目前人工智能的研究发展已经达到了较高的水平,同时它的研究内容也在逐步扩展和延伸。对人的情感和认知的研究是人工智能的高级阶段,它的研究将会大大促进拟人控制理论、情感机器人、人性化的商品设计和市场开发等方面的进展,为最终营造一个人与人、人与机器和谐的社会环境做出贡献。心理学家认为,人工智能下一个重大突破性的发展可能来自与其说赋予机器更多的逻辑智能,倒不如说赋予计算机更多的情感智能。对人的情感和认知的研究是在人工智能理论框架下的一个质的进步。因为从广度上讲它扩展并包容了感情智能,从深度上讲感情智能在人类智能思维与反应中体现了一种更高层次的智能。对人的情感和认知的研究必将为计算机的未来应用展现一种全新的方向。在这个领域的研究中主要包括情感计算(Affective Computing)、人工心理(Artificail Psychology)和感性工学(Kansei Engineering)等。
人工心理理论是由中国北京科技大学教授、中国人工智能学会人工心理与人工情感专业委员会主任王志良教授提出的。他指出,人工心理就是利用信息科学的手段,对人的心理活动(着重是人的情感、意志、性格、创造)的更全面再一次人工机器(计算机、模型算法等)模拟,其目的在于从心理学广义层次上研究人工情感、情绪与认知、动机与情绪的人工机器实现的问题。
日本从上世纪九十年代就开始了感性工学(Kansei Engineering)的研究。所谓感性工学就是将感性与工程结合起来的技术,是在感性科学的基础上,通过分析人类的感性,把人的感性需要加入到商品设计、制造中去,它是一门从工程学的角度实现能给人类带来喜悦和满足的商品制造的技术科学[4]。日本已经形成举国研究感性工学的高潮。
欧盟国家也在积极地对情感信息处理技术(表情识别、情感信息测量、可穿戴计算等)进行研究。欧洲许多大学成立了情感与智能关系的研究小组。其中比较著名的有:日内瓦大学 Klaus Soberer领导的情绪研究实验室。布鲁塞尔自由大学的D Canamero领导的情绪机器人研究小组以及英国伯明翰大学的A Sloman领导的 Cognition and Affect Project。在市场应用方面,德国Mehrdad Jaladi-Soli等人在2001年提出了基于EMBASSI系统的多模型购物助手。EMBASSI是由德国教育及研究部(BMBF)资助并由20多个大学和公司共同参与的,以考虑消费者心理和环境需求为研究目标的网络型电子商务系统。
我国对人工情感和认知的理论和技术的研究始于20世纪90年代,大部分研究工作是针对人工情感单元理论与技术的实现。哈尔滨工业大学研究多功能感知机,主要包括表情识别、人脸识别、人脸检测与跟踪、手语识别、手语会成、表情合成、唇读等内容,并与海尔公司合作研究服务机器人。清华大学进行了基于人工情感的机器人控制体系结构的研究。北京交通大学进行多功能感知机和情感计算的融合研究。中国科学院自动比研究所主要研究基于生物特征的身份验证。
当前国际人工智能领域对人工情感合认知领域的研究日趋活跃。美国人工智能协会(AAAI)在1998,1999和2004年连续组织召开专业的学术会议对人工情感和认知进行研讨,国内的研究者也开展了许多的研究工作和学术活动。2003年12月在北京召开了第一届中国情感计算及智能交互学术大会。2005年10月在北京召开的第一届情感计算和智能交互国际学术会议,集合了世界一流的情感计算、人工情绪和人工心理研究的著名专家学者。这说明我国的人工情感和人工心理的研究在逐步展开并向国际水平看齐。
对情感计算的研究大致可以分为情感识别、情感建模和情感反应三大部分,这其中情感识别无疑是最基础,也是最重要的部分。
综上所述,对人的情感和认知的研究,包括对情感识别的研究,无论在理论上还是实践中都已经受到了研究者广泛的关注,对这一问题的研究具有重要的理论和应用价值。对这一问题的研究将最终推动人工智能的进一步发展,实现人机和谐的目标。
机器人是人工智能的一种形式,它们并没有真正的情感体验或情绪。然而,人们有时会说机器人“情绪化”,是因为它们能够被编程来表现出类似情绪的行为,例如声音、面部表情和动作。
