女性荷尔蒙怎么产生的

女性荷尔蒙怎么产生的,第1张

卵巢产生。卵巢分泌的雌性激素及黄体素统称女性荷尔蒙(尤其是黄体素最为重要)

荷尔蒙产生过程:月经周期是由下丘脑、垂体和卵巢三者生殖激素之间的相互作用来调节的,在月经周期中出现下列的变化过程:①女性达到青春期后,在下丘脑促性腺激素释放激素的控制下,垂体前叶分泌刺激素(FSH)和少量黄体生成素(LH)促使卵巢内卵泡发育成熟,并开始分泌雌激素。在雌激素的作用下,子宫骨膜发生增生性变化;②卵泡渐趋成熟,雌激素的分泌也逐渐增加,当达到一定浓度时,又通过对下丘脑垂体的正反馈作用,促进垂体前叶增加促性腺激素的分泌,且以增加LH分泌更为明显,形成黄体生成素释放高峰,它引起成熟的卵泡排卵;③在黄体生成素的作用下,排卵后的卵泡形成黄体,并分泌雌激素和孕激素。此期子宫内膜,主要在孕激素的作用下,加速生长且机能分化,转变为分泌期内膜;④由于黄体分泌大量雌激素和孕激素,血中这两种激素浓度增加,通过负反馈作用抑制下丘脑和垂体,使垂体分泌的卵泡刺激和黄体生成素减少,黄体随之萎缩因而孕激素和雌激素也迅速减少,子宫内膜骤然失去这两种性激素的支持,便崩溃出血,内膜脱落而月经来潮。

荷尔蒙就是平常所说的“激素”,是人体内分泌系统分泌的能调节生理平衡的激素的总称。各种荷尔蒙对人体新陈代谢内环境的恒定,器官之间的协调以及生长发育、生殖等起调节作用。

    它不但影响一个正常人的生长、发育及情绪表现,更是维持体内各器官系统均衡动作的重要因素,它一旦失衡,身体便会出现病变。一个人是否能达致身心健康,荷尔蒙担当举足轻重的地位。人体产生的各种内分泌荷尔蒙的数量是极小的,如生长荷尔蒙在100毫升血液中不到1个微克,但对人体却产生巨大的影响。如人体缺乏生长荷尔蒙,个子就长不高,成为侏儒症,到成人时身高还不足130厘米。

    女性荷尔蒙——雌激素以及孕激素 女性缺乏荷尔蒙的主要病症表现: 

    1) 失眠头痛 表现为血管痉挛性头痛、忧郁不安、心悸失眠、易惊醒、表情淡漠,易疲劳、记忆力衰退、阵发性潮热、精神过敏等症状,严重影响了日常生活。

    2) 烦躁胸闷 表现为心慌气急,易激动、紧张、多疑、甚至狂躁,可因一件小事与同事或家人争吵得脸红脖子粗,难以控制自己的情绪。夜间睡眠时易胸闷憋醒,严重者出现一次性血压升高。 

