小欧拉智改羊圈
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。
事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"
欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?
他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。
在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。
回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。
爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。
小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。
父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"
父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。
父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
前些日子热播的《隐瞒的角落》中,秦昊饰演的数学老师朱朝阳讲诉了法国数学天才笛卡尔的浪漫爱情故事。其中关于笛卡尔的心形函数部分,很喜欢。
r=a(1-sinθ)笛卡尔的心形函数是世界的另类情书,被保存在欧洲笛卡尔的纪念馆里。
当然从学术角度上讲,是不够严谨的。笛卡尔与瑞典公主克里斯蒂娜其实是瑞典的女王之间是否需在爱情是无据可查的。但这不影响我们对笛卡尔的热爱和尊敬。
勒内·笛卡尔是法国哲学家,数学家和科学家。
笛卡尔被誉为“现代哲学之父”,他在哲学上提出了著名的“我思故我在”。强调思考是唯一可以确定的是,不是我眼见,不是我耳闻这样的感性认知。笛卡尔认为,思考是认识客观世界的基础,感性认识是不可靠的。
笛卡尔也是“解析几何之父”,发明直角坐标系,创立了解析几何。直角坐标系和解析几何统一了代数和几何,把代数方程用坐标系中的几何图形来表示。
在英国作家汤姆·索雷尔的《笛卡尔》一书中提到,牛顿曾熟读笛卡尔的著作,受到笛卡尔数学和物理学体系非常大的影响。
笛卡尔重视身体健康和精神健康,他认为医学是为了让人的身体保持健康,道德学是让人的心灵保持健康。人类要控制非理性的冲动,可以通过冥想关照内心,保持淡定从容促进社会的健康。
笛卡儿1596年3月31日生于法国土伦省莱耳市的一个贵族之家,1650年2月11日卒于斯德哥尔摩。
笛卡儿生平
笛卡儿的父亲是布列塔尼地方议会的议员,同时也是地方法院的法官,笛卡儿在豪华的生活中无忧无虑地度过了童年。他幼年体弱多病,母亲病故后就一直由一位保姆照看。他对周围的事物充满了好奇,父亲见他颇有哲学家的气质,亲昵地称他为“小哲学家”。
父亲希望笛卡儿将来能够成为一名神学家,于是在笛卡儿八岁时,便将他送入拉弗莱什的耶酥会学校,接受古典教育。校方为照顾他的孱弱的身体,特许他可以不必受校规的约束,早晨不必到学校上课,可以在床上读书 。因此,他从小养成了喜欢安静,善于思考的习惯。
笛卡儿1612年到普瓦捷大学攻读法学,四年后获博士学位。1616年笛卡儿结束学业后,便背离家庭的职业传统,开始探索人生之路。他投笔从戎,想借机游历欧洲,开阔眼界。
这期间有几次经历对他产生了重大的影响。一次,笛卡儿在街上散步,偶然间看到了一张数学题悬赏的启事。两天后,笛卡儿竟然把那个问题解答出来了,引起了著名学者皮克曼的注意。皮克曼向笛卡儿介绍了数学的最新发展,给了他许多有待研究的问题。
与皮克曼的交往,使笛卡儿对自己的数学和科学能力有了较充分的认识,他开始认真探寻是否存在一种类似于数学的、具有普遍使用性的方法,以期获取真正的知识。
据说,笛卡儿曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡儿被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡儿思想上的一个转折点,有些学者 也把这一天定为解析几何的诞生日。
然而长期的军旅生活使笛卡儿感到疲惫,他于1621年回国,时值法国内乱,于是他去荷兰、瑞士、意大利等地旅行。1625年返回巴黎,1628年移居荷兰。
