人工智能在人体动作识别方面有很多应用,课堂行为分析就是其中之一。课堂行为分析的主要目的是通过对学生和教师在课堂上的行为进行实时监测和分析,以了解他们的参与度、互动情况和教学效果,从而为教育者提供有关课堂管理和教学方法的反馈。以下是实现基于AI的课堂行为分析的一些建议:
数据收集与预处理:首先,需要收集课堂上学生和教师的行为数据。这可以通过在教室内安装摄像头、麦克风等设备来实现。
人体姿态估计:通过计算机视觉技术,例如深度学习和卷积神经网络(CNN),可以对收集到的视频数据进行人体姿态估计,从而识别学生和教师在课堂上的姿势和动作。
动作识别:对人体姿态进行分析后,可以识别出具体的行为,如举手、站立、坐下等。这可以通过训练神经网络实现,将姿态数据作为输入,输出对应的行为类别。
情感分析:除了动作识别外,还可以通过语音识别和自然语言处理(NLP)技术对课堂上的对话进行情感分析,以评估学生的情绪和教师的教学方式。
行为模式分析:通过对课堂行为数据进行时序分析,可以挖掘出学生和教师的行为模式,从而发现教学过程中可能存在的问题,如学生注意力不集中、教师互动不足等。
可视化与反馈:将分析结果进行可视化展示,为教育者提供直观的课堂行为报告。教师可以根据这些反馈调整教学方法和课堂管理策略,以提高教学质量和学生参与度。
实现这一系统需要多领域的技术结合,包括计算机视觉、自然语言处理、数据挖掘和机器学习。同时,为保障学生和教师的隐私,数据收集和分析过程需符合相关法规和道德规范。
大数据处理分析能力在21世纪至关重要。使用正确的大数据工具是企业提高自身优势、战胜竞争对手的必要条件。下面让我们来了解一下最常用的30种大数据工具,紧跟大数据发展脚步。
第一部分、数据提取工具
Octoparse是一种简单直观的网络爬虫,可以从网站上直接提取数据,不需要编写代码。无论你是初学者、大数据专家、还是企业管理层,都能通过其企业级的服务满足需求。为了方便操作,Octoparse还添加了涵盖30多个网站的“任务模板 (Task Templates)”,操作简单易上手。用户无需任务配置即可提取数据。随着你对Octoparse的操作更加熟悉,你还可以使用其“向导模式 (Wizard Mode)”来构建爬虫。除此之外,大数据专家们可以使用“高级模式 (Advanced Mode)”在数分钟内提取企业批量数据。你还可以设置“自动云提取 (Scheduled Cloud Extraction)”,以便实时获取动态数据,保持跟踪记录。
02
Content Graber
Content Graber是比较进阶的网络爬网软件,具有可用于开发、测试和生产服务器的编程操作环境。用户可以使用C#或VBNET调试或编写脚本来构建爬虫。Content Graber还允许你在爬虫的基础上添加第三方扩展软件。凭借全面的功能,Content Grabber对于具有基本技术知识的用户来说功能极其强大。
Importio是基于网页的数据提取工具。Importio于2016年首次启动,现已将其业务模式从B2C转变为B2B。2019年,Importio并购了Connotate,成为了一个网络数据集成平台 (Web Data Integration Platform)。凭借广泛的网络数据服务,Importio成为了商业分析的绝佳选择。
Parsehub是基于网页的数据爬虫。它可以使用AJax,JavaScript等等从网站上提取动态的的数据。Parsehub提供为期一周的免费试用,供用户体验其功能。
Mozenda是网络数据抓取软件,提供企业级数据抓取服务。它既可以从云端也可以从内部软件中提取可伸缩的数据。
第二部分、开源数据工具
01Knime
KNIME是一个分析平台,可以帮助你分析企业数据,发现潜在的趋势价值,在市场中发挥更大潜能。KNIME提供Eclipse平台以及其他用于数据挖掘和机器学习的外部扩展。KNIME为数据分析师提供了2,000多个模块。
02OpenRefine(过去的Google Refine)是处理杂乱数据的强有力工具,可用于清理、转换、链接数据集。借助其分组功能,用户可以轻松地对数据进行规范化。
03R-Programming
R大家都不陌生,是用于统计计算和绘制图形的免费软件编程语言和软件环境。R语言在数据挖掘中很流行,常用于开发统计软件和数据分析。近年来,由于其使用方便、功能强大,得到了很大普及。
04RapidMiner
与KNIME相似,RapidMiner通过可视化程序进行操作,能够进行分析、建模等等操作。它通过开源平台、机器学习和模型部署来提高数据分析效率。统一的数据科学平台可加快从数据准备到实施的数据分析流程,极大地提高了效率。