    3) 月经不调 表现为月经紊乱、无规律或月经量多,经常有大血块,或月经淋漓不断,严重者导致失血性贫血

    4) 皮肤衰老 表现为皮肤松弛、皱纹、色斑、暗淡无光泽、毛孔粗大。

激素,也称作荷尔蒙(源自英文音译),是由内分泌腺产生的化学物质,随著血液输送到全身,控制身体的生长、新陈代谢、神经传导等,荷尔蒙在人体内的量虽然不多,但是对健康却有很大的影响,缺乏或是过多引发各种疾病,例如:生长激素分泌过多就会引起巨人症;分泌过少就会造成侏儒症。而甲状腺分泌过多就会引发心悸、手汗等症状;分泌过少就易导致肥胖、嗜睡等。胰岛素分泌不足就会导致糖尿病。 激素在希腊文原意为「奋起活动」。而外激素,也作信息素则是生物分泌到体外,引起其他个体发生行为变化的化学物质。 它对肌体的代谢、生长、发育和繁殖等起重要的调节作用。人和动物的内分泌腺器官直接分泌到血液中去的对身体有特殊效应的物质。消化道器官及胎盘等组织也能分泌激素,例如促胰液分泌激素、促胃液分泌激素、绒毛膜促性腺激素等。各种激素的协调作用对维持身体的代谢与功能是必要的。以化学性质论,有些激素是酚类衍生物,如肾上腺素、甲状腺素等,有些是多肽或蛋白质(肽类激素),如垂体激素释放因子、垂体激素、胰岛素、胰高血糖素、降钙素、甲状旁腺激素等,有些是类固醇化合物(甾体激素),如雌激素、雄激素、肾上腺皮质激素,还有前列腺素等。 许多激素制剂以及人工合成产物在医学上及畜牧业中有重要用途。 中医认为生理性衰老主要与肾虚和脾虚有关,其他因素则是各脏腑的虚衰,精气衰竭,以至阴阳失衡而导致衰老出现,再加上外在因素令过程加速或提早出现,便变成病理性衰老。西方抗衰老学说认为人愈老荷尔蒙分泌愈低。低荷尔蒙分泌直接引发很多衰老现象出现,同时加速衰老过程,荷尔蒙可以舒缓和减慢到整过衰老过程。

荷尔蒙又叫激素:是英语的音译

一、定义

激素是生物体产生的,对机体代谢和生理机能发挥高效调节作用的化学信使分子。激素是由内分泌腺或具有内分泌机能的细胞产生的。内分泌细胞是一些特殊分化的,对内外环境条件变化敏感的感应细胞,当他们感应到内外环境变化的刺激时,就合成并释放某种激素。激素作为化学信使,不经导管进入循环系统,将条件信息带到特定的效应细胞,引起某种效应。直接接受激素调节的效应细胞,称为该激素的靶细胞。因为激素是通过体液传送到靶细胞发挥作用的,所以将激素调节称为体液调节。体液调节在神经系统的统一控制下,全面系统协调地调节着物质及能量代谢,从而协调生物的各项生理机能。神经既可控制内分泌系统的分泌,又可以直接分泌激素,而某些激素也可以作用于神经系统,如甲状腺素可促进大脑发育。

二、分类

激素按其化学本质可分为三类:

1含氮激素 包括氨基酸衍生物激素、多肽激素和蛋白质激素。

2固醇激素 包括性激素和肾上腺皮质分泌的激素。

3脂肪酸激素 是二十酸衍生物,如前列腺素等。

三、特点

1高度专一性 包括组织专一性和效应专一性。前者指激素作用于特定的靶细胞、靶组织、靶器官。后者指激素有选择地调节某一代谢过程的特定环节。例如,胰高血糖素、肾上腺素、糖皮质激素都有升高血糖的作用,但胰高血糖素主要作用于肝细胞,通过促进肝糖原分解和加强糖异生作用,直接向血液输送葡萄糖;肾上腺素主要作用于骨骼肌细胞,促进肌糖原分解,间接补充血糖;糖皮质激素则主要通过刺激骨骼肌细胞,使蛋白质和氨基酸分解,以及促进肝细胞糖异生作用来补充血糖。

激素的作用是从激素与受体结合开始的。靶细胞介导激素调节效应的专一性激素结合蛋白,称为激素受体。受体一般是糖蛋白,有些分布在靶细胞质膜表面,称为细胞表面受体;有些分布在细胞内部,称为细胞内受体,如甲状腺素受体。

2极高的效率 激素与受体有很高的亲和力,因而激素可在极低浓度水平与受体结合,引起调节效应。激素在血液中的浓度很低,一般蛋白质激素的浓度为10-10-10-12mol/L,其他激素在10-6-10-9mol/L。而且激素是通过调节酶量与酶活发挥作用的,可以放大调节信号。激素效应的强度与激素和受体的复合物数量有关,所以保持适当的激素水平和受体数量是维持机体正常功能的必要条件。例如,胰岛素分泌不足或胰岛素受体缺乏,都可引起糖尿病。

