语法分析是文本挖掘关键技术对吗?

语法分析是文本挖掘关键技术对吗?,第1张

语法分析文本挖掘的关键技术之一。文本挖掘是处理和分析大量文本数据的过程,而语法分析是其中的一个重要组成部分。

语法分析的主要目的是分析文本中的语法结构和词汇,从而将文本转化为机器可读的形式。这样,文本挖掘系统就可以对文本进行进一步的分析,如语义分析、情感分析、关键词提取等。

语法分析还可以用来提取文本中的实体和关系,并将其映射到知识图谱中,以便进行更复杂的查询和分析。

总之,语法分析是文本挖掘的重要组成部分,它能够将文本转化成机器可读的形式,为文本挖掘提供基础。

一、一般处理流程

语料获取 -> 文本预处理 -> 特征工程 -> 特征选择

1、语料获取

即需要处理的数据及用于模型训练的语料。

数据源可能来自网上爬取、资料积累、语料转换、OCR转换等,格式可能比较混乱。需要将url、时间、符号等无意义内容去除,留下质量相对较高的非结构化数据。

2、文本预处理

将含杂质、无序、不标准的自然语言文本转化为规则、易处理、标准的结构化文本。

①处理标点符号

可通过正则判定、现有工具(zhon包)等方式筛选清理标点符号。

②分词

将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列的过程。

一般看来英文较容易可通过空格符号分词,中文相对复杂,参考结巴分词、盘古分词、Ansj等工具。

常见的分词算法有:基于字符串匹配的分词方法、基于理解的分词方法、基于统计的分词方法和基于规则的分词方法,每种方法下面对应许多具体的算法。

③词性标注

为自然语言文本中的每个词汇赋予一个词性的过程,如名词、动词、副词等。可以把每个单词(和它周围的一些额外的单词用于上下文)输入预先训练的词性分类模型。

常用隐马尔科夫模型、N 元模型、决策树

④stop word

英文中含大量 a、the、and,中文含大量 的、是、了、啊,这些语气词、助词没有明显的实际意义,反而容易造成识别偏差,可适当进行过滤。

⑤词形还原

偏向于英文中,单数/复数,主动/被动,现在进行时/过去时/将来时等,还原为原型。

⑥统计词频

因为一些频率过高/过低的词是无效的,对模型帮助很小,还会被当做噪声,做个词频统计用于停用词表。

⑦给单词赋予id

给每一个单词一个id,用于构建词典,并将原来的句子替换成id的表现形式

⑧依存句法分析

通过分析句子中词与词之间的依存关系,从而捕捉到词语的句法结构信息(如主谓、动宾、定中等结构关系),并使用树状结构来表示句子的句法结构信息(如主谓宾、定状补等)。

3、特征工程

做完语料预处理之后,接下来需要考虑如何把分词之后的字和词语表示成计算机能够计算的类型。

如果要计算我们至少需要把中文分词的字符串转换成数字,确切的说应该是数学中的向量。有两种常用的表示模型分别是词袋模型和词向量。

①词向量

词向量是将字、词语转换成向量矩阵的计算模型。目前为止最常用的词表示方法是 One-hot,这种方法把每个词表示为一个很长的向量。

②词袋模型

即不考虑词语原本在句子中的顺序,直接将每一个词语或者符号统一放置在一个集合(如 list),然后按照计数的方式对出现的次数进行统计。统计词频这只是最基本的方式,TF-IDF 是词袋模型的一个经典用法。

常用的表示模型有:词袋模型(Bag of Word, BOW),比如:TF-IDF 算法;词向量,比如 one-hot 算法、word2vec 算法等。

4、特征选择

在文本挖掘相关问题中,特征工程也是必不可少的。在一个实际问题中,构造好的特征向量,是要选择合适的、表达能力强的特征。

举个自然语言处理中的例子来说,我们想衡量like这个词的极性(正向情感还是负向情感)。我们可以预先挑选一些正向情感的词,比如good。然后我们算like跟good的PMI,用到点互信息PMI这个指标来衡量两个事物之间的相关性。

特征选择是一个很有挑战的过程,更多的依赖于经验和专业知识,并且有很多现成的算法来进行特征的选择。目前,常见的特征选择方法主要有 DF、 MI、 IG、 CHI、WLLR、WFO 六种。

5、模型训练

在特征向量选择好了以后,接下来要做的事情是根据应用需求来训练模型,我们使用不同的模型,传统的有监督和无监督等机器学习模型,如 KNN、SVM、Naive Bayes、决策树、GBDT、K-means 等模型;深度学习模型比如 CNN、RNN、LSTM、 Seq2Seq、FastText、TextCNN 等。这些模型在分类、聚类、神经序列、情感分析等应用中都会用到。

当选择好模型后,则进行模型训练,其中包括了模型微调等。在模型训练的过程中要注意由于在训练集上表现很好,但在测试集上表现很差的过拟合问题以及模型不能很好地拟合数据的欠拟合问题。同时,也要防止出现梯度消失和梯度爆炸问题。

6、模型评估

在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。模型的评价指标主要有:错误率、精准度、准确率、召回率、F1 值、ROC 曲线、AUC 曲线等。

7、投产上线

模型的投产上线方式主要有两种:一种是线下训练模型,然后将模型进行线上部署提供服务;另一种是在线训练模型,在线训练完成后将模型 pickle 持久化,提供对外服务。