在荷兰长达20多年的时间里,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究,并通过数学家梅森神父与欧洲主要学者保持密切联系。他的主要著作几乎都是在荷兰完成的。
1628年,笛卡尔写出《指导哲理之原则》,1634年完成了以哥白尼学说为基础的《论世界》。书中总结了他在哲学、数学和许多自然科学问题上的一些看法。1637年,笛卡儿用法文写成三篇论文《折光学》、《气象学》和《几何学》,并为此写了一篇序言《科学中正确运用理性和追求真理的方法论》,哲学史上简称为《方法论》,6月8日在莱顿匿名出版。1641年出版了《形而上学的沉思》,1644年又出版了《哲学原理》等重要著作。
1949年冬,笛卡儿应瑞典女王克里斯蒂安的邀请,来到了斯德哥尔摩,任宫廷哲学家,为瑞典女王授课。由于他身体孱弱,不能适应那里的气候,1650年初便患肺炎抱病不起,同年二月病逝。
解析几何的诞生
在笛卡儿所处的时代,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。1637年,笛卡儿发表了《几何学》,它确定了笛卡儿在数学史上的地位。
文艺复兴使欧洲学者继承了古希腊的几何学,也接受了东方传入的代数学。利学技术的发展,使得用数学方法描述运动成为人们关心的中心问题。笛卡儿分析了几何学与代数学的优缺点,表示要去“寻求另外一种包含这两门科学的好处,而没有它们的缺点的方法”。
在《几何学》卷一中,他用平面上的一点到两条固定直线的距离来确定点的距离,用坐标来描述空间上的点。他进而创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。
笛卡儿把几何问题化成代数问题,提出了几何问题的统一作图法。为此,他引入了单位线段,以及线段的加、减、乘、除、开方等概念,从而把线段与数量联系起来,通过线段之间的关系,“找出两种方式表达同一个量,这将构成一个方程”,然后根据方程的解所表示的线段间的关系作图。
在卷二中,笛卡儿用这种新方法解决帕普斯问题时,在平面上以一条直线为基线,为它规定一个起点,又选定与之相交的另一条直线,它们分别相当于x轴、原点、y轴,构成一个斜坐标系。那么该平面上任一点的位置都可以用(x,y)惟一地确定。帕普斯问题就化成了一个含两个未知数的二次不定方程。笛卡儿指出,方程的次数与坐标系的选择无关,因此可以根据方程的次数将曲线分类。
《几何学》一书提出了解析几何学的主要思想和方法,标志着解析几何学的诞生。此后,人类进入变量数学阶段。
在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了韦达创造的符号系统,用a,b,c,…表示已知量,用x,y,z,…表示未知量。
解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。
正如恩格斯所说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。”
笛卡儿在其他科学领域的成果
笛卡儿靠着天才的直觉和严密的数学推理,在物理学方面做出了有益的贡献。从1619年读了开普勒的光学著作后,笛卡儿就一直关注着透镜理论;并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。
笛卡儿运用他的坐标几何学从事光学研究,在《屈光学》中第一次对折射定律提出了理论上的推证。他认为光是压力在以太中的传播,他从光的发射论的观点出发,用网球打在布面上的模型来计算光在两种媒质分界面上的反射、折射和全反射,从而首次在假定平行于界面的速度分量不变的条件下导出折射定律;不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。
在力学上,笛卡儿发展了伽利略的运动相对性的思想,例如在《哲学原理》一书中,举出在航行中的海船上海员怀表的表轮这一类生动的例子,用以说明运动与静止需要选择参照物的道理。
笛卡儿在《哲学原理》第二章中以第一和第二自然定律的形式比较完整地第一次表述了惯性定律:只要物体开始运动,就将继续以同一速度并沿着同一直线方向运动,直到遇到某种外来原因造成的阻碍或偏离为止。这里他强调了伽利略没有明确表述的惯性运动的直线性。
