高斯定理,又称为高斯通量定理,是物理学中的一个基本定理,描述了电场或磁场通过某一闭合曲面的总通量与该闭合曲面内的电荷或磁荷之间的关系。其数学表达式为:
∮S E·dA = Q/ε0
其中,S为闭合曲面,E为电场强度,dA为微小面积,Q为闭合曲面内的总电荷,ε0为真空介质中的介电常数。
该定理的物理意义是,电场经过曲面的总流量等于该曲面内的电荷总数。换句话说,该定理可以用于求解闭合曲面内的电场强度,只需要知道该闭合曲面内的电荷分布情况即可。
高斯定理的应用非常广泛,特别是在静电学和电动力学中。例如,可以用高斯定理来证明库仑定律,即两个静电荷之间的电力与它们之间的距离的平方成反比。此外,还可以用高斯定理来推导出电场的其他基本概念,如电通量密度和电势能等。
总之,高斯定理是物理学中非常重要的一条定理,它的应用不仅局限于电场,还涉及到磁场和流体力学等领域。
#课件# 导语课件制作本身就是作者综合素养的一种体现,它显现出制作者对教育、教学、教材改革方向的把握,对课堂教学的理解,对现代教育技术的领悟。因此教师在设计课件时一定要吃透教学内容,设计出符合教学的方案用于课件。下面是 整理分享的八年级下册物理课件,欢迎阅读与借鉴,希望对你们有帮助!
滑轮
教学目标:
知识与技能:
使学生借助已有知识:理解滑轮的原理,知道滑轮的作用。
过程与方法:
由问题的提出、猜测、经过实验探究,使学生亲身经历物理问题的研究过程。
情感、态度与价值观:
体验科学探究的乐趣,学习科学的探究方法,从而领悟科学的思想和精神,培养抽象思维和论证问题的能力。通过对实验数据的收集,培养严肃认真的操作态度及科学分析实验数据的能力。
教学重点:定滑轮、动滑轮的作用。
教学器材:定滑轮、绳子、钩码、弹簧测力计
分组实验器具:动滑轮、绳子、钩码、弹簧测力计、铁架台、刻度板
教学方法:采用实验探究、讨论归纳的方法。
教学过程:
一、复习提问
1.杠杆有哪三种?各有什么特点?举例说明。
2.剪铁用的剪刀和镊子是省力杠杆还是费力杠杆?
教师出示实物并进行演示,并画出这两个杠杆的示意图。要求学生正确画出它们的力臂,讲清道理,说明结论。
剪铁用剪刀和镊子两杠杆示意图如图所示。
二、新课引入
教师先举一个滑轮的实例,再要求学生举滑轮的例子,根据使用时滑轮的不同情况进行分类(即按定滑轮和动滑轮分类)。
提问它们的特点是什么,由此给出定义:滑轮是一个周边有槽、并可以绕轴转动的轮子。
教师给出滑轮的分类。
滑轮有两种:定滑轮和动滑轮。使用时滑轮的位置固定不变的叫做定滑轮,使用时滑轮的位置跟被拉动的物体一起运动的叫做动滑轮。
再举些滑轮实例,可连接录像。
1、定滑轮
观察定滑轮。定滑轮工作时,它的轴固定不动。
举例:如旗杆顶部的装置为定滑轮。
(2)提问:使用定滑轮有什么特点?演示实验:
①称量钩码的重力;
②演示如图所示的实验,匀速拉动弹簧测力计,物体上升,拉力的方向改变,但弹簧测力计的示数不变,特点是G=F。使用定滑轮吊起物体时,可以改变力的作用方向,达到操作方便的目的。
提问:使用定滑轮不能省力,那么能否省距离?能否省功?
按照下图进行演示。使学生清楚地看到:“动力作用点移动的距离s与物体上升高度h相等,使用定滑轮不能省力,也不能省距离。”由此得出使用定滑轮不能省功。
2、动滑轮
(1)教师边讲边演示动滑轮提升重物。
要求学生讨论分析,此时提起重物使用的滑轮与刚才演示实验使用的定滑轮有何不同点?
教师在学生讨论后小结:动滑轮工作时,轴和重物一起移动。另外用力方向也不同,用定滑轮时拉力方向是向下的,使用动滑轮提升重物时拉力的方向是向上的。
(2)提问:使用动滑轮有什么好处?动滑轮中绳的拉力和做功情况怎样?(3)组织学生实验,按课本实验探究,参照下图进行实验。
由于研究定滑轮时教师已演示过实验,学生可以自己设计出实验步骤。
说明:重物用2个钩码表示,有利于分析数据。用弹簧秤测出钩码重。读取弹簧秤的示数时,跨过动滑轮的两条绳要竖直、平行。
学生实验,教师巡回指导。学生实验完毕后,教师请几组学生分别将自己的一组数据填到教材中的表格中,分析学生数据。
(4)总结:
使用动滑轮提升钩码,弹簧秤的示数约是钩码重的二分之一。
两根绳子吊着重物和滑轮,这两根绳子的力之和约等于钩码的重力,符合平衡力的原理。
动力作用点移动的距离s是物体上升高度H的2倍。
使用动滑轮不能省功。
说明:在提升钩码的过程中也把动滑轮提升起来了,当钩码重远大于动滑轮重时,动滑轮才可忽略不计,从而得出使用动滑轮可以省一半力的结论。
三、课堂小结:认识定滑轮、动滑轮。
四、实践活动建议:“发展空间”中的“我的设计”。
五、板书
第二节滑轮
一、定滑轮
1.滑轮的位置固定不变。
2.不省力,可以改变力的方向。
3.使用定滑轮不省功。
二、动滑轮
1.滑轮的位置跟被拉动的物体一起运动。
2.可以省一半力,但不能改变用力方向。
3.使用动滑轮工作,不省功。
《库仑定律》
课题人教版《普通高中课程标准实验教科书物理(选修3-1)》第一章第二节《库仑定律》
课时1学时
三维目标
知识与技能:
1知道点电荷的概念,理解并掌握库仑定律的含义及其表达式;
2会用库仑定律进行有关的计算;
3知道库仑扭称的原理。
过程与方法:
1通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法;
2通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。
情感、态度和价值观:
1通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义;
2通过静电力和万有引力的类比,让学生体会到自然规律有其统一性和多样性。
教学重点
1建立库仑定律的过程;
2库仑定律的应用。
教学难点
库仑定律的实验验证过程。
教学方法
实验探究法、交流讨论法。
教学过程和内容
引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。
库仑定律的发现>
活动一:思考与猜想
同学们,电荷间的作用力是通过带电体间的相互作用来表现的,
因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。
早在300多年以前,伟大的牛顿在研究万有引力的同时,就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。
(问题1)大家对研究对象的选择有什么好的建议吗?
在静电学的研究中,我们经常使用的带电体是球体。
(问题2)带电体间的作用力(静电力)的大小与哪些因素有关呢?
请学生根据自己的生活经验大胆猜想。
定性探究>电荷间的作用力与影响因素的关系
实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。
(提示)我们的研究到这里是否可以结束了?为什么?
这只是定性研究,应该进一步深入得到更准确的定量关系。
(问题3)静电力F与r,q之间可能存在什么样的定量关系?
