如何写一个浪漫的求婚现场的故事?

如何写一个浪漫的求婚现场的故事?,第1张

结婚,是人生中可以想见最美好的事情之一,婚礼,是美好乐章开始重要的仪式。

我喜欢婚礼上温馨浪漫的场面,热闹喜庆的气氛,能够有幸见证新人一生中最最重要的时刻,喜悦幸福感染着现场每一个人。盼望一对新人一生一世永结同心,百年好合,真正像婚礼上说的执子之手,与子偕老

正月十三出席老同学女儿的婚礼。在西安工作“七仙女”同学群,群里有九个人,在这一天聚齐了。我们相约,以后不管谁的孩子结婚,无论在哪里,尽量不缺席,刚好姐妹们也可相聚。

每次参加婚礼,我总会想起增广贤文里一句:百世修得同船渡,千世修得共枕眠。是啊,恋爱容易,婚姻不易。茫茫人海,相遇是缘,找到情投意合的伴侣,走向婚姻的殿堂,多么美好而不易!

婚礼仪式开始前夕,我们谈笑合影。不知谁说了一句:想当年咱结婚,今天娃结婚,不老不由人啊!

回想三十年前,我们结婚时的情景,历历在目,大家感慨万千,你一句我一句

当年,我们从周边区县农村扎根西安城内,刚参加工作不久,除了两个人一双手,没房没钱几乎一无所有。结婚时不是租住民房,就是挤在单位宿舍。七仙女中最活泼的惠惠,“婚车”是房东的三轮车,十几个同学吃一顿饭,就算把婚结了。她的婚礼时间和我只差一天,很遗憾我们彼此没能参加对方的婚礼。宁宁参加我的婚礼,公交坐错了车,找不到地方无法联系

一晃,三十年过去了……

三十年来,从农村走向城市的“七仙女”,努力工作,勤奋学习,脚踏实地,吃苦耐劳,白手起家,工作生活蒸蒸日上,家庭和谐美满幸福。

都说幸福是奋斗出来的,奋斗不仅靠勤奋智慧更离不开勇气胆识。 七仙女中惠惠如今成了“富婆”,公司做的风生水起,财富积累我们望尘莫及。雯雯转到金属行业一个全新领域,上得了厅堂下得了厨房,其他人没有离开所学专业,大都从事与财务相关的工作,虽然简单平淡也知足常乐。

经营一个家庭,也像财务管理,离不开会计处理的基本原则,认真、务实、稳健、谨慎、重要性,只有这样,幸福利润才能节节增高。看来懂得会计常识是家庭的必备,会财务的人管理家庭一定也不差,像他们几个会炒股懂理财,家庭富足安康。

婚礼上宾客越来越多,每个人脸上都洋溢着发自内心的幸福笑脸。一对新人,郎才女貌,非常般配。两亲家难掩喜悦!

我不由得感慨,现在的有的九零后独生子女简直太幸福了,刚结婚,父母把房子车子都准备好了,少奋斗几十年。中国父母,可能是天底下最好最无私的父母,为了子女,倾其所有,无怨无悔!

我不禁想到,爱情虽是两个人的事,婚姻却是两个家庭的事。皆大欢喜的婚姻才能喜上加喜!不被父母祝福的婚姻无论如何是有缺憾的。

婚姻讲究门当户对,这是古人几千年总结下来的历史经验,自有它的道理。随着时代的发展,门当户对的内容也在不断更新,不仅是指经济情况和社会地位,更有一种文化意义上的门当户对,文化意义的门当户对是知识相近,三观相投、积极向上、彼此欣赏、理解包容我认为,门当户对是婚姻幸福的纽带。

到了我们这个年纪,现阶段最操心的事便是孩子们的婚姻大事,只有孩子们的诸事顺利,婚姻美满,我们的幸福才有了底气。

婚礼上,同学老公的发言,引起大家阵阵掌声和共鸣。“精心培育二十多年的花,被人连盆端走了”父亲对女儿的不舍与爱溢于言表,令人动容。不管是儿子女儿,结婚成家,在父母眼里长不大的孩子,从今天开始长大成家成人了,当父母的既高兴又不舍。

我也将要迎来儿子结婚的这一天,虽然曾经在心里幻想了很多遍,但当这一天来临的时候,心里还是有些百般滋味。

前几天我和老公联系了婚庆公司,开始筹备儿子几个月后的婚礼。对于我们来说,筹备婚礼,其实是在完成一项规模浩大的家庭工程,筹备过程再繁琐,花费精力资金,但我感觉这是为人父母的责任,也体会着从未有过的幸福感受。

我庆幸儿子找到了志同道合的人生伴侣。儿子说:爱情最美好的样子是平等相待,共同奋斗。今天我虽然没能力在北上广为儿子买房置业,但我相信,通过他们自己的奋斗努力,未来一切都会有的,体会到不一样的幸福滋味。

我想,结婚不仅是一种形式,更是一种责任。不但有家庭责任,更有社会责任。一个连自己小家搞不好的人很难成就一番事业。我的”七仙女”同学群每个人都有值得称道的地方。

提起著名女作家三毛,应该不会陌生。

1943年,三毛在重庆黄桷垭出生,是家里的第二个女儿,父母根据家谱给她取名陈懋平,寓意一生平安顺遂。

IHUMAN MOM

三毛是书香门第里成长的孩子,亦是在战乱中长大的孩子。

她在小时候就表现出异于其他孩子的叛逆和古怪,从来不玩女孩子的 游戏 ,也不和别的孩子一起玩,总在家附近的荒坟旁边玩儿泥巴。上小学时,因为不会写自己名字中的“懋(MAO)”字,三毛直接把铅笔摔断,改名为陈平。

12岁,三毛考入台北最好的中学,由于痴迷在文学世界无法自拔,三毛的数学成绩很不好,经常拿“鸭蛋”。

这让自尊心很强的三毛受到了莫大打击,她开始苦学数学,最后发现老师的小考题目几乎都是课后的习题,于是把习题生生硬背下来,拿了满分。

老师不相信她,怀疑她作弊,三毛对着老师大喊:“ 作弊,在我的品格上来说,是不可能的,就算你是老师,也不能这样侮辱我。

被三毛当众反驳,失了面子,老师也很生气,拿出一张还没有学过的方程式卷子给她做,三毛考了零分。老师终于扣实了她作弊的帽子,在三毛眼睛上画了两个大圈,让她绕着操场走。这让要强的三毛受到巨大心理打击。同学们还经常嘲笑她,她不想去上学了,父母也只能认同。