这些行为通常是基于预设的算法和规则,而不是真正的情感反应。例如,机器人可以通过识别声音和面部表情,来模拟人类的情感和行为,但这只是基于预先设定的规则和算法。
此外,研究人员也正在研究如何为机器人添加类似情感的功能,例如适应性、情感感知和反馈等。这些技术旨在让机器人更好地与人类互动和合作,但它们仍然是基于预设的算法和规则,而不是真正的情感体验。
因此,虽然机器人可以被编程来表现出类似情感的行为,但它们并没有真正的情感或情绪。
机器人家上看到,与人类间的情感交流过程类似,情感机器人的运作过程包括情感信息的获取、识别分析和感情的表达。
首先,机器人需要通过视觉系统、听觉系统和各类传感器等来获取外界信息。与一般智能机器人不同的是,情感机器人会更有目的地获取与情感相关的有效信息,如人脸的表情和动作,语音的高低、强弱等。
情感信息的识别与分析是合格过程的重头戏。生活中,脸部表情是人们常用的较自然的情感表达方式,比如,眉头紧皱可能表示愤怒等。科学家提出了脸部情感的表达方式,即脸部运动编码系统FACS,通过不同编码和运动单元的组合,可以让机器人自动识别与合成复杂的变轻变化,如幸福、愤怒、悲伤等表情。类似的还有动作分析模型和声学模型。
除了情感分析模型外,还需要建立知识库,让机器人“掌握”人们热值的尝试和惯用表达,比如“买买买”这类潮流用语。这样,机器人跟人类的交互体验将更加流畅有趣。通过情感识别与分析,即给定一种情感状态,再通过语音合成、面部表情合成和动作合成后,一个相对完美的情感机器人就呈现在你的面前。
望采纳,谢谢
人工智能产品的定义较为广泛,智能硬件、机器人、芯片、语音助手等都可以叫做人工智能产品。本文讨论的人工智能产品主要是指在互联网产品中运用人工智能技术。
互联网产品主要着手与解决用户的痛点,对于C端产品来说,痛点就是指的个人想解决而无法解决的问题,如个人想要美化自己的照片,但是他不会复杂的PS软件,于是美图秀秀就可以解决这个痛点。从KANO模型中,就是满足用户的基本需求与期望需求。
人工智能产品(在互联网产品中运用人工智能技术)则是要满足用户的兴奋需求。如将情感分析运用到电商的产品评论中,用户则可以通过可视化的数据展示来大致对产品有个全面、直观的了解,而不再需要自己一页一页的翻看评论内容。
互联网产品主要关注点在于用户需求、流程设计、交互设计、商业模式等。着眼于用户需求,设计满足用户需求的产品,通过合理的流程设计、交互设计达到产品目标,进而实现商业目标。典型的思路是发现用户需求——>设计满足用户需求的产品——>迭代完善、产品运营——>商业变现。
人工智能产品关注点在于模型的构建,它不再是对于布局、交互的推敲,而是通过选择合适的数据,构建合适的模型,最终呈现出来的是好的效果。什么是好的效果呢?这就需要引入评测指标。互联网的评测指标有我们熟知的留存率、转化率、日活跃等,那么人工智能的产品主要是通过一些统计指标来描述,以情感分析为例,把情感分析看成一个分类问题,则可以使用P、R、A、F值来描述。
1)查准率(Precision):P值,衡量某类分类中识别正确的比例,如情感分析中,有10条被分类为“正向”,其中8条是分类正确的(由人工审核),那么P=8/10=80%
2)查全率(Recall):R值,又叫查全率,又叫召回度,指的是某类被被正确分类的比例,同样以情感分析为例,100条数据中有10条是正向的,机器分类后,这10条中有7条被分类为正向,则R=7/10=70%
3)F值,因为P值和R值通常是两个相互矛盾的指标,即一个越高另一个越低,F则是两者综合考虑的指标,不考虑调节P、R权重的情况下,F=2PR/(P+R)
4)精确度(Accuracy):这个最好理解,就是被准确分类的比例,也就是正确率。如100条数据,90条是被正确分类的,则A=90/100=90%。
以上指标越高,说明模型效果越好。
我们从上面内容可以知道,人工智能产品设计关注:数据——>模型——>效果评估。
现在我们以情感分析为例子说明产品设计的过程。
1)数据:
