3231 技术原理
聚类分析又称群分析(CA),它是研究(对样品或指标)分类问题的一种多元统计方法。首先认为所研究的样品或指标(变量)之间存在着程度不同的相似性(亲疏关系),根据一批样品的多个观测指标具体找出一些能够度量样品或指标之间相似程度的统计量,以这些统计量为划分类型的依据,把一些相似程度较大的样品(或指标)聚合为一类,把另一些彼此之间相似程度较大的样品(或指标)聚合为另一类,根据分类对象不同,可分为对样品分类的Q型聚类分析和对指标分类的R型聚类分析两种类型。聚类分析可用SPSS软件直接实现,在水质时空变异、水化学类型分区中得到广泛的应用。聚类分析的功能是建立一种分类方法,它将一批样品或变量,按照它们在性质上的亲疏、相似程度进行分类,聚类分析的内容十分丰富,按其聚类的方法可分为以下几种:系统聚类法、调优法、最优分割法、模糊聚类法等。
聚类分析根据分类对象的不同又分为R型和Q型两大类,R型是对变量(指标)进行分类,Q型是对样品进行分类。为了对样品(或变量)进行分类,就必须研究它们之间的关系,描述样品间亲疏相似程度的统计量很多,目前用得最多的是距离和相似系数。距离方法主要有:闵科夫斯基(Minkowski)距离、绝对值距离、欧氏距离等。
样品间的亲疏程度除了用距离描述外,也可用相似系数来表示,相似系数的构造主要有以下两种方法:对于定量变量,我们通常采用的相似系数有xi和xj之间的夹角余弦和相关系数。
3232 方法流程
目前使用最多的聚类方法是系统聚类法,其基本思想是:先将n个样品各自看成一类,共有n个类,然后计算类与类间的距离,选择距离最小的两类合并成一个新类,使总类数减少为n-1,接着再计算这n-1类两两间的距离,从中找出距离最近的两类合并,总类数又减少一个,剩下n-2个类,照此下去,每合并一次,减少一类,直至所有样品都合并成一类为止。在并类的过程当中,可以根据聚类的先后以及并类时两类间的距离,画出能直观反映各样品间相近和疏远程度的聚类图(也称谱系图),根据这张聚类图有可能找到最合适的分类方案。系统聚类法的聚类原则决定于样品间的距离(或相似系数)及类间距离的定义,类间距离的不同定义就产生了不同的系统聚类分析方法,类间距离的定义方法主要有最短距离法、最长距离法、中间距离法、重心法、类平均法。在合理地选定(或定义)样品间的距离以后,再适当定义类间的距离,就确定了一种聚类规则,之后按照系统聚类法的一般步骤加以聚类(图34)。
图34 聚类分析技术流程图
3233 适用范围
聚类分析能够将变量及样本按照相应的规则进行分类,在大样本多参数数据降维方面具有相对的优势,尤其是对于在时间、空间上具有复杂变化的数据,聚类分析能够根据变量和样本的相关性和相似性,将数据有效地划分为不同的类别,并通过树状图反映出样品随距离或变量间相似性变化的情况,为查清变量和样品之间关系提供了依据,也为查明污染来源奠定了基础。
聚类分析,亦称群分析或点分析,是研究多要素事物分类问题的数量方法。其基本原理是,根据样本自身的属性,用数学方法按照某些相似性或差异性指标,定量地确定样本之间的亲疏关系,并按亲疏关系的程度对样本进行聚类(徐建华,1994)。
聚类分析方法,应用在地下水中,是在各种指标和质量级别标准约束条件下,通过样品的各项指标监测值综合聚类,以判别地下水质量的级别。常见的聚类分析方法有系统聚类法、模糊聚类法和灰色聚类法等。
(一)系统聚类法
系统聚类法的主要步骤有:数据标准化、相似性统计量计算和聚类。
1数据标准化
在聚类分析中,聚类要素的选择是十分重要的,它直接影响分类结果的准确性和可靠性。在地下水质量研究中,被聚类的对象常常是多个要素构成的。不同要素的数据差异可能很大,这会对分类结果产生影响。因此当分类要素的对象确定之后,在进行聚类分析之前,首先对聚类要素进行数据标准化处理。
假设把所考虑的水质分析点(G)作为聚类对象(有m个),用i表示(i=1,2,…,m);把影响水质的主要因素作为聚类指标(有n个),用j表示(j=1,2,…,n),它们所对应的要素数据可用表4-3给出。在聚类分析中,聚类要素的数据标准化的方法较多,一般采用标准差法和极差法。
表4-3 聚类对象与要素数据
对于第j个变量进行标准化,就是将xij变换为x′ij。
(1)总和标准化
区域地下水功能可持续性评价理论与方法研究
这种标准化方法所得的新数据x′ij满足
区域地下水功能可持续性评价理论与方法研究
(2)标准差标准化
区域地下水功能可持续性评价理论与方法研究
式中: ;
由这种标准化方法所得的新数据x′ij,各要素的平均值为0,标准差为1,即有
区域地下水功能可持续性评价理论与方法研究
(3)极差标准化
区域地下水功能可持续性评价理论与方法研究
经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在[0,1]闭区间内。
上述式中:xij为j变量实测值;xj为j变量的样本平均值;sj为样本标准差。
