人工智能(Artificial Intelligence, AI)是一个广泛的领域,包括了多种技术和方法。以下是一些主要的人工智能技术:
机器学习(Machine Learning):是一种让计算机自动从数据中学习和提取规律的方法。典型的机器学习算法包括线性回归、逻辑回归、支持向量机、决策树、随机森林、K-近邻算法等。
深度学习(Deep Learning):是一种基于神经网络的机器学习方法,能够在大量数据中自动学习抽象特征表示。常见的深度学习网络结构包括卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、生成对抗网络(GAN)等。
计算机视觉(Computer Vision):是一种让计算机理解和处理数字图像或视频的技术。计算机视觉的任务包括图像分类、物体检测、语义分割、人脸识别、光学字符识别等。
自然语言处理(Natural Language Processing, NLP):是一种让计算机理解、生成和处理自然语言文本的技术。NLP的应用包括机器翻译、情感分析、文本摘要、问答系统、语音识别、语音合成等。
强化学习(Reinforcement Learning):是一种让计算机通过与环境互动来学习最优策略的方法。强化学习已被成功应用于游戏智能、机器人控制、自动驾驶等领域。
专家系统(Expert Systems):是一种基于知识和推理的人工智能技术,能够模拟人类专家解决问题的过程。专家系统主要包括知识库、推理机和用户界面三个部分。
机器人技术(Robotics):是一种涉及计算机、机械、电子等多学科的技术,用于设计、制造和控制机器人。机器人技术在制造业、物流、医疗、家庭等领域得到了广泛应用。
自然语言处理(NLP)关注的是人类的自然语言与计算机设备之间的相互关系。NLP是计算机语言学的重要方面之一,它同样也属于计算机科学和人工智能领域。而文本挖掘和NLP的存在领域类似,它关注的是识别文本数据中有趣并且重要的模式。
但是,这二者仍有不同。首先,这两个概念并没有明确的界定(就像“数据挖掘”和“数据科学”一样),并且在不同程度上二者相互交叉,具体要看与你交谈的对象是谁。我认为通过洞见级别来区分是最容易的。如果原始文本是数据,那么文本挖掘就是信息,NLP就是知识,也就是语法和语义的关系。
虽然NLP和文本挖掘不是一回事儿,但它们仍是紧密相关的:它们处理同样的原始数据类型、在使用时还有很多交叉。
我们的目的并不是二者绝对或相对的定义,重要的是要认识到,这两种任务下对数据的预处理是相同的。
努力消除歧义是文本预处理很重要的一个方面,我们希望保留原本的含义,同时消除噪音。
以下就是处理文本任务的几大主要步骤:
1数据收集
获取或创建语料库,来源可以是邮箱、英文维基百科文章或者公司财报,甚至是莎士比亚的作品等等任何资料。
2数据预处理
在原始文本语料上进行预处理,为文本挖掘或NLP任务做准备
数据预处理分为好几步,其中有些步骤可能适用于给定的任务,也可能不适用。但通常都是标记化、归一化和替代的其中一种。
3数据挖掘和可视化
无论我们的数据类型是什么,挖掘和可视化是探寻规律的重要步骤
常见任务可能包括可视化字数和分布,生成wordclouds并进行距离测量
4模型搭建
这是文本挖掘和NLP任务进行的主要部分,包括训练和测试
在适当的时候还会进行特征选择和工程设计
语言模型:有限状态机、马尔可夫模型、词义的向量空间建模
机器学习分类器:朴素贝叶斯、逻辑回归、决策树、支持向量机、神经网络
序列模型:隐藏马尔可夫模型、循环神经网络(RNN)、长短期记忆神经网络(LSTMs)
5模型评估
模型是否达到预期?
度量标准将随文本挖掘或NLP任务的类型而变化
以上观点仅供参考,而在自然语言文本预处理方面的技术在国内效果比较好的并不多,具有代表性的如:北理工张华平博士的NLPIR大数据语义智能分析技术。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。如果感兴
预测股票价格走势是金融市场中一项重要的任务。机器学习算法可以用于预测股票价格走势。以下是一些常见的方法:
1时间序列分析:利用历史股票价格的时间序列进行分析,使用ARIMA等时间序列分析算法预测未来的股票价格。
2神经网络:使用ANN、CNN、RNN等算法结构,构建模型,基于历史的数据和技术指标(如RSI、MACD等)进行学习,最终输出预测结果。
3集成学习:将多个模型的预测结果进行加权平均,形成最终的预测结果。例如使用随机森林、AdaBoost等算法结合SVM、LR、KNN等基础模型进行集成。
4基于类似贝叶斯理论的方法:将基于历史数据和技术指标的预测结果进行修正。
5自然语言处理:对于新闻、公告等文本信息进行分词、关键词提取、情感分析等处理,以此预测股票价格走势。
需要注意的是,预测股票价格是一项具有风险的任务,机器学习算法预测的结果仅具有参考性,不能保证完全正确。投资者在做出投资决策时,应综合参考多方信息。
探码科技大数据分析及处理过程
数据集成:构建聚合的数据仓库
将客户需要的数据通过网络爬虫、结构化数据、本地数据、物联网设备、人工录入等进行全位实时的汇总采集,为企业构建自由独立的数据库。消除了客户数据获取不充分,不及时的问题。目的是将客户生产、运营中所需要的数据进行收集存储。
2数据管理:建立一个强大的数据湖
将数据库中的数据经过抽取、清洗、转换将分散、零乱、标准不统一的数据整合到一起,通过在分析数据库中建模数据来提高查询性能。合并来自多个来源的数据,构建复杂的连接和聚合,以创建数据的可视化图标使用户能更直观获得数据价值。为内部商业智能系统提供动力,为您的业务提供有价值的见解。
3数据应用:将数据产品化
将数据湖中的数据,根据客户所处的行业背景、需求、用户体验等角度将数据真正的应用化起来生成有价值的应用服务客户的商务办公中。将数据真正做到资产化的运作。
聚云化雨的处理方式:聚云化雨的处理方式
聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;
化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;
开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)