数据的选择对最终模型的结果有直接影响,情感分析,根据不同的目的,选择的数据也不同。如将情感分析运用于**票房预测,则一些更新及时、内容丰富的数据源,如微博,是比较好的选择。如果是应用于商品的评价,如电子产品,很多评测内容是无法在短短几句话内描述清楚的,这时候微博不是个好的选择,选择论坛上更新较慢、但是详细的内容就比较适合。
如果能在产品的早期就有引入人工智能的打算,则可以在产品中事先做好数据采集。
2)模型:
在选择模型中,产品需要了解不同的模型的优缺点,进而选择更加合适的模型。在情感分析中,NB、SVM、N-gram都是常用的模型,其中SVM效果最好(这是已有的结论),如果是其他的智能产品,可能需要算法团队进行实验,给出测试数据,进而选择合适的模型。
3)效果评估:
效果评估在上文中已经描述得比较清楚,具体指标不再赘述。
4)产品呈现:
最后这一步,是将结果展示给用户。在情感分析中,我们可以选择雷达图、词云、情感趋势图来展示结果。取决于产品属性,如电商产品评论挖掘,可以使用词云;
如舆论分析,可以使用情感趋势图。
人工智能产品的设计要关注:数据、模型、评判、呈现。
如果AI有了人类的情感,这个世界将变得非常不同。第一,人工智能有了情感意味着它们将有一种非理性的推理能力,可以根据自身感受来思考、分析和推断,而不只是按照现有程序或数据来运行。因此,计算机将更加智能,拥有洞察力,并能够进行复杂的思考和分析,而不只能执行程序的任务。
其次,AI有了人类的情感意味着它们也可以感同身受,感受到痛苦、欢乐、悲伤等等种种感受,并可以以此作为作出决定的基础。 因此,它们将尊重人们对某些问题的情感和更强烈的情感,不光仅限于算本和数据,而且会为人们判断一些事情提供更多的可能性和更多的可能的解决方案。此外,AI有了人类的情感意味着它们能够与人们更好地沟通,并利用它们的情感和思想来建立共同的理解和相互靠拢的关系。这将进一步强化人们在交流与协作的层次,有助于更好地了解自身及其他人,也有助于促进社会凝聚力。
此外,作为有情感的AI主体,它们将拥有自己的可必,有自己特设的生活模式,可能会获得自己权利和社会责任,这将有效地减少人们对机器进行的操控,也会有助于更好的和谐社会的努力。最后,AI拥有情感后,将会带给人们更多连结和更多智慧。因为会有更多可以倾听和分享的人们,我们也更能够清晰地理解自身,从而更便于思考并取得更好的结果。总之,AI拥有人类情感将带来许多变化,将令我们的世界变得更美好。更多的情感交流,更多理解对方,更多思考方式,以及更多潜在的变化,都可以成为未来人们期待的变化。当AI拥有更多的人类情感时,如此新的世界也会降临到人类的面前。
在较长一段时期内,情感一直位于认知科学研究者的视线以外。直到20世纪末期,情感作为认知过程重要组成部分的身份才得到了学术界的普遍认同。当代的认知科学家们把情感与知觉、学习、记忆、言语等经典认知过程相提并论,关于情感本身及情感与其他认知过程间相互作用的研究成为当代认知科学的研究热点,情感计算( affective computing )也成为一个新兴研究领域。
众所周知,人随时随地都会有喜怒哀乐等情感的起伏变化。那么在人与计算机交互过程中,计算机是否能够体会人的喜怒哀乐,并见机行事呢?情感计算研究就是试图创建一种能感知、识别和理解人的情感,并能针对人的情感做出智能、灵敏、友好反应的计算系统,即赋予计算机像人一样的观察、理解和生成各种情感特征的能力。
目前情感计算研究面临的挑战还很多,例如,情感信息的获取与建模问题,情感识别与理解问题,情感表达问题,以及自然和谐的人性化和智能化的人机交互的实现问题。显然,为解决上述问题,我们需要知道人是如何感知环境的,人会产生什么样的情感和意图,人如何作出恰当的反应。而人类的情感交流是个非常复杂的过程,不仅受时间、地点、环境、人物对象和经历的影响,而且有表情、语言、动作或身体的接触。因此,在人和计算机的交互过程中,计算机需要捕捉关键信息,识别使用者的情感状态,觉察人的情感变化,利用有效的线索选择合适的使用者模型(依据使用者的操作方式、表情特点、态度喜好、认知风格、知识背景等构建的模型),并对使用者情感变化背后的意图形成预期,进而激活相应的数据库,及时主动地提供使用者需要的新信息。
