季和言灵哪个好?答案是季和更好。
季和是一款由腾讯公司开发的语音输入法,拥有较高的准确率和优秀的用户体验。与此相比,言灵是一款由百度公司开发的语音输入法,在准确率和用户体验上略逊于季和。
季和之所以更好,是因为其采用了先进的语音识别技术和深度学习算法,可以更好地识别用户的语音输入,同时还提供了更多的实用功能和定制化选项,比如语音翻译、语音搜索、语音打字等。季和还支持多种语言输入,使得用户可以更加方便地使用语音输入法进行跨语言交流。
对于用户而言,使用季和可以提高输入效率,减少手指疲劳和输入错误率,同时也可以轻松应对各种输入场景,比如开车、健身、洗碗等。
总之,季和是一款功能强大、使用方便、体验优秀的语音输入法,相比之下,言灵稍显逊色。如果你正在寻找一款好用的语音输入法,季和是一个值得推荐的选择。
自然语言处理(NLP),广义上来讲包括对各种形式的自然语言的处理,即既包括文本,也包括语音。不过,因为对语音的处理涉及信号处理,跟文本处理的感觉不太一样,所以常常把语音单独拿出来说。这样,狭义的 NLP 就单指对文本的处理了。对文本和语音的「处理」,也是一个很广的概念。对文本的处理(即 NLP)包括 parsing、信息提取、情感识别、翻译、生成等等;对语音的处理包括语音识别、说话人识别、情感识别、语种识别、语音合成、语音转换、语音分离、语音增强等等。自然语言处理和语音处理中的各种任务,都要用到机器学习的方法。可以认为这二者是机器学习的应用领域。一般说「研究机器学习」,可以指研究机器学习的方法与理论本身,也可以指研究机器学习的应用。无论从事自然语言处理、语音处理、机器学习中的哪一个领域,都要会编程。但是醉翁之意不在酒,这些领域中的编程更多地是利用已有的算法和模块实现自己的目的,而不是从头去实现算法。所以 ACM(主要锻炼高效算法的实现)、并行结构之类的知识都不是所有人都必需的,而是要看你做的具体任务。另外,这些领域都需要线性代数、微积分、概率论这几种基础数学知识。做自然语言处理和语音处理都还需要少量的语言学知识;做语音处理还需要少量信号处理知识。
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算
四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
ai面试是真人面试。
解释分析:ai面试是真人面试,只不过AI面试和真人视频面试结合,实现全流程AI化,通过领先的AI技术实现拟人化面试、千人千面、AI面试内容跨媒体分析等更智能化的功能。
同时它可以与招聘系统对接,覆盖人才获取、简历筛选、测评、面试、评价、录用、入职管理全流程,将招聘全流程强关联和交互,实现招聘流程自动化向智能化转变,更好地实现降本增效、人才精准匹配与评估,代表产品e成科技“e面通”。
观察候选人形象与表情:视频分析与理解。
真人面试官在面试时,会对搜集到的信息进行汇总,构建候选人画像,结合岗位认知,判断是否录用候选人。AI面试做出同样的行为,需要视频分析和理解能力。
AI面试通过录制视频进行交互,对视频中的语音和视觉信息进行抽取,通过不同维度信息为判断候选人提供支持:通过对候选人行为和人脸检测,可确保候选人面试真实性。
通过分析候选人的语音与人脸信息,可以判别普通话、表达能力和形象等额外信息;通过情感计算技术分析候选人的微表情和声音变化,可以进一步了解候选人情绪变化,为候选人评价提供进一步支持。