你觉得哪种可能更大?为什么?(引导学生与万有引力类比)
活动二:设计与验证
实验方法>
(问题4)研究F与r、q的定量关系应该采用什么方法?
控制变量法——(1)保持q不变,验证F与r2的反比关系;
(2)保持r不变,验证F与q的正比关系。
实验可行性讨论>
困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)
困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)
(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。
——这说明了什么?(说明球接触后等分了电荷)
(追问)现在,你有什么想法了吗?
实验具体操作>定量验证
实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。
得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。
启示一:类比猜想的价值
读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克•吐温曾说“科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”。科学家以广博的知识和深刻的洞察力为基础进行的猜想,才是有创造力的思维活动。
然而,英国物理史学家丹皮尔也说“自然如不能被目证那就不能被征服!”
启示二:实验的精妙
1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律——库仑定律。)
讲解库仑定律>
1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
2.数学表达式:
(说明),叫做静电力常量。
3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);
(2)静止的;(3)点电荷。
(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:
达标训练>
例题1:(通过定量计算,让学生明确对于微观带电粒子,因为静电力远远大于万有引力,所以我们往往忽略万有引力。)
(过渡)两个点电荷的静电力我们会求解了,可如果存在三个电荷呢?
(承前启后)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此,多个点电荷对同一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的矢量和。
例题2:(多个点电荷对同一点电荷作用力的叠加问题。一方面巩固库仑定律,另一方面,也为下一节电场强度的叠加做铺垫。)
(拓展说明)库仑定律是电磁学的基本定律之一。虽然给出的是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的。所以,如果知道了带电体的电荷分布,就可以根据库仑定律和平行四边形定则求出带电体间静电力的大小和方向了。而这正是库仑定律的普遍意义。
本堂小结>(略)
课外拓展>
1课本第8页的“科学漫步”栏目,介绍的是静电力的应用。你还能了解更多的应用吗?
2万有引力与库仑定律有相似的数学表达式,这似乎在预示着自然界的和谐统一。课后请同学查阅资料,了解自然界中的“四种基本相互作用”及统一场理论。
《气体的等温变化》
教学内容:人教版的普通高中课程标准实验教科书选修3-3教材第八章气体第一节气体的等温变化。
教学设计特点:突出物理规律形成的感性基础和理性探索的有机结合;通过问题驱动达成教目标的有效实现;重视物理从生活中来最终回到生活中去。
1.教学目标
11知识与技能
(1)知道什么是等温变化;
(2)掌握玻意耳定律的内容和公式;知道定律的适用条件。
(3)理解等温变化的P—V图象与P—1/V图象的含义,增强运用图象表达物理规律的能力;
12过程与方法
带领学生经历探究等温变化规律的全过程,体验控制变量法以及实验中采集数据、处理数据的方法。
13情感、态度与价值观
让学生切身感受物理现象,注重物理表象的形成;用心感悟科学探索的基本思路,形成求实创新的科学作风。
2教学难点和重点
重点:让学生经历一次探索未知规律的过程,掌握一定质量的气体在等温变化时压强与体积的关系,理解p-V图象的物理意义。
难点:学生实验方案的设计;数据处理。
3教具:
塑料管,乒乓球、热水,气球、透明玻璃缸、抽气机,u型管,注射器,压力计。
4设计思路
学生在初中时就已经有了固体、液体和气体的概念,生活中也有热胀冷缩的概念,但对于气体的三个状态参量之间有什么样的关系是不清楚的。新课程理念要求我们,课堂应该以学生为主体,强调学生的自主学习、合作学习,着重培养学生的创新思维能力和实证精神。这节课首先通过做简单的演示实验,让学生明白气体的质量、温度、体积和压强这几个物理量之间存在着密切的联系;然后与学生一道讨论实验方案,确定实验要点,接着师生一道实验操作,数据的处理,得出实验结论并深入讨论,最后简单应用等温变化规律解决实际问题。
5.教学流程:(略)
6.教学过程
6l课题引入
演示实验:变形的乒乓球在热水里恢复原状
乒乓球里封闭了一定质量的气体,当它的温度升高,气体的压强就随着增大,同时体积增大而恢复原状。由此知道气体的温度、体积、压强之间有相互制约的关系。本章我们研究气体各状态参量之间的关系。
对于气体来说,压强、体积、温度与质量之间存在着一定的关系。高中阶段通常就用压强、体积、温度描述气体的状态,叫做气体的三个状态参量。对于一定质量的气体当它的三个状态参量都不变时,我们就说气体处于某一确定的状态;当一个状态参量发生变化时,就会引起其他状态参量发生变化,我们就说气体发生了状态变化。这一章我们的主要任务就是研究气体状态变化的规律。
出示课题:第八章气体
师问:同时研究三个及三个以上物理量的关系,我们要用什么方法呢?请举例说明。
生:控制变量法
比如要研究压强与体积之间的关系,需要保持质量和温度不变,再如要研究气体压强与温度之间的关系,需要保持质量和体积不变。
师:我们这节课首先研究气体的压强和体积的变化关系。
我们把温度和质量不变时气体的压强随体积的变化关系叫做等温变化。出示本节课题:
第一节气体的等温变化
62新课进行
一、实验探究
1学生体验压强与体积的关系得出定性结论
全体同学体验:每个同学用力在口腔中摒住一口气,然后用手去压脸颊,你会怎么样,思考为什么?
小组体验:每桌同学用一只小的注射器体验:一个同学用手指头封闭一定质量的气体,另一个同学缓慢压缩气体,体积减小时第一个同学的手指有什么感觉,说明什么呢?反之当我们拉动活塞增大气体体积时,手指有什么感觉,说明什么呢?要求学生体验并说出自己的感觉和结论(即压缩气体,体积减小,压强增大;反之,体积增大压强减小)
2猜想
引导学生猜想:我们猜想:在一般情况下,一定质量的气体当温度不变时,气体的压强和体积之间可能有什么定量关系呢
学生:压强与体积成反比例关系(从最简单的定量关系做起)
师:一定质量的气体在发生等温变化时压强与体积是否是成反比例的关系,需要我们进一步研究这节课我们用实验探究这一课题。
3实验验证:
(1)实验设计:
首先,要求学生完整的复述我们的实验目的:探究一定质量的气体在温度不变情况下压强与体积之间的定量关系
要求学生根据放在桌上的器材,思考试验方案,并思考以下几个问题:
问题1:本实验的研究对象是什么?如何取一定质量的气体?实验条件是什么?如何实现这一条件
学生讨论回答:研究对象是一定质量的气体,用活塞封闭一定质量的气体在注射器内以获取,实验条件是气体质量不变,气体温度不变;活塞加油增加密闭性,推拉活塞改变体积和压强;不用手握注射器;缓慢推拉活塞,稳定后再读数。
(或者有其他的实验方案)
问题2:数据收集本实验中应该要收集哪些数据用什么方法测量?
学生:要收集气体的不同压强和体积,用气压计可以测量压强,注射器上面的读数可以得到体积。
问题3:数据处理怎样处理上述数据才能得到等温条件下压强与体积之间的正确关系呢?(学生讨论并回答)
学生:常用数据处理办法有计算法,图象法等。
老师:能不能说得更具体一点呢?
