数据分析工具类软件,好用的有哪些

数据分析工具类软件,好用的有哪些,第1张

分析软件有Excel、SPSS、MATLAB、 SAS、Finereport等 其中Excel我就不多说了相信大家都懂。 SPSS是世界上最早采用图形菜单驱动界面的统计软件它将几乎所有的功能都以统一、规范的界面展现出来。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足大部分的工作需要。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境使用的。 其优点如下:

一、高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;

二、 具有完备的图形处理功能,实现计算结果和编程的可视化;

三、友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;

四、功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。 但是这款软件的使用难度较大,非专业人士不推荐使用。

SAS是把数据存取,管理,分析和展现有机地融为一体。其功能非常强大统计方法齐,全,新。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SAS系统基本上可以分为四大部分:SAS数据库部分;SAS分析核心;SAS开发呈现工具;SAS对分布处理模式的支持及其数据仓库设计。不过这款软件的使用需要一定的专业知识,非专业人士不推荐使用。 Finereport类EXCEL设计模式,EXCEL+绑定数据列”形式持多SHEET和跨SHEET计算,完美兼容EXCEL公式,用户可以所见即所得的设计出任意复杂的表样,轻松实现中国式复杂报表。它的功能也是非常的丰富,比如说 数据支持与整合、聚合报表、数据地图、Flash打印、交互分析等

什么是Cha Fan接口?

Cha Fan是一种用于中文文本相似度计算的开放式接口。Cha Fan接口使用了自然语言处理(Natural Language Processing,NLP)技术,以及先进的机器学习算法,能够对中文文本进行数据挖掘和信息提取。通过Cha Fan接口,用户可以快速、准确地比较两个中文文本的相似度,并且可以获得文本的实体信息、文本摘要、情感分析等多种信息。

Cha Fan的主要功能

Cha Fan接口主要针对中文文本的处理和分析,具有以下主要功能:

1相似度计算

通过Cha Fan接口,用户可以快速比较两个中文文本的相似度。相似度计算是Cha Fan接口的核心功能,能够通过计算两个文本的相似度分值来判断它们在意义上的相似程度。相似度计算可以被广泛应用于搜索引擎、信息检索、文本分类、文本聚类等领域。

2实体识别

Cha Fan接口可以自动识别文本中出现的人名、地名、机构名等实体,并将其标注出来。实体识别是Cha Fan接口的一个重要功能,通过实体识别可以方便用户获取文本中的实际信息。实体识别技术可以被广泛应用于舆情分析、热点事件监测、广告推荐等领域。

3情感分析

Cha Fan接口可以对一段中文文本进行情感分析,以判断其中所表达的情感是正面的、负面的还是中性的。情感分析是指通过对文本进行分析,来判断文本所表达的情感倾向。情感分析可以广泛应用于舆情分析、品牌营销、疾病监测等领域。

结论

总之,Cha Fan接口是一种强大的中文文本分析工具,它可以帮助用户快速、准确地处理中文文本,并从中提取有用的信息。随着中文互联网的普及和中文文本数据量的增加,Cha Fan接口将会越来越受到广大用户的青睐。

大数据处理分析能力在21世纪至关重要。使用正确的大数据工具是企业提高自身优势、战胜竞争对手的必要条件。下面让我们来了解一下最常用的30种大数据工具,紧跟大数据发展脚步。

第一部分、数据提取工具

Octoparse是一种简单直观的网络爬虫,可以从网站上直接提取数据,不需要编写代码。无论你是初学者、大数据专家、还是企业管理层,都能通过其企业级的服务满足需求。为了方便操作,Octoparse还添加了涵盖30多个网站的“任务模板 (Task Templates)”,操作简单易上手。用户无需任务配置即可提取数据。随着你对Octoparse的操作更加熟悉,你还可以使用其“向导模式 (Wizard Mode)”来构建爬虫。除此之外,大数据专家们可以使用“高级模式 (Advanced Mode)”在数分钟内提取企业批量数据。你还可以设置“自动云提取 (Scheduled Cloud Extraction)”,以便实时获取动态数据,保持跟踪记录。

02

Content Graber

Content Graber是比较进阶的网络爬网软件,具有可用于开发、测试和生产服务器的编程操作环境。用户可以使用C#或VBNET调试或编写脚本来构建爬虫。Content Graber还允许你在爬虫的基础上添加第三方扩展软件。凭借全面的功能,Content Grabber对于具有基本技术知识的用户来说功能极其强大。