人工智能的研究方向已经被分成几个子领域,研究人员希望一个人工智能系统应该具有某些特定能力,以下将这些能力列出并说明。 早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用概率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。
对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的存储器或是运算时间。寻找更有效的算法是优先的人工智能研究项目。
人类解决问题的模式通常是用最快捷,直观的判断,而不是有意识的,一步一步的推导,早期人工智能研究通常使用逐步推导的方式。人工智能研究已经于这种“次表征性的”解决问题方法取得进展:实体化AGENT研究强调感知运动的重要性。神经网络研究试图以模拟人类和动物的大脑结构重现这种技能。 AN ONTOLOGY REPRESENTS KNOWLEDGE AS A SET OF CONCEPTS WITHIN A DOMAIN AND THE RELATIONSHIPS BETWEEN THOSE CONCEPTS
主条目:知识表示和常识知识库 主条目:机器学习
机械学习的主要目的是为了从使用者和输入数据等处获得知识,从而可以帮助解决更多问题,减少错误,提高解决问题的效率。对于人工智能来说,机械学习从一开始就很重要。1956年,在最初的达特茅斯夏季会议上,雷蒙德索洛莫诺夫写了一篇关于不监视的概率性机械学习:一个归纳推理的机械。 主条目:机器感知、计算机视觉和语音识别
机器感知 是指能够使用传感器所输入的资料(如照相机,麦克风,声纳以及其他的特殊传感器)然后推断世界的状态。计算机视觉能够分析影像输入。另外还有语音识别 、人脸辨识和物体辨识。 主条目:情感计算
KISMET, 一个具有表情等社交能力的机器人
情感和社交技能对于一个智能AGENT是很重要的。 首先,通过了解他们的动机和情感状态,代理人能够预测别人的行动(这涉及要素 博弈论、决策理论以及能够塑造人的情感和情绪感知能力检测)。此外,为了良好的人机互动,智慧代理人也需要表现出情绪来。至少它必须出现礼貌地和人类打交道。至少,它本身应该有正常的情绪。 主条目:计算机创造力
一个人工智能的子领域,代表了理论(从哲学和心理学的角度)和实际(通过特定的实现产生的系统的输出是可以考虑的创意,或系统识别和评估创造力)所定义的创造力。 相关领域研究的包括了人工直觉和人工想像。 (1)人工智能对自然科学的影响。在需要使用数学计算机工具解决问题的学科,AI带来的帮助不言而喻。更重要的是,AI反过来有助于人类最终认识自身智能的形成。
(2)人工智能对经济的影响。专家系统更深入各行各业,带来巨大的宏观效益。AI也促进了计算机工业网络工业的发展。但同时,也带来了劳务就业问题。由于AI在科技和工程中的应用,能够代替人类进行各种技术工作和脑力劳动,会造成社会结构的剧烈变化。
(3)人工智能对社会的影响。AI也为人类文化生活提供了新的模式。现有的游戏将逐步发展为更高智能的交互式文化娱乐手段,今天,游戏中的人工智能应用已经深入到各大游戏制造商的开发中。 伴随着人工智能和智能机器人的发展,不得不讨论是人工智能本身就是超前研究,需要用未来的眼光开展现代的科研,因此很可能触及伦理底线。作为科学研究可能涉及到的敏感问题,需要针对可能产生的冲突及早预防,而不是等到问题矛盾到了不可解决的时候才去想办法化解。
NLP 是什么?