IHUMAN MOM

休学后,三毛整日窝在房间里看书,不愿见人。父母觉得这样下去也不是办法,亲自负责女儿的教育。

于是,唐诗宋词、音乐、画画填补了她飞扬叛逆的青春,父母的民主开明,滋养着这个与众不同的小女孩。

她不断创作,还自荐去中国文化大学读书。在这里,三毛遇到了改变自己一生的人——师兄舒凡。

舒凡是个才子,风度翩翩,经常在刊物上发表文章,还出了很多书,三毛很是崇拜他,不放过任何和舒凡独处的机会,两人谈起了恋爱。

恋爱中的女人总是患得患失,敏感多疑,三毛也是如此,这使他们的感情出现了裂痕。快要毕业时,三毛和舒凡提出结婚的请求,被拒绝了。舒凡认为三毛过于急切。但是这并不是三毛的想法。三毛又以出国相逼,如果舒凡毕业不娶她,她就远赴西班牙留学。舒凡说:“祝你旅途愉快。”

由此,三毛开启了自己的流浪之旅。

在西班牙,三毛邂逅了不满18岁的荷西。他们短暂的交往了一段时间,荷西热烈的追求,让三毛差点儿又冲动起来。

荷西对三毛说:“你等我六年,四年念大学,两年服兵役,然后我们就结婚。”

三毛觉得自己等不了六年,荷西也只是一个孩子,于是赶走了荷西,并让他再也不要来找自己。

但是也许三毛也不知道,自己已经深深爱上了荷西。 爱到底是毒药还是救赎?在三毛这里很难说清。

IHUMAN MOM

荷西之后,她又和一个德国教师在一起,并接受了他的求婚。可好景不长,德国教师在新婚前一夜突发心脏病猝死。三毛深受打击,整吞了一瓶安眠药,幸好被救了回来。这段感情又无疾而终。

三毛再次远赴西班牙,在这里她与荷西重逢了。

1973年,三毛邀请荷西一同前往撒哈拉沙漠,两人在撒哈拉沙漠的小镇上举办了婚礼。

撒哈拉是三毛一生中最快乐的时光,在这里她创作了《撒哈拉的故事》《温柔的夜》《哭泣的骆驼》《梦里花落知多少》等书,可谓爱情事业双丰收。 如果说三毛的书像温室里的花朵,那么她与荷西的爱情便是最好的养料。

正如《2046》里说:“ 其实爱情是有时间性的,太早,或是太迟认识,结果都是不行的。如果我在另一个时间或地方认识她,结局可能不一样。 ”这次,他们都出现得刚刚好!

IHUMAN MOM

骨子里的浪漫和洒脱让她扎根撒哈拉沙漠,把日子过成了诗。荷西去上班,三毛就开着破烂的小 汽车 在沙漠里徜徉,看日出,看夕阳,等她最亲爱的荷西。

然而情深不寿,那一年的中秋节,她没有等到荷西。

1979年,荷西在潜水时意外丧生,他潜入海底,再也没了呼吸。这对三毛来说无疑是致命的打击,落山的夕阳和退尽的潮水如同这对恋人悲惨的结局。

都说对深爱的夫妻来说:“先走的人是幸福的,留下的人是痛苦的。”荷西下葬的那天,三毛真的是要陪他去了。

她静静地抱着荷西,陪他说话。最后,荷西的眼角流出血泪来。没有人能解释这一现象,大概他听到了妻子的呼唤。

三毛的一生追求自由与爱情,唯对不起父母。

IHUMAN MOM

至于孩子,三毛和荷西都害怕孩子影响她们的二人世界。三毛曾说,如果生了女儿,她会很嫉妒,不愿意荷西爱女儿超过爱她。

而荷西的话更是吓人,他说如果生了儿子,他会把儿子吊在阳台上打。三毛和荷西对生孩子这件事十分负责,不爱孩子就不生,不能生出来不爱,把孩子当成自己的附属品。

心若没有栖息的地方,到哪里都是在流浪。失去荷西的三毛亦是如此。 即使三毛跟随父母回到台湾,也丝毫没有感受到真正的安宁。

她的心早在荷西走的那一刻随荷西去了,只剩这一副躯壳。她想让自己想哭就哭,想笑就笑,不求深刻,只求简单。

天不遂人愿,三毛还是不能只做自己。她曾和母亲说:“如果选择了自己结束生命这条路,你们也要想得明白,因为对我来说,那将是一个更幸福的归宿。”

人们爱三毛的故事,三毛的洒脱和传奇,却不肯接受容纳真的三毛。

IHUMAN MOM

她异于常人的行为举止被大众诟病,被指作秀。当三毛第一次踏上中国大陆这块孕育她的生命之根的土地,在机场仰向天空,张开双臂痛哭时,却被嘲笑为“很会演戏”。

当三毛失去亲人荷西,度过一个有一个空寂孤独的夜晚而写作成《梦里花落知多少》时,却被认为是“很有矫情创造作的痕迹”。如此这般,林林总总,生前死后的三毛受了太多的非议和讥嘲。

三毛也曾为此受过太多的伤害,有过太多的伤心。不管她自己怎么说怎么做,三毛终究还是一个敏感脆弱的女人。 坚强是很无赖的,潇洒更是一个容易受伤的女人自我保护的面具。 当它挡不住那些断断续续的明枪暗箭,也挡不住细心同情的目光,这目光看得见潇洒面具后面是一张悲戚,恓惶的脸。

但是,大家不会因为三毛是三毛而原谅她,看重她,即使在家里,三毛说:“我看着眼前这一大群人,突然有一种被骗的惊骇,我一直把自己看得太重要,以为我,万一我早走一步,他们会受不了。”