三、NLP应用方向

1、命名实体识别

指识别自然语言文本中具有特定意义的实体,主要包括人名、地名、机构名、时间日期等。

传统机器学习算法主要有HMM和CRF,深度学习常用QRNN、LSTM,当前主流的是基于bert的NER。

2、情感分析

文本情感分析和观点挖掘(Sentiment Analysis),又称意见挖掘(Opinion Mining)是自然语言处理领域的一个重要研究方向。简单而言,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。

情感分析技术可以分为两类,一类是基于机器学习的方法,通过大量有标注、无标注的主观语料,使用统计机器学习算法,通过提取特征,进行文本情感分析。另一类是基于情感词典的方法,根据情感词典所提供的词的情感极性(正向、负向),从而进行不同粒度的(词语、短语、属性、句子、篇章)下的文本情感分析。

3、文章标签

文章标签是利用机器学习算法,对文章进行文字和语义的分析后,提取出若干个重要的词或者短语(关键短语)。关键短语是NLP基础的算法模块,有了关键短语,能为后续的搜索、推荐等更高级的应用提供有力的抓手。

适用场景:1、个性化推荐:通过对文章的标签计算,结合用户画像,精准的对用户进行个性化推荐;2、话题聚合:根据文章计算的标签,聚合相同标签的文章,便于用户对同一话题的文章进行全方位的信息阅读;3、搜索:使用中心词可以对query进行相似度计算、聚类、改写等,可以用于搜索相关性计算。

4、案件串并

①信息抽取

运用实体抽取、关系抽取,从案情中抽取关键信息,如从警情中可以抽取报警人项目、报警人电话、案发地址等信息

②实体对齐

相同的实体在不同的案情中会有不同的表述,会给串并带来困难。可针对地址、人名、组织名进行对齐处理。

③文本聚类

对于关键片段类信息,无法像实体那样对齐,需要借助文本聚类技术进行关联。

④构建图谱

将信息抽取结果存入图谱。每个警情id对应一个节点,实体、属性、关键片段作为节点,对齐的实体、同一类的文本存为同一个节点。

除了来自于从警情中抽取的信息,还可以将其他警务系统中存在的结构化数据导入(如来自户籍信息的人物关系),从而丰富图谱。

⑤图谱检索

完成以上工作,即完成了案件串并的必要基础建设,接下来通过图谱的查询功能自动完成案件的串并。首先需要设定串并的条件,案件串并的条件在警务实战中已有很多的积累,如“具有相似的作案手段”,又如“相似作案手段,嫌疑人有共同联系人”,只需要将这些条件用图谱查询语言表达出来。

面试前搜集往年面试常考题目属于使用信息检索和分析技术来解决问题。

信息检索和分析技术已经成为许多领域中不可或缺的工具,在面试前搜集往年面试常考题目时,我们需要了解这些技术的基本概念和应用。同时,人工智能技术的发展也为信息检索和分析带来了新的机遇和挑战。

1、什么是信息检索技术?

信息检索技术是指在大规模数据集合中自动地查找、筛选、排序相关信息的过程。它通常包括了关键字查询、文本预处理、索引构建、查询优化和结果排序等环节。

2、信息检索技术在哪些领域有应用?

信息检索技术已经应用到了广泛的领域中,比如搜索引擎、文本挖掘、情感分析、舆情监测、知识图谱构建等。

3、如何构建一个高效的搜索引擎?

构建高效的搜索引擎需要先进行数据抓取、清洗和存储,然后利用信息检索技术对数据进行索引构建和查询优化,最后利用机器学习算法对用户偏好进行分析和个性化推荐。

4、什么是文本挖掘?

文本挖掘是一种从非结构化或半结构化数据中发现有用信息的过程。它通常包括了文本分类、命名实体识别、主题识别、情感分析等任务。

5、如何进行文本分类?

文本分类可以使用传统的基于规则或机器学习的方法,比如朴素贝叶斯、决策树、支持向量机等算法,也可以使用深度学习模型,如卷积神经网络、循环神经网络等。

6、什么是情感分析?

情感分析是指对文本中的情感倾向进行自动化识别和分类的过程。它通常涉及到情感词典构建、特征提取、分类器训练等步骤。

7、如何应用情感分析?

情感分析可以应用到广泛的领域中,比如商品评论分析、社交媒体分析、政治舆情分析等。在这些场景中,情感分析可以帮助人们更好地理解消费者需求、维护品牌形象、精准预测选举结果等。

以新浪舆情通-政企舆情大数据监测系统为例,应用到了以下5大核心技术:

1)大数据采集、挖掘技术

网络舆情主要通过新闻、论坛、微博、公众号、博客等渠道形成和传播,网络舆情监测系统依靠强大的大数据计算能力实现了全网信息的实时收集、挖掘和智能检索,保障信息的及时性和完整性。

2)大数据处理技术

快速将数据去重、内容分类,噪音识别等,保障数据的精准度。

3)自然语言处理、图文智能分析等技术

通过词法分析、语义分析等先进技术,判断内容的情感属性,并优先展示涉及敏感的信息,让舆情监测系统在分析方式、分析对象、分析能力等方面更加“智能”,数据更加精准。

4)音视频处理技术

通过通过语音识别、视频处理等技术,将音视频信息转化为文本,实现对音视频信息的分析、分类与检索。对字幕和弹幕的提取和处理能更进一步了解用户的关注点以及情绪。

5)OCR 技术

通过 OCR 技术将中的信息识别为文本,实现对信息的分类与检索。用户只需要设置监测内容的关键词方案,即可实时获得相关的全网内容信息。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/648795.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-07
下一篇2023-07-07

发表评论

登录后才能评论

评论列表(0条)

    保存