学生:就是先把V和P乘起来,看看各组的乘积是否相等(或者近似相等),从而得到结论;图像法就是以V为横坐标,P为纵坐标,在用描点作图法,把得到的数据作到坐标系中,再连线,看图像的特点,从而得到两者的定量关系。
再让一个学生把我们刚才分析得到的比较好的实验方法再复述一次,然后师生互助完成实验。
2、实验过程:
师生共同完成实验:老师推、拉活塞,一名学生读取数据,另一名学生设计记录表格并记录数据。
数据处理:①简单计算找压强和体积之间的关系
②学生描绘图象(提示作P-V图像)能否得出结论?
总结提问:各小组是如何处理数据的,结论如何?(实物投影展示)
问题4:若P—V图象为双曲线的一支,则能说明P与V成反比。但能否确定我们做出就一定是是双曲线的一支呢?(还是猜测)我们怎样进一步P和V之间的关系呢?
教师:有一种思想叫做转化的思想。若P—V图象为一双曲线,那么P—1/V图象是什么样子?(过原点的一条直线)那我们就再作一条P—1/V图象看看吧!
(师)计算机拟合:把P—V图象转化为P—1/V图象。我们看到一定质量的气体,在温度不变的情况下,P—1/V图象是一条(几乎)过原点的直线,表明压强与体积成反比。
(三)实验结论:在误差允许的范围内,一定质量的气体在温度不变的条件下压强与体积成反比。(学生叙述)
师:大家看到我们作出来的这条直线,还不是很准确,大家可以分析在实验过程中有哪些地方可能引起实验误差?
学生讨论分析产生误差的原因
早在17世纪,英国科学家玻意耳和法国科学家马略特分别通过更严谨的实验研究得出了这个结论,被称为玻意耳定律。
二、玻意耳定律
1、内容:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。
2、公式:PV=C(常量)或P1V1=P2V2(其中P1V1和P2V2分别为气体在两个状态下的压强和体积)
3、图象:P—1/V图象:过原点的直线——等温线
P—V图象:双曲线的一支——等温线
三、拓展思考
问题5:在同一温度下,取不同质量的同种气体为研究对象,PV乘积C一样吗?即对不同的气体,C是一个普适常量吗?(学生思考不能求解或回答不一样)
师问:怎样才能得到正确的结果呢?(猜想—实验验证)
学生:改变气体的质量用同样的方法重新测量,测量数据记录在同一表格中,通过简单的计算就能得到结果。
结论:不一样。质量越大,PV乘积越大。P—V图象离坐标轴越远,P—1/V图象斜率越大。
问题6:取相同质量的同种气体,在不同温度下,作出的P—V图象是否一样?(学生猜想——验证)
结论:不一样。温度较高时,PV乘积较大,P—V图象离坐标轴越远,P—1/V图象斜率较大。
四、玻意耳定律的应用之定性解释:
问题一:气球涨大视频。学生分析。
问题二:小实验。装水的瓶子下有小洞,当盖子打开时水会喷出,然后合上盖子则水就不会持续地流出了。
解释:盖子打开时,小孔上方的压强始终大于外面的压强,所以水会喷出,当盖子盖上时,水的上方被封闭了一定质量的气体,当有水流出后,瓶中空气的体积变大,根据波意耳定律压强变小,当孔上方压强小于外部大气压时,水就流不出去了。
五.课堂小结
1方法①研究多变量问题时用控制变量法
②实验探究方法:猜想——验证——进一步猜想——再验证——得到结论
2知识玻意耳定律:一定质量的某种气体,在温度不变的条件下压强P与体积V成反比。
六.教学后记:
1.课堂上让学生从自身体验开始,充分参与科学探究的全过程,熟悉科学探究未知世界的一般流程,并坚持渗透实事求是和精益求精的科学精神。
2.教学中对应用数学方法处理物理数据,从而得出简洁的物理学规律的过程,让学生多练习多体验,以使学生真正掌握,并且多给时间让学生从图像中找出规律,以提高学生认识图像与应用图像分析问题的能力。
3.教学中学生参与小实验及视频材料能很好地吸引学生的注意力,提高教学的有效性。
4物理来源于社会生活实践,反之也能解释自然界及生活和生产中的相关现象,有效杜绝物理和生活相脱节的现象发生也有利于学生正确物理观的形成。
十大恐怖物理定律分别为:牛顿第一定律,牛顿第二定律,牛顿第三定律,万有引力定律,热力学第一定律,动量守恒定律,热力学第二定律,热力学第三定律,相对论定律,运动极限定律。这十大物理定律揭示了物理学的真正秘密,打破了以前人们固执的思维。
一、牛顿第一定律:物体之间存在惯性,惯性只由物体的质量决定。
二、牛顿第二定律:合力与物体加速度的关系。当物体质量不变时,合力与加速度成正比。
三、牛顿第三定律:物体之间的力是相互的,别人打自己也会伤到自己。
四、万有引力:在万物之间形成,不仅是行星之间,人与人之间,任何两个有质量的物体之间都会形成引力。
五、热力学第一定律:无论做什么运动,都会遵循能量守恒,能量不会受到任何影响。
六、动量守恒定律:比能量守恒定律更具有普适性。即使失去能量,动量也永远不会失去。
七、热力学第二定律:揭示了宇宙的秘密。科学家认为,一切都在向更混乱的方向运动,一切有序的活动最终都会变成无序的运动。
八、热力学第三定律:引出绝对零度的概念,绝对零度是宇宙中的绝对零点。如果达到绝对零点,宇宙中所有的运动都会停止,甚至分子的不规则运动也会停止。
九、相对论:由著名科学家爱因斯坦提出的。相对论打破了牛顿的绝对时空观,有效地证明了物体的速度和时空的关系。
十、运动极限定律:光子是能量最小的基本单位,光是宇宙中的能量来源。宇宙中光速是恒定的,不会受到其他物质的干扰,会一直保持恒定的速度。
古人用大量的时间发现了这些物理学中的定律,甚至说穷其一生都在这方面做着努力,然后他们才发现在这样一个定律但是我们后人学习的时候,几乎就不需要花费什么时间去验证他,我们只需要知道它的内容是什么,然后他又在现实生活中有什么样的应用。
最开始发现这些物理学定律的时候是人类懵懂无知的时候,就是那个时候对世界的运转规则还没有太多的了解,就像狮子吃天无从下口,不知道从哪开始这个才是最困难的,这些物理学家穷其一生可能也没有几个特别大的成就,有人甚至耗费了半生的时间在物理学这方面,但是也没有获得诺贝尔奖之类的伟大的成就,所以真正能成功的被人们所熟知的物理学家是少数,正是这些物理学家她们发明的东西,发现的定律让世界的生产水平在快速的进步的。
我们掌握这些物理学定律并不需要知道这些定律是怎么来的,至少大部分情况下你都不必知道,你只需要知道它是怎么用的,它的内容有什么就可以了,比如牛顿的三大定律,万有引力,这些物理学中非常非常基础的定律,在初中高中的时候就学过,老师有告诉你这些东西是他们怎么发明的吗?难道你觉得牛顿发现了万有引力,真的就是因为一个苹果砸了他的脑袋,他就发明了吗?故事只是故事而已,所以你不需要知道那么多,你只要知道这些定律的内容,以及它对生产力会造成什么样的帮助。
我们现在是站在巨人的肩膀上,人类文明能够快速的发展到现在也正是这样的原因,我们存在知识上的代际遗传,这是我们上面那一代人乃至很久很久之前的人,他们所发明的知识,实践了很久都认为对的东西,他们可以通过文字或者其他的形式流传下来,我们可以掌握这些知识,没有必要自己再去验证,我们就能在这个基础上快速去探索这个世界新的规律。
#高二# 导语高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知的主动选择。 高二频道为你整理了《人教版高二年级物理教学设计》,助你金榜题名! 篇一 三维目标
知识与技能:
1知道点电荷的概念,理解并掌握库仑定律的含义及其表达式;
2会用库仑定律进行有关的计算;
3知道库仑扭称的原理。
过程与方法:
1通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法;
2通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。
情感、态度和价值观:
1通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义;
2通过静电力和万有引力的类比,让学生体会到自然规律有其统一性和多样性。
教学重点
1建立库仑定律的过程;
2库仑定律的应用。
教学难点
库仑定律的实验验证过程。
教学方法
实验探究法、交流讨论法。
教学过程和内容
引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。
库仑定律的发现>
活动一:思考与猜想
同学们,电荷间的作用力是通过带电体间的相互作用来表现的,
因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。
早在300多年以前,伟大的牛顿在研究万有引力的同时,就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。
(问题1)大家对研究对象的选择有什么好的建议吗?