这些话是在那篇《求婚》当中讲到的。在旧历年前一天,全家人年饭的桌上,三毛向家人说有人跟她求婚,然而家人各有各的想法,各有各的忙碌,母亲忙着替自己的孩子夹菜,姑嫂间在谈论回娘家的话题——三毛的姐弟们都成家立业,生儿育女,而三毛这时候已孀居了九年。

三毛总算知道是被自己骗了,而不是被他人骗了。

IHUMAN MOM

太爱自己总归是水中月,镜中花,那不会是完全真实的感觉。人们会爱别人?亲人、爱人,但最爱的还是自己。

三毛一定要这样一份绝对的、纯粹、完全无私的爱,那就只能去天堂寻找了。

1991年1月4日凌晨,她用一双尼龙丝袜结束了自己浪漫深情的一生。

三毛,但愿天堂不会让你失望。

作者:思旭。

  高斯

  包含人物[1]和物理单位[2]

  [1]人物:

  卡尔弗里德里希高斯(Carl Friedrich Gauß,1777430~1855223),德国数学家、物理学家和天文学家。

  高斯学习非常勤奋,11岁时发现了二项式定理,17岁时发明了二次互反律,18岁时发明了用圆规和直尺作正17边形的方法,解决了两千多年来悬而未决的难题。21岁大学毕业,22岁时或博士学位。1804年被选为英国皇家学会会员。从1807年到1855年逝世,一直担任格丁根大学教授兼格丁根天文台台长。他还是法国科学院和其他许多科学院的院士,被誉为历史上最伟大的数学家之一。他善于把数学成果有效地应用于天文学、物理学等科学领域,又是著名的天文学家和物理学家,是与阿基米德、牛顿等同享盛名的科学家。

  高斯出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

  在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

  在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

  罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W波尔约(WBolyai,非欧几何创立者之一J波尔约之父)问道:高斯将来会有出息吗?W波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。

  7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

  在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(ETBell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。

  当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

  高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(JMBartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

  1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

  布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

  1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

  1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”

  慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。

  为了不使德国失去最伟大的天才,德国著名学者洪堡(BAVon Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

  高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

  高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

  虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

  1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

  高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

  在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶尔会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

  高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

  老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。

  1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

  1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

  1795年高斯进入哥廷根(Gttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

  希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

  一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

  1、n = 2k,k = 2, 3,…

  2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…

  费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

  1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

  任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

  事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

  在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。

  二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

  当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

  高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。

  1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

  1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

  1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

  1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」

  在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

  1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

  1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。

  高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

  1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

  高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

  to preise it would mean to praise myself 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(ETBell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯:

  在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

  在1855年二月23日清晨,高斯在他的睡梦中安详的去世了

  [2]物理单位

  高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。

  一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。

  高斯是很小的单位,10000高斯等于1特斯拉。

  补充

  高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。

  他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。

  高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。

  高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。

  1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。

  由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

为何没有诺贝尔数学奖 众所周知,数学对人类的重要性并不亚于以上学科,但是为何没有诺贝尔数学奖呢?诺贝尔不设数学奖的原因,有多种说法:一是诺贝尔几乎没有学过数学,也能取得伟大的成就,根本无法预见或想像数学在推动科学发展上所起的作用,因此忽视了设立数学奖;二是在诺贝尔立下遗嘱的时候,数学领域已经有了一个很有影响的斯堪的那维亚奖,或许诺贝尔觉得没有必要再在自己的奖项中设立数学奖;三是诺贝尔与当时著名的数学家米他格·莱夫勒(Mittag Leffler)有过结,因而故意不设数学奖。

  现在比较流行的是第三种说法。米他格·莱夫勒是19世纪末20世纪初瑞典著名的数学家,斯德歌尔摩学院院长,在分析学和复变函数论方面有许多经典性的工作。经过他的苦心经营,瑞典有世界上最好的数学研究图书馆,创刊出版第一流的数学杂志《艾克塔数学》,培养和聘请了一批著名学者,其中俄国女数学家瓦列夫斯卡成为世界上第一位女数学教授,使瑞典一时成为世界上数学人才荟萃的地方。莱夫勒的名声如此之大,如果设立诺贝尔数学奖,他将是第一次获奖的重要人选。

  据说诺贝尔有一个比他小13岁的女友——维也纳妇女苏菲(Sophie Hess),诺贝尔曾向她求婚而她态度暧昧,结果诺贝尔发现她和数学家莱夫勒私下交往甚密,最后还私奔了。女友因为莱夫勒而背叛他,诺贝尔一直耿耿于怀,以致于后来终身未娶。后人猜测,可能是诺贝尔不想让莱夫勒获奖,因此在立遗嘱时没有设立数学奖。

  加拿大著名数学家菲尔兹(JCFields)曾游学欧洲,与莱夫勒关系十分密切,希望通过自己的努力来与诺贝尔抗衡。1924年菲尔兹在多伦多成功地举办了国际数学家会议,并提议用会议结余的经费设立一个数学奖,在他去世前又立下遗嘱把自己留下的一大笔钱加到结余经费中去作为奖金。1936年在挪威奥斯陆召开的国际数学家会议上,第一次进行评奖。为了纪念他的贡献,确定把这个数学奖命名为菲尔兹奖,并被誉称为数学界的诺贝尔奖。1982年,生于广东汕头的普林斯顿高级研究所终身教授丘成桐获得菲尔兹奖,成为至今获此殊荣的唯一华人数学家。

最佳答案:

有次,苏格拉底在街上行走,有人用棍子打他的背,痛得他无法站立而蹲下去,但很快的,他又若无其事的站起来。目睹整个经过的旁人,看见他没有任何的反应,好奇的问他:你挨打,为什么不还手?苏格拉底微笑地回答:当一只发野性的驴踢你时,你会还它一脚吗?

*萧伯纳年轻时喜欢骑单车,有一次跌断腿骨,他的女同学很体贴的照料他,萧伯纳担心自己意志不坚,会向这位女同学求婚,他决定溜走.可是不小心从楼梯上跌到楼梯下,两条腿都跌坏了结果他果然问她肯不肯跟自己结婚.当女同学点头时,萧伯纳昏了过去.