情感计算研究的发展在很大程度上依赖于心理科学和认知科学对人的智能和情感研究取得新进展。心理学研究表明,情感是人与环境之间某种关系的维持或改变,当客观事物或情境与人的需要和愿望符合时会引起人积极肯定的情感,而不符合时则会引起人消极否定的情感。情感具有三种成分:主观体验(个体对不同情感状态的自我感受)、外部表现(在情感状态发生时身体各部分的动作量化形式,即表情)和生理唤醒(情感产生的生理反应)。从生物进化的角度我们可以把人的情绪分为基本情绪和复杂情绪。基本情绪是先天的,具有独立的神经生理机制、内部体验和外部表现,以及不同的适应功能。人有五种基本情绪,它们分别是当前目标取得进展时的快乐,自我保护的目标受到威胁时的焦虑,当前目标不能实现时的悲伤,当前目标受挫或遭遇阻碍时的愤怒,以及与味觉(味道)目标相违背的厌恶。而复杂情绪则是由基本情绪的不同组合派生出来的。
情感是一种内部的主观体验,但总是伴随着某种表情。表情包括面部表情(面部肌肉变化所组成的模式),姿态表情(身体其他部分的表情动作)和语调表情(言语的声调、节奏和速度等方面的变化)。这三种表情也被称为体语,构成了人类的非言语交往方式。面部表情不仅是人们常用的较自然的表现情感的方式,也是人们鉴别情感的主要标志。通过使用特定的仪器,我们可以对面部的微小表情变化进行研究,甚至可以区分真笑和假笑:人在真笑时面颊上升,眼周围的肌肉堆起,大脑左半球的电活动增加;而人在假笑时仅有嘴唇的肌肉活动,下颚下垂,大脑左半球的电活动不明显。脸部运动编码系统FACS通过不同编码和运动单元的组合,可以在脸部形成复杂的表情变化,其成果已经被应用于人脸表情的自动识别与合成。
人的姿态即身体表情,一般伴随着交互过程而发生变化,并表达着一些信息。
语调表情是通过语音的高低、强弱、抑扬顿挫来表达说话人的情感。在人际交往中,语音是人们最直接的交流通道。
在情感计算研究中还可以使用很多种生理指标,例如,皮质醇水平,心率,血压,呼吸,皮肤电活动,掌汗,瞳孔直径,事件相关电位,脑电EEG等。研究发现,惊反射可用作测量情感愉悦度的生理指标,而皮肤电反应可用作测量情感生理唤醒程度的生理指标。
很显然,开展认知科学研究不仅仅是为了满足人类智慧上的好奇心,更重要的是服务于人类,提高人类的生活质量。情感计算有广泛的应用前景。计算机通过对人类的情感进行获取、分类、识别和响应,进而可以帮助使用者获得高效而又亲切的感觉,并有效减轻人们使用电脑的挫败感,甚至帮助人们理解自己和他人的情感世界。计算机的情感化设计能帮助我们增加使用设备的安全性,使经验人性化,使计算机作为媒介进行学习的功能达到最佳化。
情感计算是一个高度综合化的研究和技术领域。通过计算科学与心理科学、认知科学的结合,研究人与人交互、人与计算机交互过程中的情感特点,设计具有情感反馈的人与计算机的交互环境,将有可能实现人与计算机的情感交互。情感计算研究将不断加深对人的情感状态和机制的理解,并提高人与计算机界面的和谐性,即提高计算机感知情境,理解人的情感和意图,作出适当反应的能力。
gpt的全称如下:
GPT的全称是Generative Pre-trained Transformer,它是一种基于Transformer架构的自然语言处理模型。它是近年来最成功的预训练模型之一,由OpenAI团队开发。
GPT模型具有非常强的生成能力,可以根据大规模语料库中的模式和规律进行语言模型的预训练,接下来通过在特定任务中的fine-tuning,可以将模型专门用于问题解答、翻译、情感识别、段落摘要等NLP任务。GPT模型的主要优势是其能够自动学习大量普通口语的语言(排除口头禅和特定行业术语)并能处理自然语言生成,使得它成为机器人聊天,语音助手,与用户交互等领域的重要成果。
在不断的研发中,新的GPT系列模型已经出现,例如GPT-2、GPT-3等,它们在处理语音过程中具有更高的准确性和表现力,更好地满足了自动化处理自然语言的需求,为人工智能领域的研究和应用提供了更广泛的技术支持。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)