在静电学的研究中,我们经常使用的带电体是球体。
(问题2)带电体间的作用力(静电力)的大小与哪些因素有关呢?
请学生根据自己的生活经验大胆猜想。
定性探究>电荷间的作用力与影响因素的关系
实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。
(提示)我们的研究到这里是否可以结束了?为什么?
这只是定性研究,应该进一步深入得到更准确的定量关系。
(问题3)静电力F与r,q之间可能存在什么样的定量关系?
你觉得哪种可能更大?为什么?(引导学生与万有引力类比)
活动二:设计与验证
实验方法>
(问题4)研究F与r、q的定量关系应该采用什么方法?
控制变量法——(1)保持q不变,验证F与r2的反比关系;
(2)保持r不变,验证F与q的正比关系。
实验可行性讨论>
困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)
困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)
(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。
——这说明了什么?(说明球接触后等分了电荷)
(追问)现在,你有什么想法了吗?
实验具体操作>定量验证
实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。
得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。
启示一:类比猜想的价值
读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克·吐温曾说“科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”。科学家以广博的知识和深刻的洞察力为基础进行的猜想,才是有创造力的思维活动。
然而,英国物理史学家丹皮尔也说“自然如不能被目证那就不能被征服!”
启示二:实验的精妙
1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律——库仑定律。)
讲解库仑定律>
1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。
2.数学表达式:
(说明),叫做静电力常量。
3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);
(2)静止的;(3)点电荷。
(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:
达标训练>
例题1:(通过定量计算,让学生明确对于微观带电粒子,因为静电力远远大于万有引力,所以我们往往忽略万有引力。)
(过渡)两个点电荷的静电力我们会求解了,可如果存在三个电荷呢?
(承前启后)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此,多个点电荷对同一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的矢量和。
例题2:(多个点电荷对同一点电荷作用力的叠加问题。一方面巩固库仑定律,另一方面,也为下一节电场强度的叠加做铺垫。)
(拓展说明)库仑定律是电磁学的基本定律之一。虽然给出的是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的。所以,如果知道了带电体的电荷分布,就可以根据库仑定律和平行四边形定则求出带电体间静电力的大小和方向了。而这正是库仑定律的普遍意义。
篇二
一、教材分析与教学设计思路
1教材分析
互感和自感现象是电磁感应现象的特例。学习它们的重要性在于他们具有实际的应用价值。同时对自感现象的观察和分析也加深了对电磁感应产生条件的理解。
2学情分析
互感现象法拉第发现电磁感应现象的第一个成功试验就是互感现象。学生前面探究感应电流条件中也做过类似的试验,已有感性认识。教学要求是知道互感现象。因此教学中教师可做些有趣的演示实验,引导学生利用已学知识进行成因分析,明确尽管两个线圈之间并没有导线连接,却可以使能量由一个线圈传递到另一个线圈。这就是互感现象
自感现象学生从前面学习的中知道当穿过回路的磁通量发生变化时,会产生感应电动势,这些结论都是通过实验观察得到的,没有理论证明。但同学们观察到的实验都是外界的磁场引起的回路磁通量的变化,善于动脑筋的同学就会产生这样的思考:当变化的电流通过自身线圈,使自身回路产生磁通量的变化,会不会在自己的回路产生电磁感应现象呢?所以这节课是学生在已有知识上产生的必然探求欲望,教师应抓住这一点。设计探究性课例。自感电动势对电流变化所起的“阻碍”作用,以及自感电动势方向的是学生学习的难点。为突破难点,教师应通过理论探究和实验验证相结合的方法进行教学,为使效果明显,本人特自制教学仪器。
3教学设计思路
为突出物理知识的形成过程和应用过程的科学方法,本教学设计采取“实验体验-理论探究”和“猜想、假设、理论预测、设计实验、验证、得出结论”相结合的思路分别研究断电自感和通电自感。以利于提高学生分析问题、解决问题的能力。
为突出物理知识与生活的联系,突出在技术、社会领域的应用,本人设计了让学生体验自感触电,并在探究的过程中,让学生估算自己的触电电压(约150V),使学生有真实感。学生分组实验,模拟利用自感点火,使学生知道物理知识的价值。
二、教学目标
(一)知识与技能
1.了解互感现象和自感现象,以及对它们的利用和防止。
2.能够通过电磁感应的有关规律分析通电、断电自感现象的成因,并能利用自感知识解释自感现象。
3.了解自感电动势的计算式,知道自感系数是表示线圈本身特征的物理量,知道它的单位。
4.初步了解磁场具有能量。
(二)过程与方法
1通过人体自感实验,增强学生的体验真实感。激发学生探究欲望
2.通过理论探究和实验设计,培养学生科学探究的方法。加深对电磁感应现象的理解。
(三)情感、态度与价值观
1.通过学生体验,激发学生对科学的求知欲和兴趣。
2.理解互感和自感是电磁感应现象的特例,让学生感悟特殊现象中有它的普遍规律,而普遍规律中包含了特殊现象的辩证唯物主义观点。
根据上述分析与思路确定如下的教学重点与难点。
三、重难点
重点:(1)自感现象产生的原因;(2)自感电动势的方向;(3)自感现象的应用
难点:自感电动势对电流的变化进行阻碍的认识。
四、教学方法
本节课教学采用“引导--探究”教学法,该教学法以解决问题为中心,注重分析问题、解决问题能力的培养,充分发挥学生的主动性。其主要程序是:猜想→假设→理论探究科学预测→设计实验→实验验证→得出结论→实际应用。它不仅重视知识的获得,而且更重视学生获取知识的过程及方法,更加突出了学生的学,学生学得主动,学得积极。真正体现了“教为主导,学为主体”的思想。
五、学法指导;课前提出问题,让学生提前思考,见后。
六、课时分配:2课时;本课时只学习第一课时。
七、教学媒体
教师用:多媒体课件;互感变压器;自制自感现象演示仪;干电池;mp3;音箱;变压器;小线圈;小灯泡;导线若干,
学生用(8人一组):带铁芯的线圈;抽掉打火装置的打火机;干电池(6V);电键;导线等。
八、教学流程(第一学时)
(一)互感
情境创设:利用可拆变压器进行实验,原线圈接在电源,使副线圈电路中的灯泡发光
提出问题:两个线圈之间并没有导线连接,灯泡为什么能发光?