*一位女士对毛姆说:我和一位男士相处很久,可是不敢断定,我是不是爱上了他.这位名作家对恋爱的考验有非常独特的看法,他说:只有一个办法可以测验你是否真正爱上他,你愿意不愿意用他的牙刷刷牙

*有人问大仲马说:你为什么可以泰然步入晚年呢?他大不以为然地反驳说:我花尽了一生的时光才活到了今天.

*唐代名相房玄龄,未做官时,有一次患重病,对他太太卢氏说:我若病死,你不要守寡,要再嫁.卢氏到房内,挖出一只眼睛以示终身不改节.后来房玄龄病愈,一直升到宰相高位,始终对夫人极为尊敬.

*女小说家阿加撒.克里斯蒂的丈夫是个考古学家,有一次,在一个集会上有个朋友问他:像你这样富有想象力的女人,嫁给一个玩古物的人,你感觉如何?这位侦探小说家说:考古学家是最理想的丈夫,你想,愈是老的东西,他愈是喜欢.

*伏尔泰于一七二七年访问英国,他发现英国人非常仇视法国人,一群英国人向他怒吼:杀了他,把这个法国人吊死!伏尔泰说:英国人!你们因为我是法国人而要杀我.难到因为我不是英国人而受的惩罚还不够吗?英国人听了哈哈大笑,居然一路送他安返寓所。

*卓别麟能编,能导,能演,是不可多得的全能影人.有一次,他召开影片摄制会议,一只苍蝇在他四周绕着圈子飞.起初他用手打几下,没有打到,就要了一个苍蝇拍.会议进行中,他就握着苍蝇拍,摆出打苍蝇的姿态,眼睛狠狠地望着那苍蝇.可是打了三次,都没有打到.后来苍蝇就在他面前的桌上,他慢慢地拿起苍蝇拍,正要作死命一击时,忽然放下手中武器,让苍蝇飞走.旁边在座的人看了,就说:为什么你不把它打死?这位谐星耸了耸肩,说:这只不是方才那只!

*李白死后遗体葬在采石江头,往来诗人都在他墓上题诗.有人写了一首绝句:采石江边一坏土,李白诗名耀千古;来的去的写两行,鲁班门前掉大斧.

*欧阳修晚年,每天把生平所写的文字,加以修改,用心极苦.他的夫人叫他不要修改了,说:何必这样折磨自己?难道还怕老师责骂?欧阳修笑道:不怕先生骂,却怕后人笑.

*林肯有一次梦见自己参加集会.他走路时,众人就让出一条路来,让林肯走过.这时在一大群人中,有一个悄悄地说:他只不过是一个面貌平凡的人.林肯听了,就说:朋友,上帝喜欢面貌平凡的人,所以他生了许多面貌平凡的人.

*美国钢铁大王卡内基谈自己的成功秘诀:我以为我自己最大的优点,是能够鼓起人家的热忱.要叫人家能够尽心竭力,最好的办法是赏识他,赞美他,上司的指摘,是最容易消灭部署的信心的.我还没看见一个人,在被吹毛求癖时,能比在被赞赏时把事情办的更好.

*美国哈佛大学校长爱略华说:我觉得哈佛现在的确可以称为知识宝库.不过我在想,哈佛之能成为知识宝库,是由于大一新生带来了知识来,而大四毕业生却只带了一点点知识离校.

*德国名医寇杜斯有一次宴客,站在主人立场,他得把桌上的烤猪切开,分给宾客.他用刀先在烤猪胸部直剖一刀,接着又交叉地剖上一刀,然后把切碎了塞入猪肚中的香菇和其它填料,用快又卓越的手法拉出来.接着又从自己口袋里取出一只皮套,从皮套里抽出手术用针线,把割开的胸部缝起来.缝好后他就拍拍烤猪胸部,笑着对宾客说:只要小心调查,好好照顾他,不久就可以下地走路.

*美国哈佛大学名教授凯屈莱奇是研究莎士比亚的权威,有一次他在讲坛上教授莎士比亚课程不小心一脚踏空,跌到讲坛下面.他站起身来,气势巍峨对那些学生说:教了四十年书,这是我第一次跌落到听众一样的水平!

*有一次,某处举行模仿卓别麟演技比赛,参加的人有三四十人之多,卓别麟自己也隐名参加,结果他得的竟是第三名,卓别麟觉得这是他一生最大的笑话!

*美国史密斯女子大学有个女学生,有一次因赴男朋友约会而迟归宿舍,只得爬窗户进去.可是窗户太重,她的力气抬不起来.忽然窗内有人来帮她忙,还轻声对她说:不要让旁人看到.爬进一看,正是笑容满面的威尔逊校长.

*约翰逊博士,他的父亲经营一个大旧书摊.有一次,距离不远处有个节目,大家都去赶集,这天正下着雨,他的父亲想要约翰博士分一部份书籍,运到赶集的地方去贩卖.他的父亲接连呼唤他三次,要他去,可是约翰逊博士这时正专心阅读一本又厚又大的书,竟假装听不见,也不理睬,父亲叹了一口气,只得自己亲自去了.这时候,约翰逊博士年十八岁.五十年后,有一天中午十一时,当地人看见这个体态臃肿的老年人,跪在街心,他把帽子夹在腋下,拐杖放在一边,低头跪在太阳下,热泪直流.这时约翰逊博士业已成名,大家都来看他,他对大家说:五十年前的同一天,同一时刻,我不听父亲的话,现在我跪在这里忏悔!

*一个巴黎的酒保说:一个顾客喝过两杯双倍的马丁尼酒以后,我就可以说出他的国籍.法国人谈恋爱,西班牙人跳舞,德国人夸口,意大利人唱歌,爱尔兰人打架,美国人要站起来演说.

*乔伊勃朗在太平洋战争中到东方旅行,碰到麦克阿瑟将军,两人在一起照了个相.阔嘴名星连说:能与阁下照相,三生有幸!可是麦克阿瑟将军却说:这张相是为我小儿子照的,他常盼望他的父亲能和名人在一起照相.

*欧阳修晚年,每天把生平所写的文字,加以修改,用心极苦.他的夫人叫他不要修改了,说:何必这样折磨自己?难道还怕老师责骂?欧阳修笑道:不怕先生骂,却怕后人笑.