第三部分、数据可视化工具
01
Datawrapper
Microsoft PowerBI既提供本地服务又提供云服务。它最初是作为Excel附加组件引入的,后来因其强大的功能而广受欢迎。截至目前,它已被视为数据分析领域的领头羊,并且可以提供数据可视化和商业智能功能,使用户能够以较低的成本轻松创建美观的报告或BI仪表板。
02
Solver
Solver专用于企业绩效管理 (CPM) 数据可视化。其BI360软件既可用于云端又可用于本地部署,该软件侧重于财务报告、预算、仪表板和数据仓库的四个关键分析领域。
03
Qlik
Qlik是一种自助式数据分析和可视化工具。可视化的仪表板可帮助公司有效地“理解”其业务绩效。
04
Tableau Public

Tableau是一种交互式数据可视化工具。与大多数需要脚本的可视化工具不同,Tableau可帮助新手克服最初的困难并动手实践。拖放功能使数据分析变得简单。除此之外,Tableau还提供了入门工具包和丰富的培训资源来帮助用户创建报告。
05
Google Fusion Tables
Fusion Table是Google提供的数据管理平台。你可以使用它来收集,可视化和共享数据。Fusion Table与电子表格类似,但功能更强大、更专业。你可以通过添加CSV,KML和电子表格中的数据集与同事进行协作。你还可以发布数据作品并将其嵌入到其他网络媒体资源中。
06
Infogram
Infogram提供了超过35种交互式图表和500多种地图,帮助你进行数据可视化。多种多样的图表(包括柱形图,条形图,饼形图和文字云等等)一定会使你的听众印象深刻。
第四部分、情感分析工具
01
HubSpot’s ServiceHub
HubSpot具有客户反馈工具,可以收集客户反馈和评论,然后使用自然语言处理 (NLP) 分析数据以确定积极意图或消极意图,最终通过仪表板上的图形和图表将结果可视化。你还可以将HubSpot’s ServiceHub连接到CRM系统,将调查结果与特定联系人联系起来。这样,你可以识别不满意的客户,改善服务,以增加客户保留率。
02
Semantria
Semantria是一款从各种社交媒体收集帖子、推文和评论的工具。Semantria使用自然语言处理来解析文本并分析客户的态度。通过Semantria,公司可以了解客户对于产品或服务的感受,并提出更好的方案来改善产品或服务。
03
Trackur
Trackur的社交媒体监控工具可跟踪提到某一用户的不同来源。它会浏览大量网页,包括视频、博客、论坛和图像,以搜索相关消息。用户可以利用这一功能维护公司声誉,或是了解客户对品牌和产品的评价。
04
SAS Sentiment Analysis

SAS Sentiment Analysis是一款功能全面的软件。网页文本分析中最具挑战性的部分是拼写错误。SAS可以轻松校对并进行聚类分析。通过基于规则的自然语言处理,SAS可以有效地对消息进行分级和分类。
05
Hootsuit Insight
Hootsuit Insight可以分析评论、帖子、论坛、新闻站点以及超过50种语言的上千万种其他来源。除此之外,它还可以按性别和位置对数据进行分类,使用户可以制定针对特定群体的战略营销计划。你还可以访问实时数据并检查在线对话。
第五部分、数据库
01
Oracle

毫无疑问,Oracle是开源数据库中的佼佼者,功能丰富,支持不同平台的集成,是企业的最佳选择。并且,Oracle可以在AWS中轻松设置,是关系型数据库的可靠选择。除此之外,Oracle集成信用卡等私人数据的高安全性是其他软件难以匹敌的。
02
PostgreSQL
PostgreSQL超越了Oracle、MySQL和Microsoft SQL Server,成为第四大最受欢迎的数据库。凭借其坚如磐石的稳定性,它可以处理大量数据。
03
Airtable
Airtable是基于云端的数据库软件,善于捕获和显示数据表中的信息。Airtable提供一系列入门模板,例如:潜在客户管理、错误跟踪和申请人跟踪等,使用户可以轻松进行操作。
04
MariaDB
MariaDB是一个免费的开源数据库,用于数据存储、插入、修改和检索。此外,Maria提供强大的社区支持,用户可以在这里分享信息和知识。
05
Improvado
Improvado是一种供营销人员使用自动化仪表板和报告将所有数据实时地显示在一个地方的工具。作为营销和分析领导者,如果你希望在一个地方查看所有营销平台收集的数据,那么Inprovado对你再合适不过了。你可以选择在Improvado仪表板中查看数据,也可以将其通过管道传输到你选择的数据仓库或可视化工具中,例如Tableau、Looker、Excel等。品牌,代理商和大学往往都喜欢使用Improvado,以大大节省人工报告时间和营销花费。