Importio是基于网页的数据提取工具。Importio于2016年首次启动,现已将其业务模式从B2C转变为B2B。2019年,Importio并购了Connotate,成为了一个网络数据集成平台 (Web Data Integration Platform)。凭借广泛的网络数据服务,Importio成为了商业分析的绝佳选择。

Parsehub是基于网页的数据爬虫。它可以使用AJax,JavaScript等等从网站上提取动态的的数据。Parsehub提供为期一周的免费试用,供用户体验其功能。

Mozenda是网络数据抓取软件,提供企业级数据抓取服务。它既可以从云端也可以从内部软件中提取可伸缩的数据。

第二部分、开源数据工具

01Knime

KNIME是一个分析平台,可以帮助你分析企业数据,发现潜在的趋势价值,在市场中发挥更大潜能。KNIME提供Eclipse平台以及其他用于数据挖掘和机器学习的外部扩展。KNIME为数据分析师提供了2,000多个模块。

02OpenRefine(过去的Google Refine)是处理杂乱数据的强有力工具,可用于清理、转换、链接数据集。借助其分组功能,用户可以轻松地对数据进行规范化。

03R-Programming

R大家都不陌生,是用于统计计算和绘制图形的免费软件编程语言和软件环境。R语言在数据挖掘中很流行,常用于开发统计软件和数据分析。近年来,由于其使用方便、功能强大,得到了很大普及。

04RapidMiner

与KNIME相似,RapidMiner通过可视化程序进行操作,能够进行分析、建模等等操作。它通过开源平台、机器学习和模型部署来提高数据分析效率。统一的数据科学平台可加快从数据准备到实施的数据分析流程,极大地提高了效率。

第三部分、数据可视化工具

01

Datawrapper

Microsoft PowerBI既提供本地服务又提供云服务。它最初是作为Excel附加组件引入的,后来因其强大的功能而广受欢迎。截至目前,它已被视为数据分析领域的领头羊,并且可以提供数据可视化和商业智能功能,使用户能够以较低的成本轻松创建美观的报告或BI仪表板。

02

Solver

Solver专用于企业绩效管理 (CPM) 数据可视化。其BI360软件既可用于云端又可用于本地部署,该软件侧重于财务报告、预算、仪表板和数据仓库的四个关键分析领域。

03

Qlik

Qlik是一种自助式数据分析和可视化工具。可视化的仪表板可帮助公司有效地“理解”其业务绩效。

04

Tableau Public

Tableau是一种交互式数据可视化工具。与大多数需要脚本的可视化工具不同,Tableau可帮助新手克服最初的困难并动手实践。拖放功能使数据分析变得简单。除此之外,Tableau还提供了入门工具包和丰富的培训资源来帮助用户创建报告。

05

Google Fusion Tables

Fusion Table是Google提供的数据管理平台。你可以使用它来收集,可视化和共享数据。Fusion Table与电子表格类似,但功能更强大、更专业。你可以通过添加CSV,KML和电子表格中的数据集与同事进行协作。你还可以发布数据作品并将其嵌入到其他网络媒体资源中。

06

Infogram

Infogram提供了超过35种交互式图表和500多种地图,帮助你进行数据可视化。多种多样的图表(包括柱形图,条形图,饼形图和文字云等等)一定会使你的听众印象深刻。

第四部分、情感分析工具

01

HubSpot’s ServiceHub

HubSpot具有客户反馈工具,可以收集客户反馈和评论,然后使用自然语言处理 (NLP) 分析数据以确定积极意图或消极意图,最终通过仪表板上的图形和图表将结果可视化。你还可以将HubSpot’s ServiceHub连接到CRM系统,将调查结果与特定联系人联系起来。这样,你可以识别不满意的客户,改善服务,以增加客户保留率。

02

Semantria

Semantria是一款从各种社交媒体收集帖子、推文和评论的工具。Semantria使用自然语言处理来解析文本并分析客户的态度。通过Semantria,公司可以了解客户对于产品或服务的感受,并提出更好的方案来改善产品或服务。

03

Trackur

Trackur的社交媒体监控工具可跟踪提到某一用户的不同来源。它会浏览大量网页,包括视频、博客、论坛和图像,以搜索相关消息。用户可以利用这一功能维护公司声誉,或是了解客户对品牌和产品的评价。

04

SAS Sentiment Analysis

SAS Sentiment Analysis是一款功能全面的软件。网页文本分析中最具挑战性的部分是拼写错误。SAS可以轻松校对并进行聚类分析。通过基于规则的自然语言处理,SAS可以有效地对消息进行分级和分类。