*马克土温年轻时在一家报社工作,六个月以后,总编辑叫他明天不用再来了.马克土温就问为什么?总编辑说:因为你太懒.马克土温听着笑着回答:你要经过六个月的时间才发现我懒,可是我却在进报社的第一天就知道了.

*后汉时曹操近臣杨修,九岁时就非常聪明.一天他的父执孔平坦来访由他接见,他准备杨梅招待,孔平坦见了就戏问:这是你们家的果实?杨修马上回答:我从来没听过孔雀是您家的家禽!

*宋代苏轼当杭州县令时,有一县民做扇子谋生,可是天凉,扇子卖不出去,于是欠税.东坡就叫他拿扇子来在上面画上枯木竹石,画了二十余把扇子,那县民才走出县府大门,就有人来争购.因而把欠的税,全部还清.

*意大利文艺复兴时期画家拉菲尔画了一幅玛利亚抱着圣子耶稣的画像,在她的右下方是个老人,左下方是个使女.可是正下方有一大片空白,正在想该补些什么.这时他从画室窗口看到附近面包店窗口有两个孩子,大的一个四五岁左右托腮,仰望云天,对他弟弟说话,小的一个头靠在两臂上,也望着天空,在听他哥哥说话.拉菲尔觉得很美,就把他们画在画的下方,再加上翅膀,就成了两个天使.

*有人问拉菲尔怎么能画出那么美丽的作品?他回答说:我做了许多梦,然后围绕着我的梦去作画.幻想能使人得见不可见之物,意志则能使不可见者成为可见之实体.

*爱因斯坦在新闻记者招待会上提出了他对人生成功的看法.他用一个数学公式来表示:假设A代表一个人的成功,则我可以写成下列的公式A=X+Y+Z,X代表工作,Y代表游戏.记者问:那Z代表什么?爱因斯坦笑着回答:Z是把你的嘴巴闭起来.

*芬兰指挥家鲍理司.塞博夫妇到美国来表演.他们住的房子,据说常常闹鬼.有一天果然被鬼的声音吵醒了.塞博太太要她先生去看看,可是这名指挥家却说:不,亲爱的,还是你去好了.因为你的英文说得比我好些.

*莫扎特六岁时,在德国慕尼黑市的皇宫举行第一次演奏会.因为宫中地板光滑,所以他一进宫门,就滑了一跤.这时有一个小公主,走过来把他扶起来,还吻了吻他的手.莫扎特非常感激,不知如何答谢.就说:等我长大了,一定要取你做新娘.大家听了,哄堂大笑.

*一九四八年美国大选,杜鲁门总统从白宫赶往其家乡投票,有一批记者先生,追到总统家中,竟没有见到总统.后来碰到总统时,一位记者就问他一路发生了什么事,杜鲁门总统回答:有一辆警车要我们停下来,看样子彷佛今天有一位要人要经过这小城.

*有一次,有个新闻记者问肯尼迪:你怎样成为二次大战时的英雄的?肯尼迪回答:他们把我的巡洋艇弄沉了,我就成名了.我们知道肯尼迪当时搭DT-O八号小艇,被敌方击沉,他也因此负伤.

*苏格拉底的太太非常凶悍,有一次,她大发脾气,把苏格拉底大骂一顿后,还有余怒未息,就提了一大桶水,浇在她先生头上.苏格拉底搔了搔淋湿的头发,笑到:雷声以后必有大雨,这是自然法则,也证明这是真理.

*牛顿研究学问非常专心。有一次,朋友请客,席间,他想起家中有瓶好酒,于是叮嘱朋友稍等,自己回家取酒。这位朋友左等右等,就是不见牛顿回来,只好去看个究竟。原来牛顿在回家的路上,想起一项实验的做法,到家后,就一头栽进实验室,做起实验,把取酒招待朋友的事忘的一乾二净。又有一次,他饿了,煮鸡蛋吃,却一边想问题,一边把鸡蛋放进锅子中,等问题解决了,想吃鸡蛋时,揭开锅盖,捞起的竟是自己的怀表。

*宋朝司马光出生于官宦世家。从小机智过人,勤奋好学。刚满二十岁即考上进士。他为官清廉,公务之余常利用时间读书,立志写一部通志,作为人们的借鉴。为了把握时间读书,他特意制作一个圆木枕头,枕头的妙用是睡觉时身子只要一翻动,它就会滚动,人也就惊醒了,可以继续研究学问,因此称「警枕」。每当司马光需休息时,便枕着「警枕」,如此学习的结果,终于成为一位学问渊博的人。

希帕蒂娅

古希腊是数学的故乡古希腊人为数学的进步耗费了大量心血甚至生命,做出了卓越的贡献这个文明古国哺育了许多数学家,象泰勒斯、毕达哥拉斯、欧几里德、阿波罗尼斯、阿基米德、托勒玫、海伦、丢番图等希帕蒂娅(Hypatia)——这位有史以来的第一位女数学家也诞生在这里

公元370年希帕蒂娅出生在亚历山大城的一个知识分子家庭父亲赛翁(Theon)是有名的数学家和天文学家,在著名的亚历山大博物院教学和研究,那是一个专门传授和研讨高深学问的场所一些有名的学者和数学家常到她家做客,在他们的影响下,希帕蒂娅对数学充满了兴趣和热情她开始从父辈那里学习数学知识赛翁也不遗余力地培养这个极有天赋的女儿10岁左右,她已掌握了相当丰富的算术和几何知识利用这些知识,她懂得了如何利用金字塔的影长去测量其高度这一举动,倍受父亲及其好友的赞赏,因而也就进一步增加了希帕蒂娅学习数学的兴趣,她开始阅读数学大家的专著17岁时,她参加了全城之诺悻论的辩论,一针见血地指出芝诺的错误所在:芝诺的推理包含了一个不切实际的假定,他限制了赛跑的时间这次辩论,使希帕蒂娅仅名声大震,几乎所有的亚里山大城人都知道她是一个非凡的女子,不仅容貌美丽,而且聪明好学20岁以前,她几乎读完了当时所有数学家的名著,包括欧几里德的《几何原本》、阿波罗尼斯的《圆锥曲线论》、阿基米德的《论球和圆柱》、丢番图的《算术》等为了进一步扩大自己的知识领域,公元390年的一天,希帕蒂娅来到了著名的希腊城市——雅典她在小普鲁塔克当院长的学院里进一步学习数学、历史和哲学她对数学的精通,尤其是对欧几里德几何的精辟见解,令雅典的学者钦佩不已,大家都把这位二十出头的姑娘当作了不起的数学家一些英俊少年不由得对她产生爱慕之情,求婚者络绎不绝但希帕蒂姬认为,她要干一番大事业,不想让爱情过早地进人自己的生活因此,她拒绝了所有的求爱者此后,她又到意大利访问,结识了当地的一些学者,并与之探讨有关问题大约公元395年回到家乡这时的希帕蒂娅已经是一位相当成熟的数学家和哲学家了