理论探究:引导学生通过已学知识分析,学生思考后解释原因。
引入课题:互感现象。
1.当一个线圈中电流变化,在另一个线圈中产生感应电动势的现象,称为互感。
互感现象中产生的感应电动势,称为互感电动势。
2.应用互感:变压器;收音机的“磁性天线”。
演示:声音电信号互感现象,让互感线圈一个接mp3,一个接音放。
3.减小互感:互感现象可发生于任何两个相互靠近的电路之间。在电力工程和电子电路中,互感现象有时会影响电路的正常工作,要采取措施屏蔽。例举数据线。
过渡语:当一个线圈的电流变化时,它的变化磁场在邻近的电路中激发了感应电动势,那么它会不会在自身的线圈中也激发感应电动势呢?
(二)自感
情景创设:让几位同学按如图1“串联”在电路里,电源4节干电池
操作方法:
.闭合开关前,学生体验-―――"无感觉";
.闭合开关后,学生体验-―――"无感觉";
.断开开关瞬间,学生突然受到电击-―――"迅速收回双手”
引入课题四节干电池何以使这么多同学同时受到电击?学生对此引发的思维疑问和惊奇而提出问题,
提出问题:1电源断开了,电从何处激发而来?2是发生电磁感应吗?3假若是,能解释上面的现象吗?
学生探究,学生交流后解释原因,Ppt演示。学生估算自己所承受的瞬间电压。
得出结论1:当电流减少时,线圈中能产生电磁感应现象。感应电流方向与原电流方向相同,阻碍电流的减少,推迟了电流减少的时间。
再次提出问题:电流增大时,又会是怎样的情景呢?
猜想:可能是线圈发生电磁感应现象
假设:假设线圈发生电磁感应现象
理论分析:感应电动势阻碍电流的增加,电流不会立即达到,只能缓慢增加,即有延时性
鼓励学生设计实验:选出学生设计的通电自感实验电路图如下?请大家分析是否合理?如果不合理,请提出改进方案
分析讨论:
方案1如图甲(无法判断。不合理)
方案2如图乙(开关闭合瞬间灯泡能发光。由于灯泡的明暗快慢变化显示了线圈中电流的变化情况,但是一个灯泡没有对比,无法说明问题,无法说明问题。不合理)
方案3如图丙(同规格灯泡,将调到既能看到延时,又能对比,合理)
方案3预测:开关闭合瞬间,灯立即变亮,逐渐变亮的现象
分析原因可知由楞次定律,在通电瞬间,线圈电流增大时,穿过线圈的磁通量增加,线圈中产生生感应电动势(自感电动势),它阻碍了线圈中电流的增大,推迟了电流达到常值的时间,因此出现逐渐变亮的现象。这种阻碍有别于阻止。最终达到正常值。
进行实验,证实猜测。
得出结论2:与预测相同
当电流增加时,线圈中能产生电磁感应现象。感应电流方向与原电流方向相反,阻碍电流的增加,推迟了电流增加的时间。
引出定义:
自感:1.由于导体(如:线圈)本身的电流发生变化而产生的电磁感应现象,叫自感现象。
2.自感现象中产生的电动势叫自感电动势。
自感电动势的作用:阻碍导体中自身的电流变化。
注意:“阻碍”不是“阻止”,电流原来怎么变化还是怎么变,只是变化变慢了,即对电流的变化起延迟作用。
自感的利用与防护:利用:自感现象在各种电器设备和无线电技术中有广泛的应用,自感线圈是交流电路的重要元件。以后的学习会讲到。
例日光灯等;燃气灶打火制造精密电阻等
防护:变压器、电动机等器材都有很大的线圈,当电路断开时会产生很大的电动势,使开关产生电火花,引起人身伤害,因此电动机等大功率用电器开关把开关浸在绝缘油中,避免出现电火花。
(三)、学生分组实验:模拟打火装置或没有防护措施的电动机开关断开的情景
(四)、学以致用:问题:1画出断电前后,通过线圈电流
2断电时灯泡将做出怎样的反应
实验验证。
(五)、要点回顾:
要点1无论是外界引起的磁通量变化,还是自身引起的磁通量变化,只要穿过回路的磁通量发生了变化,都能产生感应电动势(这是我们对电磁感应的进一步理解)
要点2自感电动势总是阻碍电流的变化。显示出“电惯性”其方向与电流方向的关系为:增反减同
要点3自感的效果是延迟了电流变化的时间
科学方法经历:猜想、假设、理论推理、设计实验、验证、得出结论。
结束语:上面我们研究了自感电动势的方向,那么自感电动势的大小与什么因素有关呢?下一节继续探究。
(六)、作业,查阅资料,了解电感镇流器日光灯的构造和分析镇流器工作原理
(七)教学反思:本节课的课题是《互感与自感》,教学目标顺利达成,教学中较好的体现了新课程理念,课堂气氛活跃,学生学习兴趣浓厚,较好的突破了教学难点。这节课的设计比较新颖,不拘泥于教材。加强了学生的体验,互动和探究。实践证明有很强的可行性。具体如下。
对于互感,我通过变压器互感使灯泡发光和通过MP3音乐互感使音箱发音,使学生通过看和听真切的感受到了互感的存在,从生活走向物理,大大诱发了学生的学习兴趣。
对于自感部分的教学,我做了较大的改进。书上是直接给出了两个通电和断电实验,而我却采用了让学生先做了一个“有惊无险”的断电自感实验,使学生体验深刻,很好的激起了学生的探究欲望。这个实验的另一优点是,学生参与面广,师生互动,且器材易得,改装方便。
对于通电自感,与教材相比,我也做了很大的改进。把这一内容设计成了探究课。通过猜想、设计实验、预测结果、实验验证、得出结论的方法,使学生经历了比较完整的科学探究过程,也使学生对知识的理解和能力的提高很好地结合起来。
最后,又通过学生分组实验,利用断电自感,模拟打火装置,使物理走向社会,学生感受到了学物理的意义。同时进一步提高了学物理的兴趣。
三大守恒定律:质量,动量,能量。
更前沿的物理学我不清楚,但是大部分经典物理学都是围绕着三大守恒定律展开的。比如传热学,流体力学,固体力学,传质学等,最基本的控制方程都是通过守恒方程得到的。
总之,质量,动量,能量守恒应该适用于所有领域。
初中物理总复习提纲(一)
声学
5 一切正在发声的物体都在振动,振动停止,发声停止
6 声音靠介质传播, 声音在15℃空气中的传播速度是340米/秒, 真空不能传声
热学
7 物体的冷热程度叫温度, 测量温度的仪器叫温度计, 它的原理是利用了水银、酒精、煤油等液体的热胀冷缩性质制成的
8 温度的单位有两种: 一种是摄氏温度, 另一种是国际单位, 采用热力学温度而摄氏温度是这样规定的:把冰水混合物的温度规定为0度, 把一标准大气压下的沸水规定为100度, 0度和100度之间分成100等分, 每一等分为1摄氏度 -6℃读作负6摄氏度或零下6摄氏度
9 使用温度计之前应: (1)观察它的量程; (2)认清它的最小刻度
