一般询问者”(General Inquirer),它提供了量化文本模式的线索,另外,还提供了基于对人的言语行为进行分析来检查一个人的心理状态的心理学研究。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)