数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。

祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=314,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在31415926与31415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。

17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”

这就是老一辈数学家那颗爱国的赤子之心

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。

笛卡儿

我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是从笛卡儿 (Descartes R,1596331~1650211)引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。

法国数学家拉格朗日(Lagrange JL,1736125~1813410)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"

我国数学家华罗庚(19101112~1985612)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"

这些伟人的话,实际上都是对笛卡儿的贡献的评价。

笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。

笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。

笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。

笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。

那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。

笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:

有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。

在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。

笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。

数学之父—泰勒斯(Thales)

泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。

泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。

在泰勒斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而泰勒斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,主要是一些由经验中总结出来的计算公式。泰勒斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,泰勒斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以泰勒斯素有数学之父的尊称,原因就在这里。

泰勒斯最先证明了如下的定理:

1圆被任一直径二等分。

2等腰三角形的两底角相等。

3两条直线相交,对顶角相等。

4半圆的内接三角形,一定是直角三角形。

5如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。

这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。

泰勒斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,泰勒斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,泰勒斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前泰勒斯曾对Delians预言此事。 泰勒斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。」

数学之神"——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

一个著名的故事是:叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银子,便请阿基米德鉴定一下。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:『尤里卡!尤里卡』』〔希腊语enrhka,意思是『我找到了』〕他将这一流体静力学的基本原理,即物体在液体中的减轻的重量,等于排去液体的重量,总结在他的名着《论浮体》〔On Floating Bodies〕中,后来以『阿基米德原理』著称于世。

公元前212年罗马军队攻入叙拉古,并闯入阿基米德的住宅,看见一位老人在地上埋头作几何图形,士兵将图踩坏。阿基米德怒斥士兵:『不要弄坏我的图!』士兵拔出短剑,刺死了这位旷世绝伦的大科学家,阿基米德竟死在愚蠢无知的罗马士兵手里。 他的生平没有详细记载,但关于他的许多故事却广为流传。据说他确立了力学的杠杆定理之后,曾发出豪言壮语:『给我一个立足点,我就可以移动这个地球!』,被誉为『力学之父』。

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。

《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。

《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。

《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

解析几何的创始人——笛卡尔

雷勒·笛卡尔,1596年3月31日生于法国西部都兰群拉哈小城的一个贵族家庭。他从小身体孱弱,但好奇心强,勤学好问。8岁的时候,笛卡尔就被送进当时全欧洲著名的教会学校——拉夫雷士耶稣会学校。校长非常喜欢笛卡尔,为了照顾他孱弱的身体,特许他不必到校上早课,可以在床上自学。正是由于这个机会,笛卡尔利用每天早晨在床上自学的时间,阅读了大量数学、哲学等书籍,为后来他在数学和哲学上非凡的成就打下了坚实的基础。

笛卡尔毕业以后,又到普瓦蒂埃大学获得了法学博士学位。接着就去了巴黎当律师。由于厌烦巴黎花花世界的生活,笛卡尔躲避到巴黎僻静的郊区专心研究几何学。这时的笛卡尔已经结识了当时不少有名的数学家如迈多治、梅森等人,并经常在一起钻研数学。笛卡尔不满足于书本知识,决心要走向社会,去读世界这本大书。1617年,青年的笛卡尔投身军队,投入到社会当中,去寻求他自己所需要的科学。在随军的旅行中,笛卡尔还在专心致志地思考着他的数学与哲学问题。他已不满意欧几里得几何学和当时的代数学,他自己想去寻找另外一种包括这两门科学的优点而没有它们的缺点的方法。昼有所思,夜有所悟。1619年11月10日的夜晚,笛卡尔连续作了3个奇特的梦。第一个梦是:自己被风暴从教堂和学校驱逐到风力吹不到的地方;第二个梦是:自己得到了打开自然宝库的魔钥;第三个梦是:自己背诵奥生尼的诗句“我应该沿着哪条人生之路走下去?”。正是因为这三个梦,笛卡尔明确了自己的人生之路,可以这样说,这一天是笛卡尔一生中思想上的转折点。因而有人说,笛卡尔梦中的“魔钥”就是建立解析几何的线索。事实上,笛卡尔试图用分析的方法解决“巴普士问题”是导致他发现解析几何原理的触发原因。

此外,在笛卡尔的手稿中还发现他于1639年就已掌握了欧拉1750发表的凸多面体的棱数、面积的顶数三者之间的数量关系:顶数-棱数+面数=2,这是图论中的定理。

笛卡尔在钻研数学和哲学的同时,还思考着多种自然哲学,如力学、光学、生物学、气象学、天文学乃至音乐。在这些方面的研究成就,也是卓越的。虽然后来终因笛卡尔的学说抵毁教义而遭教会的迫害,但是,笛卡尔的哲学与数学思想影响是深远的,历史不会忘记这位划时代的杰出数学家的。

笛卡儿生在一个富有律师的家庭,自幼身体柔弱,父母允许他在床上作功课,久而久之就形成习惯,之后,他一辈子都是这样。20岁毕业于Poityers 大学法律系,之后,前往巴黎跟Mydorde和Mersenne学了一年数学,由于解决了荷兰Bredas广告牌上的一道难题,而信心大增,从此认真学习数学、研究数学。