NLP 是计算机科学领域与 人工智能 领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的学科。NLP 由两个主要的技术领域构成:自然语言理解和自然语言生成。
自然语言理解方向,主要目标是帮助机器更好理解人的语言,包括基础的词法、句法等语义理解,以及需求、篇章、情感层面的高层理解。
自然语言生成方向,主要目标是帮助机器生成人能够理解的语言,比如文本生成、自动文摘等。
NLP 技术基于大数据、知识图谱、 机器学习 、语言学等技术和资源,并可以形成机器翻译、深度问答、对话系统的具体应用系统,进而服务于各类实际业务和产品。
NLP在金融方面
金融行业因其与数据的高度相关性,成为人工智能最先应用的行业之一,而NLP与知识图谱作为人工智能技术的重要研究方向与组成部分,正在快速进入金融领域,并日益成为智能金融的基石。舆情分析舆情主要指民众对社会各种具体事物的情绪、意见、价值判断和愿望等。
事件(Event ):在特定时间、特定地点发生的事情。主题(Topic):也称为话题,指一个种子事件或活动以及与它直接相关的事件和活动。专题(Subject):涵盖多个类似的具体事件或根本不涉及任何具体事件。需要说明的是,国内新闻网站新浪、搜狐等所定义的“专题”概念大多数等同于我们的“主题”概念。热点:也可称为热点主题。热点和主题的概念比较接近,但有所区别。
1 词干提取
什么是词干提取?词干提取是将词语去除变化或衍生形式,转换为词干或原型形式的过程。词干提取的目标是将相关词语还原为同样的词干,哪怕词干并非词典的词目。
2 词形还原
什么是词形还原? 词形还原是将一组词语还原为词源或词典的词目形式的过程。还原过程考虑到了POS问题,即词语在句中的语义,词语对相邻语句的语义等。
3 词向量化什么是词向量化?词向量化是用一组实数构成的向量代表自然语言的叫法。这种技术非常实用,因为电脑无法处理自然语言。词向量化可以捕捉到自然语言和实数间的本质关系。通过词向量化,一个词语或者一段短语可以用一个定维的向量表示,例如向量的长度可以为100。
4 词性标注
什么是词性标注?简单来说,词性标注是对句子中的词语标注为名字、动词、形容词、副词等的过程。
5 命名实体消歧
什么是命名实体消岐?命名实体消岐是对句子中的提到的实体识别的过程。例如,对句子“Apple earned a revenue of 200 Billion USD in 2016”,命名实体消岐会推断出句子中的Apple是苹果公司而不是指一种水果。一般来说,命名实体要求有一个实体知识库,能够将句子中提到的实体和知识库联系起来。
6 命名实体识别
体识别是识别一个句子中有特定意义的实体并将其区分为人名,机构名,日期,地名,时间等类别的任务。
7 情感分析
什么是情感分析?情感分析是一种广泛的主观分析,它使用自然语言处理技术来识别客户评论的语义情感,语句表达的情绪正负面以及通过语音分析或书面文字判断其表达的情感等等。
8 语义文本相似度
什么是语义文本相似度分析?语义文本相似度分析是对两段文本的意义和本质之间的相似度进行分析的过程。注意,相似性与相关性是不同的。
9语言识别
什么是语言识别?语言识别指的是将不同语言的文本区分出来。其利用语言的统计和语法属性来执行此任务。语言识别也可以被认为是文本分类的特殊情况。
10 文本摘要
什么是文本摘要?文本摘要是通过识别文本的重点并使用这些要点创建摘要来缩短文本的过程。文本摘要的目的是在不改变文本含义的前提下最大限度地缩短文本。
11评论观点抽取
自动分析评论关注点和评论观点,并输出评论观点标签及评论观点极性。目前支持 13 类产品用户评论的观点抽取,包括美食、酒店、汽车、景点等,可帮助商家进行产品分析,辅助用户进行消费决策。
11DNN 语言模型
语言模型是通过计算给定词组成的句子的概率,从而判断所组成的句子是否符合客观语言表达习惯。在机器翻译、拼写纠错、语音识别、问答系统、词性标注、句法分析和信息检索等系统中都有广泛应用。
12依存句法分析
利用句子中词与词之间的依存关系来表示词语的句法结构信息 (如主谓、动宾、定中等结构关系),并用树状结构来表示整句的的结构 (如主谓宾、定状补等)。
1、NLTK
一种流行的自然语言处理库、自带语料库、具有分类,分词等很多功能,国外使用者居多,类似中文的 jieba 处理库
2、文本处理流程
大致将文本处理流程分为以下几个步骤:
Normalization
Tokenization
Stop words
Part-of-speech Tagging
Named Entity Recognition
Stemming and Lemmatization
下面是各个流程的具体介绍
Normalization
第一步通常要做就是Normalization。在英文中,所有句子第一个单词的首字母一般是大写,有的单词也会全部字母都大写用于表示强调和区分风格,这样更易于人类理解表达的意思。