10 在温度计测量液体温度时, 正确的方法是: (1)温度计的玻璃泡要全部浸入被测液体中; 不要碰到容器底或容器壁; (2)温度计玻璃泡浸入被测液体后要稍候一会儿, 待温度计的示数稳定后再读数; (3)读数时玻璃泡要继续留在被测液体中, 视线与温度计中的液柱上表面相平
11 物质从固态变成液态叫熔化(要吸热), 从液态变为固态叫凝固(要放热)
12 固体分为晶体和非晶体, 它们的主要区别是晶体有一定的熔点, 而非晶体没有
13 物质由液态变为气态叫汽化(吸热), 气态变为液态叫液化(放热) 汽化有两种方式: 蒸发和沸腾 沸腾与蒸发的区别是: 沸腾是在一定的温度下发生的, 在液体表面和内部同时发生的剧烈的汽化现象, 而蒸发是在任何温度下发生的, 只在液体表面发生的汽化现象
14 要加快液体的蒸发, 可以提高液体的温度, 增大液体的表面积和加快液体表面的空气流动速度
15 液体沸腾时的温度叫沸点, 沸腾时只吸收热量,温度不变,有时因为液体中含杂志沸点会有适当变化,水的沸点是100℃
16 要使气体液化有两种方法: 一是降低温度, 二是压缩体积
17 物质从固态变为气态叫气化(吸热), 从气态变为液态叫液化(放热)
光学
18 光在均匀介质中是沿直线传播的光在真空(空气)的速度是3×100000000 米/秒 影子、日食、月食都可以用光在均匀介质中沿直线传播来解释
19 光的反射定律:反射光线与入射光线、法线在同一平面内, 反射光线与入射光线分居法线两侧, 反射角等于入射角
20 平面镜的成像规律是: (1)像与物到镜面的距离相等; (2)像与物的大小相等; (3)像与物的连线跟镜面垂直,(4)所成的像是虚像。
21 光从一种介质斜射入另一种介质, 传播方向一般会发生变化, 这种现象叫光的折射
22 凸透镜也叫会聚透镜,如老花镜 凹透镜也叫发散透镜, 如近视镜
23 照相机的原理是:凸透镜到物体的距离大于2倍焦距时成倒立、缩小的实像
24 幻灯机、投影仪的原理:物体到凸透镜的距离在2倍焦距和一倍焦距之间时成倒立、放大的实像
25 放大镜、显微镜的原理是:物体到凸透镜的距离小于焦距时,成正立、放大的虚像
26天文望远镜分托普勒望远镜和伽利略望远镜。托普勒望远镜的原理是目镜焦距小,物镜焦距大,物镜呈倒立缩小的实像几乎在焦点上,从而显倒立缩小实像,目镜在此基础上呈放大的虚像,即f1+f2。伽利略望远镜目镜呈放大虚像,即f1-f2
力与运动
2 长度的测量工具是刻度尺, 主单位是米
3 物体位置的变化叫机械运动, 最简单的机械运动是匀速直线运动
4 速度是表示物体运动快慢的物理量,速度等于运动物体在单位时间内通过的路程 用公式表示: V=S/t ,速度的主单位是米/秒
26 物体中含有物质的多少叫质量质量的国际主单位是千克,测量工具是天平
27 天平的使用方法:(1)把天平放在水平台上,被测物放在左盘里,砝码放在右盘里
28某种物质单位体积的质量叫做这种物质的密度密度的国际主单位是千克/米3 , 计算公式是ρ= 密度是物质本身的一种属性,它不随物体的形状、状态而改变,也不随物体的位置而改变一杯水和一桶水的质量不同,体积不同,但密度是相同的1升=1分米3,1毫升=1厘米3,1克/厘米3=1000千克/米3
29 水的密度是10×103千克/米3, 它表示的物理意义是:1米3的水的质量是10×103千克
30 用量筒量杯测体积读数时,视线要与液面相平
31 力的作用效果:一是改变物体的运动状态, 二是使物体发生形变。
32 力的单位是牛顿,简称牛 测量力的工具是测力计,实验室常用的是弹簧秤 弹簧秤的工作原理是:弹簧的伸长跟所受的拉力成正比
33 力的大小、方向和作用点叫力的三要素。用一根带箭头的线段表示力的三要素的方法叫力的图示法。
34 力是物体对物体的作用,且物体间的力是相互的。力的作用效果是①改变物体的运动状态,②使物体发生形变。
35 由于地球的吸引而使物体受到的力叫重力,重力的施力物体是地球。
36 重力跟质量成正比,它们之间的关系是G=mg,其中g=98牛/千克 重力在物体上的作用点叫重心,重力的方向是竖直向下
37 求两个力的合力叫二力合成。若有二力为F1、F2,则二力同向时的合力为 F=F1+F2 ,反向时的合力为F=F大-F小 。
1 一切物体在没有受到外力作用时,总保持静止状态或匀速直线运动状态,这就是牛顿第一定律
2 物体保持静止状态或匀速直线运动状态不变的性质叫惯性所以牛顿第一定律又叫惯性定律 一切物体都有惯性
3 利用惯性解释:①先描述物体处于什么状态,②再描述发生的变化,③由于惯性,所以物体仍要保持原来的状态
4 两力平衡的条件是:①作用在一个物体上的两个力,②如果大小相等,③方向相反,④作用在同一直线上,则这两力平衡 两个平衡的力的合力为零
5 两个相互接触的物体,当它们要发生或已经发生相对运动时,在接触面上产生一种阻碍相对运动的力叫摩擦力 摩擦分为滑动摩擦和滚动摩擦,滚动摩擦比滑动摩擦小 滑动摩擦力的大小既跟压力的大小有关,又跟接触面的粗糙程度有关 我们应增大有益摩擦,减小有害摩擦
6 垂直压在物体表面上的力叫压力 压力的方向与物体的表面垂直 压力并不一定等于重力 只有物体水平放置且无其他力时,压力才等于重力。
7 物体单位面积上受到的压力叫压强 压强的公式是 P= 压强的单位是“牛/米2”,通常叫“帕” 1帕=1牛/米2,常用的单位有百帕(102帕),千帕(103帕),兆帕(106帕)
8 液体对容器底和侧壁都有压强,液体内部向各个方向都有压强 液体的压强随深度增加而增大 在同一深度,液体向各个方向的压强相等;不同液体的压强还跟密度有关 用来测量液体压强的仪器叫压强计
9 公式p=ρgh 仅适用于液体 该公式的物体意义是:液体的压强只跟液体的密度和深度有关,而与液体的重量、体积、形状等无关 公式中的“h”是指液体中的某点到液面的垂直距离 另外,该公式对规则、均匀且水平放置的正方体、园柱体等固体也适用
10 上端开口、下部相连通的容器叫连通器 它的性质是:连通器里的液体不流动时,各容器中的液面总保持相平 茶壶、锅炉水位计都是连通器 船闸是利用连通器的原理来工作的
11 包围地球的空气层叫大气层,大气对浸入它里面的物体的压强叫大气压强 托里拆利首先测出了大气压强的值 之后的11年,即1654年5月,德国马德堡市市长奥托·格里克做了一个著名的马德堡半球实验,证明了大气压强的存在