在这一章中,他还第一次明确地提出了运动量守恒定律:物质和运动的总量永远保持不变。笛卡儿对碰撞和离心力等问题曾作过初步研究,给后来惠更斯的成功创造了条件。
笛卡儿把他的机械论观点应用到天体,发展了宇宙演化论,形成了他关于宇宙发生与构造的学说。他认为,从发展的观点来看而不只是从已有的形态来观察,对事物更易于理解。他创立了漩涡说。他认为太阳的周围有巨大的漩涡,带动着行星不断运转。物质的质点处于统一的漩涡之中,在运动中分化出土、空气和火三种元素,土形成行星,火则形成太阳和恒星。
他认为天体的运动来源于惯性和某种宇宙物质旋涡对天体的压力,在各种大小不同的旋涡的中心必有某一天体,以这种假说来解释天体间的相互作用。笛卡儿的太阳起源的以太旋涡模型第一次依靠力学而不是神学,解释了天体、太阳、行星、卫星彗星等的形成过程,比康德的星云说早一个世纪,是17世纪中最有权威的宇宙论。
笛卡儿的天体演化说、旋涡模型和近距作用观点,正如他的整个思想体系一样,一方面以丰富的物理思想和严密的科学方法为特色,起着反对经院哲学、启发科学思维、推动当时自然科学前进的作用,对许多自然科学家的思想产生深远的影响;而另一方面又经常停留在直观和定性阶段,不是从定量的实验事实出发,因而一些具体结论往往有很多缺陷,成为后来牛顿物理学的主要对立面,导致了广泛的争论。
笛卡儿在其他的科学领域还有不少值得称道的创见。他还提出了刺激反应说,为生理学做出了一定的贡献。
近代科学的始祖
笛卡儿是欧洲近代哲学的奠基人之一,黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。
笛卡儿在哲学上是二元论者,并把上帝看作造物主。但笛卡儿在自然科学范围内却是一个机械沦者,这在当时是有进步意义的。
笛卡儿认为:物质由微粒构成物质微粒是唯一的实体;物质的本性是其空间广延性,机械运动即位置变动是物质唯一的运动形式;一切自然现象,一切物质性质(包括色。香、硬度、热等)都是由于物质粒子的机械相互作用产生的;有了物质(空间)和(机械)运动,就能按照物质运动本身的自然规律,构造出全部世界,无须上帝照管。
这类机械论的自然观以后曾统治自然科学两个多世纪。笛卡尔不但承认物质世界的客观存在,而且承认物质运动是绝对的观点。他宣称:“给我物质和运动,我将造出这个世界。”。因此笛卡儿又是辩证法的卓越代表人物之一。
笛卡儿强调科学的目的在于造福人类,使人成为自然界的主人和统治者。他反对经院哲学和神学,认为那是“虚伪的科学”,主张重审知识,提出了怀疑一切的系统怀疑方法。但他又提出了“我思故我在”这一哲学命题,
他说:对任何事物都可怀疑,唯独对“我在怀疑”不能怀疑,这说明有一个怀疑的我(即心灵)独立存在。他更进一步指出了心灵与物质的相互差异:心灵能思维而不占空间;物质占空间而不思维;二者互不决定,互不派生。这就是笛卡儿二元论哲学的精髓。他还企图证明上帝的存在,他认为物质与心灵皆受上帝的支配,而上帝是尽善尽美的。他将物质与精神截然分开,将哲学划分为“行而上学”与“物理学”两部分。
笛卡儿是一位机械论者,他认为宇宙中无论天上还是地上,到处充满着的物质和运动,他将运动定义为位移运动(即力学运动)。他提出,运动守恒原理使宇宙处在永恒的力学运动之中。人造的机器与自然界中的物体没有本质的差别,两者所不同的是,人造机器的每一部分都是我们很明确地看到的。他相信,人体本质上是一架机器,他的机能均可以用力学加以解释。
笛卡儿的方法论对于后来物理学的发展有重要的影响。他在古代演绎方法的基础上创立了一种以数学为基础的演绎法:以唯理论为根据,从自明的直观公理出发,运用数学的逻辑演绎,推出结论。这种方法和培根所提倡的实验归纳法结合起来,经过惠更斯和牛顿等人的综合运用,成为物理学特别是理论物理学的重要方法。作为他的普遍方法的一个最成功的例子,是笛卡儿运用代数的方法的来解决几何问题,确立了坐标几何学即解析几何学的基础。
笛卡儿的方法论中还有两点值得注意。第一,他善于运用直观“模型”来说明物理现象。例如利用“网球”模型说明光的折射;用“盲人的手杖”来形象地比喻光信息沿物质作瞬时传输;用盛水的玻璃球来模拟并成功地解释了虹霓现象等。第二,他提倡运用假设和假说的方法,如宇宙结构论中的旋涡说。此外他还提出“普遍怀疑”原则。这一原则在当时的历史条件下对于反对教会统治、反对崇尚权威、提倡理性、提倡科学起过很大作用 。
笛卡儿堪称17世纪及其后的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)