第一宇宙定律:“天圆地方的平直的欧几里德时空观”,可形象的表述为“遥望星空无边际,天圆地方勾股弦,平直思维圆魅力,割圆求和无极限”;第二宇宙定律:“站在第谷—开普勒肩膀上的牛顿绝对时空观”,可形象的表述为“绝对时空两分离,万有引力三定律,流数变化求极限,自然哲学新原理”;第三宇宙定律:“空间收缩,时间延缓的爱因斯坦相对论时空观”,可形象的表述为“相对原理惯性系,时空混合创新奇,时空伸缩光不变,引力潮汐曲率波”;第四宇宙定律:“具有时间矢的霍金膜理论的光锥时空观”,可形象的表述为“光锥时空无限美,时空薄膜宇宙飘,熵增无序时间矢,量子混沌黑洞不黑”;第五宇宙定律定理:“具有M—J混沌分形图谱的曼德布罗特(Mandelbrot)混沌分形时空观”,可形象的表述为“时空破碎分形维,图中嵌图形镶形,初始敏感无标度,拉压折叠拓扑稠,五集轨道演混沌,无限周期有新序”。
费马大定理:
当整数n > 2时,关于x, y, z的不定方程
x^n + y^n = z^n
的整数解都是平凡解,即
当n是偶数时:(0,±m,±m)或(±m,0,±m)
当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)
这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
编辑本段研究历史
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi Hanc marginis exiguitas non caperet")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。
1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。
1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。
1:欧拉证明了n=3的情形,用的是唯一因子分解定理。
2:费马自己证明了n=4的情形。
3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。
4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。
5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。
6:勒贝格提交了一个证明,但因有漏洞,被否决。
7:希尔伯特也研究过,但没进展。
8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。
9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。
10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。
11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。
12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”
编辑本段证明过程
1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。
为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”
在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”
数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。
1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。
1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。
事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。
1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。
编辑本段证明方法
五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。
这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。
用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。
n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。
现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。
说明:
要证明费马最后定理是正确的
(即x^ n+ y^n = z^n 对n>2 均无正整数解)
只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。
1。人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~
1不等式定律:
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为05米2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
引言:数学这个科目真的让人有点喜欢不起来,虽然说他比较有趣吧,但是对于逻辑性不是很好的人来说,就像是天文数字一样,但是数学这个科目它的分值还非常的高,有150分,只要是自己稍不努力就很有可能就会被拖后腿。
一、关于概念的定义大家在做事情的时候肯定是会先考虑一下这个事情能不能做,他有多少的概率能够成功,多少概率会失败在这些结合之下,然后再去实施行动,在数学定理里面就有关于概率的一个定义。概率它其实就是用来判断一件事情发生的,可能性在现实生活当中用的还是比较多的。不过有的时候真的不是很能够理解,为什么会有概率这种事情出现,但是在日常生活当中用到的又非常的多,比如说抛硬币或者是掷色子。他们得到的结果其实就是一个概率问题,小编以前对于这个非常的感兴趣,结果工作了之后发现概率的事情越来越多。
二、小鸟走之后可能再也回不了家而且小编还看过一个这样的数学定理,就是酒鬼能够找到回家的路,但是喝醉的小鸟可能永远都回不了家,刚开始的时候的话觉得有点不能理解,但是后来发现好像确实是这样,因为对于小鸟来说它是有很多个选择的方向,只要是选择错了之后,就会离自己的家越来越远,而且回不到原点去。不知道是谁做的这样的一个实验,但是小编认为这个实验真的让人非常的震惊,一直都认为所有的人或者是所有的动物都能够找到自己回家的路,但是后来发现好像并不是这样。其实小鸟回到家的这个问题也是跟概率相关的,它能够回到家的概率只有30%多。以前还听过这样的一句话,学好数理化走遍天下都不怕,但是小编真的不喜欢呀。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)