12 把等于760毫米水银柱的大气压叫一个标准大气压,1标准大气压≈101×105帕(P=ρgh =136×103千克/米3×98牛/千克×076米≈101×105帕) 1标准大气压能支持约103米高的水柱,能支持约129米高的煤油柱
13 大气压随高度的升高而减小 测量大气压的仪器叫气压计 液体的沸点跟气压有关 一切液体的沸点,都是气压减小时降低,气压增大时升高 高山上烧饭要用高压锅
14 活塞式抽水机和离心式水泵、钢笔吸进墨水等都是利用大气压的原理来工作的
15 浸在液体中的物体,受到向上和向下的压力差就是 液体对物体的浮力(F浮 =F下—F上) 这就是浮力产生的原因 浮力总是竖直向上的 F浮 G物 物体下沉;F浮 G物 物体上浮; 物体悬浮、漂浮时都有F浮 =G物,但两者有区别(V排不同)
16 阿基米德原理:浸入液体里的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力 公式是F浮 =G排 =ρ液gV排 阿基米德原理也适用于气体 通常将密度大于水的物质(如铁等)制成空心的, 以浮于水面 轮船、潜水艇、气球和飞艇等都利用了浮力
17 一根硬棒,在力的作用下如果能绕着固定点转动,这根硬棒叫杠杆 分清杠杆的支点、动力、阻力、动力臂、阻力臂
18 杠杆的平衡条件是:动力×动力臂= 阻力×阻力臂 公式是F1L1=F2L2 或 =
19 杠杆分为三种情况:①动力臂大于阻力臂,即L1 L2,平衡时F1 F2,为省力杠杆;②动力臂小于阻力臂,即L1 L2,平衡时F1 F2,为费力杠杆;③动力臂等于阻力臂,即L1 = L2,平衡时F1 = F2,既不省力也不费力,为等臂杠杆,具体应用为天平
20 许多称质量的秤,如杆秤、案秤,都是根据杠杆原理制成的
21 滑轮分定滑轮和动滑轮两种 定滑轮实质是个等臂杠杆,故定滑轮不省力,但它可以改变力的方向;动滑轮实质是个动力臂为阻力臂二倍的杠杆,故动滑轮能省一半力,但不能改变力的方向
22 使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一 且物体升高“h”,则拉力移动“nh”,其中“n”为绳子的段数
23 力学里所说的功包括两个必要的因素:一是作用在物体上的力,二是物体在力的方向上通过的距离 功等于力跟物体在力的方向上通过的距离的乘积 公式是W=FS 功的单位是焦,1焦=1牛·米
24 使用任何机械都不省功 这个结论叫功的原理 将它运用到斜面上则有:FL=Gh 或:F= G
25 克服有用阻力做的功叫有用功,克服无用阻力做的功叫额外功 有用功加额外功等于总功 有用功跟总功的比值叫机械效率 公式是η= 它一般用百分比来表示 机械效率总小于1。
26 单位时间里完成的功叫功率 公式是P= 单位是瓦,1瓦=1焦/秒,1千瓦=1000瓦另
外,P= = = F·v, 公式说明:车辆上坡时,由于功率(P)一定,力(F)增大, 速度(v)必减小
初中物理总复习提纲(二)
机械能 分子动理论 内能
1 一个物体能够做功,我们就说它具用能 物体由于运动而具有的能叫动能 动能跟物体的速度和质量有关,运动物体的速度越大、质量越大,动能越大 一切运动的物体都具有动能
2 势能分重力势能和弹性势能 举高的物体具有的能叫重力势能 物体的质量越大,举得越高,重力势能越大 发生弹性形变的物体具有的能,叫弹性势能 物体弹性形变越大,它具有的弹性势能越大
3 动能和势能统称为机械能 能、功、热量的单位都是焦耳 动能和势能可以相互转化 分子动理论的基本知识:①物质由分子组成,分子极其微小 ②分子做永不停息的无规则运动 ③分子之间有相互作用的引力和斥力
4 不同的物质在互相接触时,彼此进入对方的现象,叫扩散 扩散现象说明了分子做永不停息的无规则运动
5 物体内所有分子做无规则运动的动能和分子势能的总和,叫物体的内能 一切物体都有内能 物体的内能跟温度有关 温度越高,物体内部分子的无规则运动越激烈,物体的内能越大 温度越高,扩散越快
6 物体内大量分子的无规则运动叫热运动,内能也叫热量 两种改变物体内能的方法是:做功和热传递 对物体做功物体的内能增加,物体对外做功物体的内能减小;物体吸收热量,物体的内能增加,物体对外放热,物体的内能减小
7 单位质量的某种物质温度升高(或降低)1℃吸收(或放出)的热量叫这种物质的比热容,简称比热 比热的单位是焦/(千克·℃) 水的比热是42×103焦/(千克·℃) 它的物理意义是:1千克水温度升高(或降低)1℃吸收(或放出)的热量是42×103焦 水的比热最大 所以沿海地方的气温变化没有内陆那样显著
8 Q吸=cm(t - t0);Q放=cm(t0 - t);或合写成Q=cmΔt 热平衡时有Q吸=Q放即c1m1(t - t01)=c2m2(t02 - t)
9 能量既不会消失,也不会创生,它只会从一种形式转化成为其他形式,或者从一个物体转移到另一上物体,而在转化的过程中,能量的总量保持不变 这个规律叫能量守恒定律 内能的利用中,可以利用内能来加热,利用内能来做功
10 1千克某种燃料完全燃烧放出的热量,叫做这种燃料的热值 热值的单位是:焦/千克 氢的热值(最大)是14 ×108焦/千克,它表示的物理意义是:1千克氢完全燃烧放出的热量是14 ×108焦
电 学
1 摩擦过的物体有了吸引轻小物体的性质,就说物体带了电 用摩擦的方法使物体带电,叫摩擦起电
2 自然界存在着两种电荷,用绸子摩擦的玻璃带正电;用毛皮摩擦的橡胶棒带负电 同种电荷相互排斥,异种电荷相互吸引
3 电荷的多少叫电量 电荷的符号是“Q”,单位是库仑,简称库,用符号“C”表示
4 摩擦起电的原因是电荷发生转移 电子带负电 失去电子带正电;得到电子带负电
5 电荷的定向移动形成电流 把正电荷移动的方向规定为电流的方向 能够提供持续供电
的装制叫电源 干电池、铅蓄电池都是电源 直流电源的作用是在电源内部不断地使正极聚
集正电荷,负极聚集负电荷 干电池、蓄电池对外供电时,是化学能转化为电能
6 容易导电的物体叫导体 金属、石墨、人体、大地以及酸、碱、盐的水溶液等都是导体;不容易导电的物体叫绝缘体 橡胶、玻璃、陶瓷、塑料、油等是绝缘体 导体和绝缘体之间没有绝对的界限 金属导电,靠的就是自由电子导电