自然语言处理(NLP)是机器学习重要分支之一,主要应用于篇章理解、文本摘要、情感分析、知识图谱、文本翻译等领域。而NLP应用首先是对文本进行分词,当前中文分词器有Ansj、paoding、盘古分词等多种,而最基础的分词器应该属于jieba分词器(比较见下图)。
下面将分别应用R和python对jieba分词器在中文分词、词性标注和关键词提取领域的应用进行比较。
R实现
通过函数worker()来初始化分词引擎,使用segment()进行分词。有四种分词模式:最大概率法(MP)、隐马尔科夫模型(HMM)、混合模型(Mix)及索引模型(query),默认为混合模型。具体可查看help(worker)
#installpackages('jiebaR')library(jiebaR)mixseg <- worker()segment( "这是一段测试文本" , mixseg ) #或者用以下操作mixseg['这是一段测试文本']mixseg <= "这是一段测试文本"
python实现
python中需安装jieba库,运用jiebacut实现分词。cut_all参数为分词类型,默认为精确模式。
import jiebaseg_list = jiebacut(u"这是一段测试文本",cut_all = False)print("Full mode: "+ ","join(seg_list)) #默认精确模式
无论是R还是python都为utf—8编码。
R实现
可以使用<=tagger 或者tag 来进行分词和词性标注,词性标注使用混合模型模型分词,标注采用和 ictclas 兼容的标记法。
words = "我爱北京天安门"tagger = worker("tag") #开启词性标注启发器tagger <= words # r v ns ns # "我" "爱" "北京" "天安门"
python实现
#词性标注import jiebaposseg as psegwords = psegcut("我爱北京天安门")for word,flag in words: print('%s, %s' %(word,flag))
R实现
R关键词提取使用逆向文件频率(IDF)文本语料库,通过worker参数“keywords”开启关键词提取启发器,topn参数为关键词的个数。
keys = worker("keywords",topn = 5, idf = IDFPATH)keys <= "会议邀请到美国密歇根大学(University of Michigan, Ann Arbor)环境健康科学系副教授奚传武博士作题为“Multibarrier approach for safe drinking waterin the US : Why it failed in Flint”的学术讲座,介绍美国密歇根Flint市饮用水污染事故的发生发展和处置等方面内容。讲座后各相关单位同志与奚传武教授就生活饮用水在线监测系统、美国水污染事件的处置方式、生活饮用水老旧管网改造、如何有效减少消毒副产物以及美国涉水产品和二次供水单位的监管模式等问题进行了探讨和交流。本次交流会是我市生活饮用水卫生管理工作洽商机制运行以来的又一次新尝试,也为我市卫生计生综合监督部门探索生活饮用水卫生安全管理模式及突发水污染事件的应对措施开拓了眼界和思路。"#结果:# 488677 234784 221402 20326 185354 # "饮用水" "Flint" "卫生" "水污染" "生活"
python实现
python实现关键词提取可运用TF-IDF方法和TextRank方法。allowPOS参数为限定范围词性类型。
#关键词提取import jiebaanalysecontent = u'会议邀请到美国密歇根大学(University of Michigan, Ann Arbor)环境健康科学系副教授奚传武博士作题为“Multibarrier approach for safe drinking waterin the US : Why it failed in Flint”的学术讲座,介绍美国密歇根Flint市饮用水污染事故的发生发展和处置等方面内容。讲座后各相关单位同志与奚传武教授就生活饮用水在线监测系统、美国水污染事件的处置方式、生活饮用水老旧管网改造、如何有效减少消毒副产物以及美国涉水产品和二次供水单位的监管模式等问题进行了探讨和交流。