2相似性统计量
系统聚类法要求给出一个能反映样品间相似程度的一个数字指标,需要找到能量度相似关系的统计量,这是系统聚类法的关键。
相似性统计量一般使用距离系数和相似系数进行计算。距离系数是把样品看成多维空间的点,用点间的距离来表示研究对象的紧密关系,距离越小,表明关系越密切。相似系数值表明样本和变量间的相似程度。
(1)距离系数
常采用欧几里得绝对距离,其中i样品与j样品距离dij为
区域地下水功能可持续性评价理论与方法研究
dij越小,表示i,j样品越相似。
(2)相似系数
常见的相似系数有夹角余弦和相关系数,计算公式为
1)夹角余弦
区域地下水功能可持续性评价理论与方法研究
在式(4-20)中:-1≤cosθij≤1。
2)相关系数
区域地下水功能可持续性评价理论与方法研究
式中:dij为i样品与j样品的欧几里得距离;cosθij为i样品与j样品的相似系数;rij为i样品与j样品的相关系数;xik为i样品第k个因子的实测值或标准化值;xjk为j样品第k个因子的实测值或标准化值; 为i样品第k个因子的均值, ; 为j样品第k个因子的均值, ;n为样品的数目;k为因子(变量)数。
3聚类
在选定相似性统计量之后,根据计算结果构成距离或相似性系数矩阵(n×n),然后通过一定的方法把n个样品组合成不同等级的分类单位,对类进行并类,即将最相似的样品归为一组,然后,把次相似的样品归为分类级别较高的组。聚类主要有直接聚类法、距离聚类法(最短距离聚类法、最远距离聚类法)。
(1)直接聚类法
直接聚类法,是根据距离或相似系数矩阵的结构一次并类得到结果,是一种简便的聚类方法。它首先把各个分类对象单独视为一类,然后根据距离最小或相似系数最大的原则,依次选出一对分类对象,并成新类。如果一对分类对象正好属于已归的两类,则把这两类并为一类。每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次把全部分类对象归为一类,最后根据归并的先后顺序作出聚类分析谱系图。
(2)距离聚类法
距离聚类法包括最短距离聚类法和最远距离聚类法。最短距离聚类法具有空间压缩性,而最远距离聚类法具有空间扩张性。这两种聚类方法关于类之间的距离计算可以用一个统一的公式表示:
区域地下水功能可持续性评价理论与方法研究
当γ=-05时,式(4-22)计算类之间的距离最短;当γ=05时,式(4-22)计算类之间的距离最远。
最短、最远距离法,是在原来的n×n距离矩阵的非对角元素中找出dpq=min(dij)或dpq=max(dij),把分类对象Gp和Gq归并为一新类Gr,然后按计算公式:
dpq=min(dpk,dqk)(k≠ p,q) (4-23)
dpq=max(dpk,dqk)(k≠ p,q) (4-24)
计算原来各类与新类之间的距离,这样就得到一个新的(n-1)阶的距离矩阵;再从新的距离矩阵中选出最小或最大的dij,把Gi和Gj归并成新类;再计算各类与新类的距离,直至各分类对象被归为一类为止。最后综合整个聚类过程,作出最短距离或最远距离聚类谱系图(图4-1)。
图4-1 地下水质量评价的聚类谱系图
(二)模糊聚类法
模糊聚类法是普通聚类方法的一种拓展,它是在聚类方法中引入模糊概念形成的。该方法评价地下水质量的主要步骤,包括数据标准化、标定和聚类3个方面(付雁鹏等,1987)。
1数据标准化
在进行聚类过程中,由于所研究的各个变量绝对值不一样,所以直接使用原始数据进行计算就会突出绝对值大的变量,而降低绝对值小的变量作用,特别是在进行模糊聚类分析中,模糊运算要求必须将数据压缩在[0,1]之间。因此,模糊聚类计算的首要工作是解决数据标准化问题。数据标准化的方法见系统聚类分析法。
2标定与聚类
所谓标定就是计算出被分类对象间的相似系数rij,从而确定论域集U上的模糊相似关系Rij。相似系数的求取,与系统聚类分析法相同。
聚类就是在已建立的模糊关系矩阵Rij上,给出不同的置信水平λ(λ∈[0,1])进行截取,进而得到不同的分类。
聚类方法较多,主要有基于模糊等价关系基础上的聚类与基于最大树的聚类。
(1)模糊等价关系方法
所谓模糊等价关系,是指具有自反性(rii=1)、对称性(rij=rji)与传递性(R·R⊆R)的模糊关系。
基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系R是论域集U与自己的直积U×U上的一个模糊子集,因此可以对R进行分解,当用λ-水平对R作截集时,截得的U×U的普通子集Rλ就是U上的一个普通等价关系,也就是得到了关于U中被分类对象元素的一种。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图(徐建华,1994)。此类分析方法的具体步骤如下。
第一步:模糊相似关系的建立,即计算各分类对象之间相似性统计量。