05

Hootsuit Insight

Hootsuit Insight可以分析评论、帖子、论坛、新闻站点以及超过50种语言的上千万种其他来源。除此之外,它还可以按性别和位置对数据进行分类,使用户可以制定针对特定群体的战略营销计划。你还可以访问实时数据并检查在线对话。

第五部分、数据库

01

Oracle

毫无疑问,Oracle是开源数据库中的佼佼者,功能丰富,支持不同平台的集成,是企业的最佳选择。并且,Oracle可以在AWS中轻松设置,是关系型数据库的可靠选择。除此之外,Oracle集成信用卡等私人数据的高安全性是其他软件难以匹敌的。

02

PostgreSQL

PostgreSQL超越了Oracle、MySQL和Microsoft SQL Server,成为第四大最受欢迎的数据库。凭借其坚如磐石的稳定性,它可以处理大量数据。

03

Airtable

Airtable是基于云端的数据库软件,善于捕获和显示数据表中的信息。Airtable提供一系列入门模板,例如:潜在客户管理、错误跟踪和申请人跟踪等,使用户可以轻松进行操作。

04

MariaDB

MariaDB是一个免费的开源数据库,用于数据存储、插入、修改和检索。此外,Maria提供强大的社区支持,用户可以在这里分享信息和知识。

05

Improvado

Improvado是一种供营销人员使用自动化仪表板和报告将所有数据实时地显示在一个地方的工具。作为营销和分析领导者,如果你希望在一个地方查看所有营销平台收集的数据,那么Inprovado对你再合适不过了。你可以选择在Improvado仪表板中查看数据,也可以将其通过管道传输到你选择的数据仓库或可视化工具中,例如Tableau、Looker、Excel等。品牌,代理商和大学往往都喜欢使用Improvado,以大大节省人工报告时间和营销花费。

本文可以学习到以下内容:

数据及源码地址: https://giteecom/myrensheng/data_analysis

小凡,用户对耳机商品的评论信息,你有没有什么好的办法分析一下?经理来向小凡请教问题。

嗯,小凡想了一会儿

我想到了两种分析方法:

经理听完,甚是欣慰,便让小凡着手分析用户的评论数据。

数据解释:

小凡使用百度飞浆(paddlepaddle)模型库中的情感分析模型,将评论数据(content)转化为情感类别积极1,消极0

一、window10+anaconda3的安装命令:

二、安装预训练模型应用工具 PaddleHub

可以看到,大约 60% 的用户给出好评

用户的评论内容多集中在配置、音质等主题上

这里使用百度飞浆的LAC分词模型

分析结束后,小凡总结出以下结论:

小凡将结论汇报给经理,和经理一起想出一个可行的方案解决目前存在的问题。

大数据舆情分析工具有:识微商情监测系统、鹰眼速读网系统、新浪舆情通。

1、识微商情监测系统

拥有自主研发的网络爬虫技术,在对全网舆情进行实时监测的同时,能够自动对全网舆情进行分析,包括舆情溯源分析、舆情传播转载媒体类型分析、舆情演变发展趋势分析、舆情情感分析等,舆情分析图表以及舆情分析简报等同步生成。

2、鹰眼速读网系统

一款专业面向各级政府的的大数据舆情分析工具软件,能够提供对全网话题、全网热点、重大事件、民生热点等的分析,在全网范围内分析挖掘舆情的传播声量、传播来源、传播媒体类型、转载情况以及情感态度,为用户“速读全网”舆情,了解传播路径,把握发展态势服务。

3、新浪舆情通

以中文互联网大数据及社交媒体官方数据为基础,提供舆情信息发现、热度监测、预警到详细分析、全程监控舆情信息路径等服务,能够对全网事件、社交媒体事件、竞品等进行分析。

三大舆情大数据公司:

1、湖南识微科技有限公司

旗下代表产品识微商情监测系统,基于大数据服务云——蚁工厂(Antfact),专注于为企业提供互联网信息挖掘分析服务,拥有一支专业技术团队,确保后续的产品售后服务。

2、湖南蚁坊软件股份有限公司

旗下代表产品鹰眼速读网系统,专业从事互联网大数据分析,具有日处理10亿多条实时数据、毫秒级的实时数据处理、PB级的批量数据处理以及3万QPS查询处理能力。

3、上海蜜度信息技术有限公司

旗下代表产品新浪舆情通,公司专注于舆情和大数据分析,在互联网信息采集、大数据处理和移动互联网领域拥有核心技术和知识产权,建立了完整的运营队伍,有着完善的内部作业流程和管理规范。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/726127.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-08
下一篇2023-07-08

发表评论

登录后才能评论

评论列表(0条)

    保存