7 把电源、用电器、开关等用导线连接起来组成的电流的路径叫电路 接通的电路电通路;断开的电路电开路;不经用电器而直接把导线连在电源两端叫短路 用符号表示电路的连接的图叫电路图 把元件逐个顺次连接起来组成的电路叫串联电路 把元件并列地连接起来的电路叫并联电路
8 电流强度等于1秒钟内通过导体横截面的电量 "I"表示电流, "Q"表示电量, "t"表示时间,则 I= 1安=1库/秒 1安(A)=1000毫安(mA);1毫安(mA)=1000微安(μA);
9 测量电流的仪表叫电流表 实验室用的电流表一般有两个量程和三个接线柱,两个量程分别是 0~0 6安和 0~3安;接0~0 6安时每大格为02安,每小格为002安;接0~3安时每大格为1安,每小格为01安
10 电流表使用时:①电流表要串联在电路中;②“+”、“-”接线柱接法要正确;③被测电流不要超过电流表的量程;④绝对不允许不经用电器而把电流表直接连到电源的两极上
11电压使电路中形成电流 电压用符号“ U”表示,单位是伏,用“ V”表示 1千伏(kV)=1000伏(V); 1伏(V)=1000毫伏(mV);1毫伏(mV)=1000微伏(μV) 一节干电池的电压为15伏 ,电子手表用氧化银电池每个也是15伏,铅蓄电池每个2伏 ,家庭电路电压为220伏 ,对人体的安全电压为不超过 36伏
12 测量电压的仪表叫电压表 实验室用的电压表一般有两个量程和三个接线柱,两个量程分别是 0~3伏和 0~15伏;接0~3伏时每大格为1伏,每小格为01伏;接0~15伏时每大格为5伏,每小格为05伏
13 电压表使用时:①电流压表要并联在电路中;②“+”、“-”接线柱接法要正确;③被测电压不要超过电压表的量程
14 导体对电流的阻碍作用叫电阻 电阻是导体本身的一种性质,它的大小决定导体的材料、长度和横截面积 电阻的符号是“R”,单位是“欧姆”,单位符号是“Ω” 1兆欧(MΩ)=1000千欧(kΩ);1千欧(kΩ)=1000欧(Ω)
15 变阻器的作用是:改变电阻线在电路中的长度,就可以逐渐改变电阻,从而逐渐改变电流 达到控制电路的目的
16 导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比 这个结论叫欧姆定律 用公式表示是:I=
17 电流在某段电路上所做的功,等于这段电路两端的电压、电路中的电流和通电时间的乘积 公式是W=UIt 电功的单位是“焦”另外,1度=1千瓦时=36×106焦, “度”也是电功的单位
18 电流在单位时间内所做的功叫电功率 公式是P=UI 用电器正常工作时的电压叫额定电压,用电器在额定电压下的功率叫额定功率 如"PZ220V 100W"表示的是额定电压为220伏,额定功率是100瓦
19 电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比, 跟通电时间成正比,这个结论叫焦耳定律 公式是Q=I2Rt 热量的单位是“焦” 电热器是利用电来加热的设备 如电炉、电烙铁、电熨斗等
20 家庭电路的两根电线,一根叫火线,一根叫零线 火线和零线之间有220伏的电压,零线是接地的 测量家庭电路中一定时间内消耗多少电能的仪表叫电能表 它的单位是“度”
21 保险丝是由电阻率大、熔点低的铅锑合金制成 它的作用是:在电路中的电流达到危险程度以前,自动切断电路 更换保险丝时,应选用额定电流等于或稍大于正常工作时的电流的保险丝 绝不能用铜丝代替保险丝
22 电路中电流过大的原因是:①发生短路;②用电器的总功率过大 插座分两孔插座和三孔插座
23 测电笔的使用是:用手接触笔尾的金属体,笔尖接触电线,氖管发光的是火线,不发光的是零线
24 安全用电的原则是:不接触低压带电体;不靠近高压带电体 特别要警惕不带电的物体带了电,应该绝缘的物体导了电
电 磁
1 永磁体包括人造磁体和天然磁体 在水平面内自由转动的条形磁体或磁针,静止后总是一端指南(叫南极),一端指北(叫北极) 同名磁极相互排斥,异名磁极相互吸引 原来没有磁性的物质得到磁性的过程叫磁化 铁棒磁化后的磁性易消失,叫软磁铁;钢棒磁化后的磁性不易消失,叫硬磁铁
2 磁体周围空间存在着磁场 磁场的基本性质是对放入其中的磁体产生磁力的作用, 因此可用小磁针鉴别某空间是否存在磁场
3 人们为了形象地描述磁场引入了磁感线(实际并不存在)。(采用了模型法)磁感线的疏密表示该处磁场的强弱,磁感线的方向(即切线方向)表示该处磁场方向。在磁体外部磁感线从北极出发回到南极,在磁体内部磁感线从南极指向北极。磁感线都是闭合曲线。
4.可以用安培定则(右手螺旋定则:右手握住导线,让伸直的大拇指方向跟电流方向一致,那么弯曲的四指所指的方向就是磁场方向)来判定电流产生的磁场方向。对于通电螺线管,用右手四个手指的环绕方向表示螺线管上的电流方向,则大拇指指向即为通电螺线管的N极。
5.电磁铁与永磁体相比有很多优点,它可以通过调整电流的有无、强弱、方向,达到控制磁场的有无、强弱、方向。利用电磁铁做成的电磁继电器(电铃)在自动控制和远距离操纵上常有应用。
6.通电导体在磁场中会受到力的作用,受力方向跟电流方向和磁感线方向有关。
7.直流电动机就是利用通电线圈在磁场里受到力的作用发生转动而制作的。在这一过程里把电能转化为机械能。在直流电动机里利用换向器改变线圈中电流方向,使线圈在磁场力作用下持续沿同一方向转动。
8.闭合回路的一部分导体,在磁场中作切割磁感线运动时,导体中会产生感应电流,这就是电磁感应现象。产生感应电流的条件是:一是电路闭合;二是导体做“切割”磁感线运动,即导体运动方向不能与磁感线平行。
9.发电机是利用闭合线圈在磁场中作切割磁感线转动时,产生感应电流的原理制成的,它是把机械能转化为电能的装置。
10电池分化学电池(正极是铜帽碳棒)、水果电池、伏打电池(有里程碑意义,是真正意义上的电池)、蓄电池(有铅和硫酸,污染大)、太阳能电池(无污染,利用可再生能源),燃料电池
发电厂发电有以下几种方式:火力发电,水利发电,风力发电,核能发电,潮汐发电等。
这是初中物理提纲,希望能帮助你
参考资料:
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)