第二步:将模糊相似关系R改造为模糊等价关系R′。模糊等价关系要求满足自反性、对称性与传递性。一般而言,模糊相似关系满足自反性和对称性,但不满足传递性。因此,需要采用传递闭合的性质将模糊相似关系改造为模糊等价关系。改造的方法是将相似关系R自乘,即
R2=R·R
R4=R2·R2
︙
这样计算下去,直到:R2k=Rk·Rk=Rk,则R′=Rk便是一个模糊等价关系。
第三步:在不同的截集水平下进行聚类。
(2)最大树聚类方法
基于最大树的模糊聚类分析方法的基本思路是:最大树是一个不包含回路的连通图(图4-2);选取λ水平对树枝进行截取,砍去权重低于λ 的枝,形成几个孤立的子树,每一棵子树就是一个类的集合。此类分析方法的具体步骤如下。
图4-2 最大聚类支撑树图
第一步:计算分类对象之间的模糊相似性统计量rij,构建最大树。
以所有被分类的对象为顶点,当两点间rij不等于0时,两点间可以用树干连接,这种连接是按rij从大到小的顺序依次进行的,从而构成最大树。
第二步:由最大树进行聚类分析。
选择某一λ值作截集,将树中小于λ值的树干砍断,使相连的结点构成一类,即子树,当λ由1到0时,所得到的分类由细变粗,各结点所代表的分类对象逐渐归并,从而形成一个动态聚类谱系图。
在聚类方法中,模糊聚类法比普通聚类法有较大的突破,简化了运算过程,使聚类法更易于掌握。
(三)灰色聚类法
灰色聚类是根据不同聚类指标所拥有的白化数,按几个灰类将聚类对象进行归纳,以判断该聚类对象属于哪一类。
灰色聚类应用于地下水水质评价中,是把所考虑的水质分析点作为聚类对象,用i表示(i=1,2,…,n);把影响水质的主要因素作为聚类指标,用j表示(j=1,2,…,m),把水质级别作为聚类灰数(灰类),用k表示(k=1,2,3)即一级、二级、三级3个灰类(罗定贵等,1995)。
灰色聚类的主要步骤:确定聚类白化数、确定各灰色白化函数fjk、求标定聚类权重ηjk、求聚类系数和按最大原则确定聚类对象分类。
1确定聚类白化数
当各灰类白化数在数量上相差悬殊时,为保证各指标间的可比性与等效性,必须进行白化数的无量纲化处理。即给出第i个聚类对象中第j个聚类指标所拥有的白化数,i=1,2,…,n;j=1,2,…,m。
2确定各灰色白化函数
建立满足各指标、级别区间为最大白化函数值(等于1),偏离此区间愈远,白化函数愈小(趋于0)的功效函数fij(x)。根据监测值Cki,可在图上(图4-3)解析出相应的白化函数值fjk(Cik),j=1,2,…,m;k=1,2,3。
3求标定聚类权重
根据式(4-25),计算得出聚类权重ηjk的矩阵(n×m)。
区域地下水功能可持续性评价理论与方法研究
式中:ηjk为第j个指标对第k个灰类的权重;λjk为白化函数的阈值(根据标准浓度而定)。
图4-3 白化函数图
注:图4-3白化函数f(x)∈[0,1],具有下述特点:①平顶部分,表示该量的最佳程度。这部分的值为最佳值,即系数(权)为1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函数是单调变化的,左边部分f(x)=L(x),单调增,x∈(x1,x2],称为白化的左支函数;右边部分f(x)=R(x),单调减,x∈[x3,x4),称为白化的右支函数。③白化函数左右支函数对称。④白化函数,为了简便,一般是直线。⑤白化函数的起点和终点,一般来说是人为凭经验确定。
4求聚类系数
σik=∑fjk(dij)ηjk (4-26)
式中:σik为第i个聚类对象属于第k个灰类的系数,i=1,2,…,n;k=1,2,3。
5按最大原则确定聚类对象分类
由σik构造聚类向量矩阵,行向量最大者,确定k样品属于j级对应的级别。
用灰色聚类方法进行地下水水质评价,能最大限度地避免因人为因素而造成的“失真、失效”现象。
聚类方法计算相对复杂,但是计算结果与地下水质量标准级别对应性明显,能够较全面反映地下水质量状况,也是较高层次定量研究地下水质量的重要方法。
通过问卷获得数据 通常来说,数据采集有两种方式,第一种是利用网络问卷调研的方式,获得用户心理和行为习惯层面的定量数据;第二种是在产品页面设置模块、、文字等埋点的方式,收集页面数据
2
调研前工作准备 首先要明确产品定位、产品规划及架构,对产品有全面的了解;然后,再明确调研目的,研究目的是问卷调研的核心,决定了调研的方向、研究结果如何应用等接着,需要根据研究目的,确定调研的内容和目标人群,调研内容越细化越好,目标人群越清晰越好
3
如何设计问卷 在问卷设计中,题目的措辞、逻辑关系等,会影响用户对问题的理解和做答,从而直接决定了研究
在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。
大数据的价值体现在以下几个方面:
① 对大量消费者提供产品或服务的企业可以利用大数据进行精准营销。
② 做小而美模式的中小微企业可以利用大数据做服务转型。