本次交流会是我市生活饮用水卫生管理工作洽商机制运行以来的又一次新尝试,也为我市卫生计生综合监督部门探索生活饮用水卫生安全管理模式及突发水污染事件的应对措施开拓了眼界和思路。'#基于TF-IDFkeywords = jiebaanalyseextract_tags(content,topK = 5,withWeight = True,allowPOS = ('n','nr','ns'))for item in keywords: print item[0],item[1] #基于TF-IDF结果# 饮用水 0448327672795# Flint 0219353532163# 卫生 0203120821773# 水污染 0186477211628# 生活 0170049997544
#基于TextRankkeywords = jiebaanalysetextrank(content,topK = 5,withWeight = True,allowPOS = ('n','nr','ns'))for item in keywords: print item[0],item[1] #基于TextRank结果:# 饮用水 10# 美国 0570564785973# 奚传武 0510738424509# 单位 0472841889334# 讲座 0443770732053
写在文后
自然语言处理(NLP)在数据分析领域有其特殊的应用,在R中除了jiebaR包,中文分词Rwordseg包也非常常用。一般的文本挖掘步骤包括:文本获取(主要用网络爬取)——文本处理(分词、词性标注、删除停用词等)——文本分析(主题模型、情感分析)——分析可视化(词云、知识图谱等)。本文是自然语言处理的第一篇,后续将分别总结下应用深度学习Word2vec进行词嵌入以及主题模型、情感分析的常用NLP方法。
参考资料
Introduction · jiebaR 中文分词 https://qinwenfengcom/jiebaR/segmenthtml
知乎:文本分析利用jiebaR进行中文分词 https://zhuanlanzhihucom/p/24882048
雪晴数据网:全栈数据工程师养成攻略 http://wwwxueqingtv/course/73
搜狗实验室,词性标注应用 http://wwwsogoucom/labs/webservice/
R文本挖掘中文分词Rwordseg http://blog163com/zzz216@yeah/blog/static/162554684201412895732586/
大数据研究常用软件工具与应用场景
如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。
工欲善其事,必先利其器。众多新的软件分析工具作为深入大数据洞察研究的重要助力, 也成为数据科学家所必须掌握的知识技能。
然而,现实情况的复杂性决定了并不存在解决一切问题的终极工具。实际研究过程中,需要根据实际情况灵活选择最合适的工具(甚至多种工具组合使用),才能更好的完成研究探索。
为此,本文针对研究人员(非技术人员)的实际情况,介绍当前大数据研究涉及的一些主要工具软件(因为相关软件众多,只介绍常用的),并进一步阐述其应用特点和适合的场景,以便于研究人员能有的放矢的学习和使用。
基础篇传统分析/商业统计
Excel、SPSS、SAS 这三者对于研究人员而言并不陌生。
Excel 作为电子表格软件,适合简单统计(分组/求和等)需求,由于其方便好用,功能也能满足很多场景需要,所以实际成为研究人员最常用的软件工具。其缺点在于功能单一,且可处理数据规模小(这一点让很多研究人员尤为头疼)。这两年Excel在大数据方面(如地理可视化和网络关系分析)上也作出了一些增强,但应用能力有限。
SPSS(SPSS Statistics)和SAS作为商业统计软件,提供研究常用的经典统计分析(如回归、方差、因子、多变量分析等)处理。
SPSS 轻量、易于使用,但功能相对较少,适合常规基本统计分析
SAS 功能丰富而强大(包括绘图能力),且支持编程扩展其分析能力,适合复杂与高要求的统计性分析。
上述三个软件在面对大数据环境出现了各种不适,具体不再赘述。但这并不代表其没有使用价值。如果使用传统研究方法论分析大数据时,海量原始数据资源经过前期处理(如降维和统计汇总等)得到的中间研究结果,就很适合使用它们进行进一步研究。
数据挖掘
数据挖掘作为大数据应用的重要领域,在传统统计分析基础上,更强调提供机器学习的方法,关注高维空间下复杂数据关联关系和推演能力。代表是SPSS Modeler(注意不是SPSS Statistics,其前身为Clementine)