他由哲学家、自然界、科学应用来看数学,他认为数学的伟大在于其证明所依据的公理是无缺点的,数学是获得确定和有效证明的方法,而且数学是形而上的。他说:「数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。」 笛卡儿说:「希腊几何太过抽象,他只是用来训练了解,使想象力大为疲劳的工具罢了!而代数太过于遵守原则和公式,计算过于繁杂,不是一门改良心智的科学。」

牛顿(1642-1727),英国物理学家、数学家。曾任英国皇家学会会长

牛顿是举世公认的、有史以来最伟大的科学家之一。他的幼年充满了辛酸,在他出生前3个月父亲便去世了,之后母亲改嫁,他是由外祖母抚养成人的。23毕业于著名的剑桥大学后留校工作。后因逃避伦敦流行的鼠疫来到母亲的农场里。在这里,他被一个常人熟视无睹的现象吸引住了。有一次,他看到一个熟透了的苹果落在地上,便开始思索为什么苹果会垂直落在地上,而不是飞到天上去呢?一定是有一种力在拉它,那么这种将苹果往下拉的力会不会控制月球?他就是通过这个看起来十分简单的现象,发现了著名的万有引力定律。这个定律的巨大作用,很快就显示了出来。它解释了当时所知道的天体的一切运动。同时,牛顿又完成了一项重要的光学实验,从而证明了白光是由以赤、橙、黄、绿、青、蓝、紫的顺序排列的合成光。1687年,牛顿出版了有史以来最伟大的科学著作<<自然哲学的数学原理>>。在这里,他钻研了伽利略的理论,并归纳出著名的运动三大定律。除此之外,他发现的二项式定理,在数学界也有一席之地。1704年,出版<<光学>>一书,总结了他对光学研究的成果。

牛顿61岁那年被选为英国皇家学会会长,此后年年连任直至逝世。作为举世公认的、最卓越的科学巨匠,他仍谦逊地说:"如果说我比别人看得远些,那是因为我站在了巨人的肩上。"1727年3月20日,84岁的牛顿逝世了。作为有功于国家的伟人,他被葬在了英国国家公墓,受到世人的瞻仰。

少年牛顿

1643年1月4日,在英格兰林肯郡小镇沃尔索浦的一个自耕农家庭里,牛顿诞生了。牛顿是一个早产儿,出生时只有三磅重,接生婆和他的亲人都担心他能否活下来。谁也没有料到这个看起来微不足道的小东西会成为了一位震古烁今的科学巨人,并且竟活到了85岁的高龄。

牛顿出生前三个月父亲便去世了。在他两岁时,母亲改嫁给一个牧师,把牛顿留在外祖母身边抚养。11岁时,母亲的后夫去世,母亲带着和后夫所生的一子二女回到牛顿身边。牛顿自幼沉默寡言,性格倔强,这种习性可能来自它的家庭处境。

大约从五岁开始,牛顿被送到公立学校读书。少年时的牛顿并不是神童,他资质平常,成绩一般,但他喜欢读书,喜欢看一些介绍各种简单机械模型制作方法的读物,并从中受到启发,自己动手制作些奇奇怪怪的小玩意,如风车、木钟、折叠式提灯等等。

传说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断的跑动,于是轮子不停的转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。

牛顿12岁时进了离家不远的格兰瑟姆中学。牛顿的母亲原希望他成为一个农民,但牛顿本人却无意于此,而酷爱读书。随着年岁的增大,牛顿越发爱好读书,喜欢沉思,做科学小实验。他在格兰瑟姆中学读书时,曾经寄宿在一位药剂师家里,使他受到了化学试验的熏陶。

牛顿在中学时代学习成绩并不出众,只是爱好读书,对自然现象由好奇心,例如颜色、日影四季的移动,尤其是几何学、哥白尼的日心说等等。他还分门别类的记读书笔记,又喜欢别出心裁的作些小工具、小技巧、小发明、小试验。

当时英国社会渗透基督教新思想,牛顿家里有两位都以神父为职业的亲戚,这可能影响牛顿晚年的宗教生活。从这些平凡的环境和活动中,还看不出幼年的牛顿是个才能出众异于常人的儿童。

后来迫于生活,母亲让牛顿停学在家务农,赡养家庭。但牛顿一有机会便埋首书卷,以至经常忘了干活。每次,母亲叫他同佣人一道上市场,熟悉做交易的生意经时,他便恳求佣人一个人上街,自己则躲在树丛后看书。有一次,牛顿的舅父起了疑心,就跟踪牛顿上市镇去,发现他的外甥伸着腿,躺在草地上,正在聚精会神地钻研一个数学问题。牛顿的好学精神感动了舅父,于是舅父劝服了母亲让牛顿复学,并鼓励牛顿上大学读书。牛顿又重新回到了学校,如饥似渴地汲取知识

1665年初,牛顿创立级数近似法,以及把任意幂的二项式化为一个级数的规则;同年11月,创立正流数法(微分);次年1月,用三棱镜研究颜色理论;5月,开始研究反流数法(积分)。这一年内,牛顿开始想到研究重力问题,并想把重力理论推广到月球的运动轨道上去。他还从开普勒定律中推导出使行星保持在它们的轨道上的力必定与它们到旋转中心的距离平方成反比。牛顿见苹果落地而悟出地球引力的传说,说的也是此时发生的轶事。

总之,在家乡居住的两年中,牛顿以比此后任何时候更为旺盛的精力从事科学创造,并关心自然哲学问题。他的三大成就:微积分、万有引力、光学分析的思想都是在这时孕育成形的。可以说此时的牛顿已经开始着手描绘他一生大多数科学创造的蓝图。

1667年复活节后不久,牛顿返回到剑桥大学,10月1日被选为三一学院的仲院侣(初级院委),翌年3月16日获得硕士学位,同时成为正院侣(高级院委)。1669年10月27日,巴罗为了提携牛顿而辞去了教授之职,26岁的牛顿晋升为数学教授,并担任卢卡斯讲座的教授。巴罗为牛顿的科学生涯打通了道路,如果没有牛顿的舅父和巴罗的帮助,牛顿这匹千里马可能就不会驰骋在科学的大道上。巴罗让贤,这在科学史上一直被传为佳话。