③ 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
设计目标决定衡量的数据指标,从设计目标出发,推导相关可量化指标。
还是以IM “购房意愿单”为例,结合该项目,我们来看一下运用gsm模型为此功能搭建数据指标框架。
Goal 设计目标
前面提到说设计目标决定衡量的数据指标,所以第一步要明确我们设计的目标是什么,或者说是为了解决什么问题。那么,购房意愿单的提出,有两个主要目标:提高C端用户发起会话的意愿度;提高 B端经纪人回复意愿度。
Sign 现象信号
确定了目标,我们再假设,如果能够达到这些设计目标,用户会产生怎样的态度和行为。假设购房意愿单真是切中了用户的需求,他们会有怎样的反应呢?
你好,
简单地说,分类(categorization
or
classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。
简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。
区别是,分类是事先定义好类别
,类别数不变
。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。
聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成
。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。
分类的目的是学会一个分类函数或分类模型(也常常称作分类器
),该模型能把数据库中的数据项映射到给定类别中的某一个类中。
要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,,vn;
c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。
聚类(clustering)是指根据“物以类聚”原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:k-均值聚类算法、k-中心点聚类算法、clarans、
birch、clique、dbscan等。
希望回答对您有帮助
1 数据预处理,
2 为衡量数据点间的相似度定义一个距离函数,
3 聚类或分组,
4 评估输出。
数据预处理包括选择数量,类型和特征的标度,它依靠特征选择和特征抽取,特征选择选择重要的特征,特征抽取把输入的特征转化为一个新的显著特征,它们经常被用来获取一个合适的特征集来为避免“维数灾”进行聚类,数据预处理还包括将孤立点移出数据,孤立点是不依附于一般数据行为或模型的数据,因此孤立点经常会导致有偏差的聚类结果,因此为了得到正确的聚类,我们必须将它们剔除。
既然相类似性是定义一个类的基础,那么不同数据之间在同一个特征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,通常通过定义在特征空间的距离度量来评估不同对象的相异性,很多距离度都应用在一些不同的领域,一个简单的距离度量,如Euclidean距离,经常被用作反映不同数据间的相异性,一些有关相似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概念相似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的相似性。
将数据对象分到不同的类中是一个很重要的步骤,数据基于不同的方法被分到不同的类中,划分方法和层次方法是聚类分析的两个主要方法,划分方法一般从初始划分和最优化一个聚类标准开始。Crisp Clustering,它的每一个数据都属于单独的类;Fuzzy Clustering,它的每个数据可能在任何一个类中,Crisp Clustering和Fuzzy Clusterin是划分方法的两个主要技术,划分方法聚类是基于某个标准产生一个嵌套的划分系列,它可以度量不同类之间的相似性或一个类的可分离性用来合并和分裂类,其他的聚类方法还包括基于密度的聚类,基于模型的聚类,基于网格的聚类。
评估聚类结果的质量是另一个重要的阶段,聚类是一个无管理的程序,也没有客观的标准来评价聚类结果,它是通过一个类有效索引来评价,一般来说,几何性质,包括类间的分离和类内部的耦合,一般都用来评价聚类结果的质量,类有效索引在决定类的数目时经常扮演了一个重要角色,类有效索引的最佳值被期望从真实的类数目中获取,一个通常的决定类数目的方法是选择一个特定的类有效索引的最佳值,这个索引能否真实的得出类的数目是判断该索引是否有效的标准,很多已经存在的标准对于相互分离的类数据集合都能得出很好的结果,但是对于复杂的数据集,却通常行不通,例如,对于交叠类的集合。