SPSS Modeler 的统计功能相对有限, 主要是提供面向商业挖掘的机器学习算法(决策树、神经元网络、分类、聚类和预测等)的实现。同时,其数据预处理和结果辅助分析方面也相当方便,这一点尤其适合商业环境下的快速挖掘。不过就处理能力而言,实际感觉难以应对亿级以上的数据规模。
另一个商业软件 Matlab 也能提供大量数据挖掘的算法,但其特性更关注科学与工程计算领域。而著名的开源数据挖掘软件Weka,功能较少,且数据预处理和结果分析也比较麻烦,更适合学术界或有数据预处理能力的使用者。
中级篇1、通用大数据可视化分析
近两年来出现了许多面向大数据、具备可视化能力的分析工具,在商业研究领域,TableAU无疑是卓越代表。
TableAU 的优势主要在于支持多种大数据源/格式,众多的可视化图表类型,加上拖拽式的使用方式,上手快,非常适合研究员使用,能够涵盖大部分分析研究的场景。不过要注意,其并不能提供经典统计和机器学习算法支持, 因此其可以替代Excel, 但不能代替统计和数据挖掘软件。另外,就实际处理速度而言,感觉面对较大数据(实例超过3000万记录)时,并没有官方介绍的那么迅速。
2 、关系分析
关系分析是大数据环境下的一个新的分析热点(比如信息传播图、社交关系网等),其本质计算的是点之间的关联关系。相关工具中,适合数据研究人员的是一些可视化的轻量桌面型工具,最常用的是Gephi。
Gephi 是免费软件,擅长解决图网络分析的很多需求,其插件众多,功能强且易用。我们经常看到的各种社交关系/传播谱图, 很多都是基于其力导向图(Force directed graph)功能生成。但由于其由java编写,限制了处理性能(感觉处理超过10万节点/边时常陷入假死),如分析百万级节点(如微博热点传播路径)关系时,需先做平滑和剪枝处理。 而要处理更大规模(如亿级以上)的关系网络(如社交网络关系)数据,则需要专门的图关系数据库(如GraphLab/GraphX)来支撑了,其技术要求较高,此处不再介绍。
3、时空数据分析
当前很多软件(包括TableAU)都提供了时空数据的可视化分析功能。但就使用感受来看,其大都只适合较小规模(万级)的可视化展示分析,很少支持不同粒度的快速聚合探索。
如果要分析千万级以上的时空数据,比如新浪微博上亿用户发文的时间与地理分布(从省到街道多级粒度的探索)时,推荐使用 NanoCubes(http://wwwnanocubesnet/)。该开源软件可在日常的办公电脑上提供对亿级时空数据的快速展示和多级实时钻取探索分析。下图是对芝加哥犯罪时间地点的分析,网站有更多的实时分析的演示例子
4、文本/非结构化分析
基于自然语言处理(NLP)的文本分析,在非结构化内容(如互联网/社交媒体/电商评论)大数据的分析方面(甚至调研开放题结果分析)有重要用途。其应用处理涉及分词、特征抽取、情感分析、多主题模型等众多内容。
由于实现难度与领域差异,当前市面上只有一些开源函数包或者云API(如BosonNLP)提供一些基础处理功能,尚未看到适合商业研究分析中文文本的集成化工具软件(如果有谁知道烦请通知我)。在这种情况下,各商业公司(如HCR)主要依靠内部技术实力自主研发适合业务所需的分析功能。
高级篇前面介绍的各种大数据分析工具,可应对的数据都在亿级以下,也以结构化数据为主。当实际面临以下要求: 亿级以上/半实时性处理/非标准化复杂需求 ,通常就需要借助编程(甚至借助于Hadoop/Spark等分布式计算框架)来完成相关的分析。 如果能掌握相关的编程语言能力,那研究员的分析能力将如虎添翼。
当前适合大数据处理的编程语言,包括:
R语言——最适合统计研究背景的人员学习,具有丰富的统计分析功能库以及可视化绘图函数可以直接调用。通过Hadoop-R更可支持处理百亿级别的数据。 相比SAS,其计算能力更强,可解决更复杂更大数据规模的问题。
Python语言——最大的优势是在文本处理以及大数据量处理场景,且易于开发。在相关分析领域,Python代替R的势头越来越明显。
Java语言——通用性编程语言,能力最全面,拥有最多的开源大数据处理资源(统计、机器学习、NLP等等)直接使用。也得到所有分布式计算框架(Hadoop/Spark)的支持。
前面的内容介绍了面向大数据研究的不同工具软件/语言的特点和适用场景。 这些工具能够极大增强研究员在大数据环境下的分析能力,但更重要的是研究员要发挥自身对业务的深入理解,从数据结果中洞察发现有深度的结果,这才是最有价值的。
以上是小编为大家分享的关于大数据研究常用软件工具与应用场景的相关内容,更多信息可以关注环球青藤分享更多干货
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)