Tokenization
Token是"符号"的高级表达, 一般值具有某种意义,无法再拆分的符号。在英文自然语言处理中,Tokens通常是单独的词,因此Tokenization就是将每个句子拆分为一系列的词。
Stop Word
Stop Word 是无含义的词,例如’is’/‘our’/‘the’/‘in’/'at’等。它们不会给句子增加太多含义,单停止词是频率非常多的词。 为了减少我们要处理的词汇量,从而降低后续程序的复杂度,需要清除停止词。
Named Entity
Named Entity 一般是名词短语,又来指代某些特定对象、人、或地点 可以使用 ne_chunk()方法标注文本中的命名实体。在进行这一步前,必须先进行 Tokenization 并进行 PoS Tagging。
Stemming and Lemmatization
为了进一步简化文本数据,我们可以将词的不同变化和变形标准化。Stemming 提取是将词还原成词干或词根的过程。
3、Word2vec
Word2vec是一种有效创建词嵌入的方法,它自2013年以来就一直存在。但除了作为词嵌入的方法之外,它的一些概念已经被证明可以有效地创建推荐引擎和理解时序数据。在商业的、非语言的任务中。
### 四、NLP前沿研究方向与算法
1、MultiBERT
2、XLNet
3、bert 模型
BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。
BERT提出之后,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是近年来自残差网络最优突破性的一项技术了。BERT的主要特点以下几点:
使用了Transformer作为算法的主要框架,Trabsformer能更彻底的捕捉语句中的双向关系;
使用了Mask Language Model(MLM)和 Next Sentence Prediction(NSP) 的多任务训练目标;
使用更强大的机器训练更大规模的数据,使BERT的结果达到了全新的高度,并且Google开源了BERT模型,用户可以直接使用BERT作为Word2Vec的转换矩阵并高效的将其应用到自己的任务中。
BERT的本质上是通过在海量的语料的基础上运行自监督学习方法为单词学习一个好的特征表示,所谓自监督学习是指在没有人工标注的数据上运行的监督学习。在以后特定的NLP任务中,我们可以直接使用BERT的特征表示作为该任务的词嵌入特征。所以BERT提供的是一个供其它任务迁移学习的模型,该模型可以根据任务微调或者固定之后作为特征提取器。
模型结构: 由于模型的构成元素Transformer已经解析过,就不多说了,BERT模型的结构如下图最左:
对比OpenAI GPT(Generative pre-trained transformer),BERT是双向的Transformer block连接;就像单向rnn和双向rnn的区别,直觉上来讲效果会好一些。
优点: BERT是截至2018年10月的最新state of the art模型,通过预训练和精调横扫了11项NLP任务,这首先就是最大的优点了。而且它还用的是Transformer,也就是相对rnn更加高效、能捕捉更长距离的依赖。对比起之前的预训练模型,它捕捉到的是真正意义上的bidirectional context信息。
缺点: MLM预训练时的mask问题
[MASK]标记在实际预测中不会出现,训练时用过多[MASK]影响模型表现
每个batch只有15%的token被预测,所以BERT收敛得比left-to-right模型要慢(它们会预测每个token)
BERT火得一塌糊涂不是没有原因的:
使用Transformer的结构将已经走向瓶颈期的Word2Vec带向了一个新的方向,并再一次炒火了《Attention is All you Need》这篇论文;
11个NLP任务的精度大幅提升足以震惊整个深度学习领域;
无私的开源了多种语言的源码和模型,具有非常高的商业价值。
迁移学习又一次胜利,而且这次是在NLP领域的大胜,狂胜。
BERT算法还有很大的优化空间,例如我们在Transformer中讲的如何让模型有捕捉Token序列关系的能力,而不是简单依靠位置嵌入。BERT的训练在目前的计算资源下很难完成,论文中说的训练需要在64块TPU芯片上训练4天完成,而一块TPU的速度约是目前主流GPU的7-8倍。
以下四个人工智能的应用领域中,与其他三个不同的是()。
A图像识别与分类
B医学影像分析
C语音识别
D人脸识别与情感计算
正确答案:C
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)