1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。
2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。
例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。
3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。
扩展资料:
聚类效果的检验:
一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。
二、使用判别分析方法进行判断,将SPSS生成的聚类类别变量作为因变量(Y),而将聚类变量作为自变量(X)进行判别分析,判别分析具体分析聚类变量与类别之间投影关系情况,如果研究人员对聚类分析效果非常在乎,可以使用判别分析进行分析。
三、聚类分析方法的详细过程说明,描述清楚聚类分析的科学使用过程,科学的聚类分析方法使用即是良好结果的前提保障。
是、聚类分析后每个类别样本数量是否均匀,如果聚类结果显示为三个类别,有一个类别样本量非常少,比如低于30,此时很可能说明聚类效果较差。针对聚类效果的判断,研究者主要是结合专业知识判断,即聚类类别是否可以进行有效命名。
—聚类分析
信息的分类(classification)是信息处理的重要组成部分。事实上,它是人们对信息最自然而然的处理。信息分类将信息或数据有序地聚合在一起,有助于人们对事物的全面和深入了解。根据处理对象的不同,信息分类可以分为结构化数据分类和文本数据分类两种。
聚类(clustering)是一种特殊的分类,与分类分析法不同,聚类分析是在预先不知道欲划定类的情况下(如,没有预定的分类表、没有预定的类目),根据信息相似度原则进行信息集聚的一种方法。聚类的目的是根据最大化类内的相似性、最小化类问的相似性这一原则合理的划分数据集合,并用显式或隐式的方法描述不同的类别。
聚类与分类分析主要是根据事物的特征对其进行聚类或分类,即所谓物以类聚,以期从中发现规律和典型模式。
分类和聚类都是对目标进行空间划分,划分的标准是类内差别最小而类间差别最大。分类和聚类的区别在于分类事先知道类别数和各类的典型特征,而聚类则事先不知道。
参考资料:
苏新宁等著 数据挖掘理论与技术 科学技术文献出版社, 2003
王英杰等编著 多维动态地学信息可视化 科学出版社, 2003
另外你还可以参考:
梁静国编著 决策支持系统与决策知识发现 哈尔滨工程大学出版社, 2007
http://bbsmatwavcom/viewthreadphptid=376038
http://wwwblogjavanet/Jack2007/archive/2008/04/17/193651html
SPSS聚类分析:系统聚类分析
一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
二、聚类方法(分析-分类-系统聚类-方法)
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groupslinkage:组间平均距离法。系统默认选项。合并两类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后,合并后的类中的所有项之间的平均距离最小。◎Nearestneighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两类之间的距离。◎Centroidclustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Medianclustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclideandistance:欧氏距离。◎SquaredEuclideandistance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearsonconelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
21、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
22、计数。可用的选项有卡方测量和phi平方测量。
23、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
3、聚类成员。显示在合并聚类的一个或多个阶段中,每个个案被分配所属的聚类。可用的选项有单个解和一定范围的解。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)