伟大的成就~建立微积分

在牛顿的全部科学贡献中,数学成就占有突出的地位。他数学生涯中的第一项创造性成果就是发现了二项式定理。据牛顿本人回忆,他是在1664年和1665年间的冬天,在研读沃利斯博士的《无穷算术》时,试图修改他的求圆面积的级数时发现这一定理的。

牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的著作出版时间也比牛顿早。

在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

应该说,一门科学的创立决不是某一个人的业绩,它必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样,是牛顿和莱布尼茨在前人的基础上各自独立的建立起来的。

1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》。他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用。书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如,他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”。

牛顿对解析几何与综合几何都有贡献。他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法。并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表。此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域。

伟大的成就~对光学的三大贡献

在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象。反射定律是人们很早就认识的光学定律之一。近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。荷兰数学家斯涅尔首先发现了光的折射定律。笛卡尔提出了光的微粒说……

牛顿以及跟他差不多同时代的胡克、惠更斯等人,也象伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。

牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。

许多人研究光学是为了改进折射望远镜。牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。

牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。反射望远镜的发明奠定了现代大型光学天文望远镜的基础。

同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。

牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。此外,他还制作了牛顿色盘等多种光学仪器。

伟大的成就~构筑力学大厦

牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。

在牛顿以前,天文学是最显赫的学科。但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。

早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。胡克等人认为是引力,并且试图推到引力和距离的关系。

1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。

牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……

一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。终于,他发现了对人类具有划时代意义的万有引力。

牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。牛顿没有回答这个问题。1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。

当时已经有了地球半径、日地距离等精确的数据可以供计算使用。牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。

在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。

牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。

站在巨人的肩上

牛顿的研究领域非常广泛,他除了在数学、光学、力学等方面做出卓越贡献外,他还花费大量精力进行化学实验。他常常六个星期一直留在实验室里,不分昼夜的工作。他在化学上花费的时间并不少,却几乎没有取得什么显著的成就。为什么同样一个伟大的牛顿,在不同的领域取得的成就竟那么不一样呢?

怪异的牛顿

牛顿并不善于教学,他在讲授新近发现的微积分时,学生都接受不了。但在解决疑难问题方面的能力,他却远远超过了常人。还是学生时,牛顿就发现了一种计算无限量的方法。他用这个秘密的方法,算出了双曲面积到二百五十位数。他曾经高价买下了一个棱镜,并把它作为科学研究的工具,用它试验了白光分解为的有颜色的光。

开始,他并不愿意发表他的观察所得,他的发现都只是一种个人的消遣,为的是使自己在寂静的书斋中解闷,他独自遨游于自己所创造的超级世界里。后来,在好友哈雷的竭力劝说下,才勉强同意出版他的手稿,才有划时代巨著《自然哲学的数学原理》的问世。

作为大学教授,牛顿常常忙得不修边幅,往往领带不结,袜带不系好,马裤也不纽扣,就走进了大学餐厅。有一次,他在向一位姑娘求婚时思想又开了小差,他脑海了只剩下了无穷量的二项式定理。他抓住姑娘的手指,错误的把它当成通烟斗的通条,硬往烟斗里塞,痛得姑娘大叫,离他而去。牛顿也因此终生未娶。

牛顿从容不迫地观察日常生活中的小事,结果作出了科学史上一个个重要的发现。他马虎拖沓,曾经闹过许多的笑话。一次,他边读书,边煮鸡蛋,等他揭开锅想吃鸡蛋时,却发现锅里是一只怀表。还有一次,他请朋友吃饭,当饭菜准备好时,牛顿突然想到一个问题,便独自进了内室,朋友等了他好久还是不见他出来,于是朋友就自己动手把那份鸡全吃了,鸡骨头留在盘子,不告而别了。等牛顿想起,出来后,发现了盘子里的骨头,以为自己已经吃过了,便转身又进了内室,继续研究他的问题。

牛顿晚年

但是由于受时代的限制,牛顿基本上是一个形而上学的机械唯物主义者。他认为运动只是机械力学的运动,是空间位置的变化;宇宙和太阳一样是没有发展变化的;靠了万有引力的作用,恒星永远在一个固定不变的位置上……

随着科学声誉的提高,牛顿的政治地位也得到了提升。1689年,他被当选为国会中的大学代表。作为国会议员,牛顿逐渐开始疏远给他带来巨大成就的科学。他不时表示出对以他为代表的领域的厌恶。同时,他的大量的时间花费在了和同时代的著名科学家如胡克、莱布尼兹等进行科学优先权的争论上。

晚年的牛顿在伦敦过着堂皇的生活,1705年他被安妮女王封为贵族。此时的牛顿非常富有,被普遍认为是生存着的最伟大的科学家。他担任英国皇家学会会长,在他任职的二十四年时间里,他以铁拳统治着学会。没有他的同意,任何人都不能被选举。

晚年的牛顿开始致力于对神学的研究,他否定哲学的指导作用,虔诚地相信上帝,埋头于写以神学为题材的著作。当他遇到难以解释的天体运动时,竟提出了“神的第一推动力”的谬论。他说“上帝统治万物,我们是他的仆人而敬畏他、崇拜他”。

1727年3月20日,伟大艾萨克·牛顿逝世。同其他很多杰出的英国人一样,他被埋葬在了威斯敏斯特教堂。他的墓碑上镌刻着:

让人们欢呼这样一位多么伟大的

人类荣耀曾经在世界上存在。

瑞士数学家及自然科学家欧拉(Euler

欧拉(Euler),(1707——1783),瑞士数学家及自然科学家。在1707年4月15日出生於瑞士的巴塞尔,1783年9月18日於俄国的彼得堡去逝。欧拉出生於牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。

欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,於19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。

1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一。伯努利,成为物理学教授。

在俄国的14年中,他努力不懈地投入研究,在分析学、数论及力学方面均有出色的表现。此外,欧拉还应俄国政府的要求,解决了不少如地图学、造船业等的实际问题。1735年,他因工作过度以致右眼失明。在1741年,他受到普鲁士腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何及其他数学领域均有开创性的发现。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/jiehun/1550143.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-07-17
下一篇2023-07-17

发表评论

登录后才能评论

评论列表(0条)

    保存