3 多层次调控 内分泌的调控是多层次的。下丘脑是内分泌系统的最高中枢,它通过分泌神经激素,即各种释放因子(RF)或释放抑制因子(RIF)来支配垂体的激素分泌,垂体又通过释放促激素控制甲状腺、肾上腺皮质、性腺、胰岛等的激素分泌。相关层次间是施控与受控的关系,但受控者也可以通过反馈机制反作用于施控者。如下丘脑分泌促甲状腺素释放因子(TRF),刺激垂体前叶分泌促甲状腺素(TSH),使甲状腺分泌甲状腺素。当血液中甲状腺素浓度升高到一定水平时,甲状腺素也可反馈抑制TRF和TSH的分泌。

激素的作用不是孤立的。内分泌系统不仅有上下级之间控制与反馈的关系,在同一层次间往往是多种激素相互关联地发挥调节作用。激素之间的相互作用,有协同,也有拮抗。例如,在血糖调节中,胰高血糖素等使血糖升高,而胰岛素则使血糖下降。他们之间相互作用,使血糖稳定在正常水平。对某一生理过程实施正反调控的两类激素,保持着某种平衡,一旦被打破,将导致内分泌疾病。激素的合成与分泌是由神经系统统一调控的。top

第二节 激素的作用机理 top

激素的调节效应是由专一性激素受体介导的。激素到达靶细胞后,与相应的受体结合,形成激素-受体复合物,后者将激素信号转化为一系列细胞内生化过程,表现为调节效应。两类定位不同的受体,发挥调节作用的机理不同。通过表面受体起作用的激素,调节酶的活性,其效应快速、短暂;通过细胞内受体起作用的激素,调节酶的合成,其效应缓慢、持久。

一、分类

1 cAMP机制,如肾上腺素

2 磷酸肌醇机制,如5-羟色胺

3 酪氨酸激酶机制,如胰岛素

4 基因表达机制,如类固醇激素

二、第二信使模式

(一)第二信使

含氮激素有较强的极性,不能进入靶细胞(甲状腺素例外),通过与靶细胞表面受体结合发挥作用。这些激素称为第一信使,与受体结合后,在细胞内形成传递信息的第二信使,发挥作用。激素的前三种作用机制都属于第二信使模式。已经发现的第二信使有cAMP、cGMP、Ca2+、三磷酸肌醇(IP3)和二酰甘油(DAG)等。他们具有以下特点:

1由激素引发形成

2合成与灭活容易(可通过一步反应完成)

3浓度低(在10-7mol/L以下),变化大,寿命短

4生成与灭活都受激素控制,能及时有效地调控其浓度水平

5能调节细胞的代谢。

(二)第二信使的生成

激素-受体-第二信使调节系统的膜内装置包括三部分:受体、G蛋白和催化第二信使形成的酶。G蛋白是一系列鸟苷酸结合调节蛋白。形成激素-受体复合物后,受体变构,导致复合物与结合着GDP的专一G蛋白结合,形成三元复合物,然后G蛋白变构,复合物解体,生成G-GTP复合物,此复合物再与有关酶结合,使其活化,形成第二信使。最后G蛋白的GTP酶活性将GTP水解为GDP,释放出无活性的酶,准备下一次反应。

在专一性G蛋白的转导下,腺苷酸环化酶与鸟苷酸环化酶分别催化cAMP、cGMP的生成。磷脂酶C催化二磷酸磷脂酰肌醇(PIP2)水解,生成1,4,5-三磷酸肌醇(IP3)和二酰甘油(DAG)。

(三)第二信使的作用

多数第二信使通过直接活化蛋白激酶发挥调节作用。蛋白激酶是一类催化蛋白质磷酸化修饰的激酶,在生物调控中起重要作用。蛋白激酶的种类很多,根据底物被磷酸化的氨基酸残基不同,可分为丝氨酸或苏氨酸激酶和酪氨酸激酶;根据其调节因子可分为cAMP依赖性蛋白激酶(简称A激酶,PKA)、cGMP依赖性蛋白激酶(简称G激酶,PKG)Ca2+依赖性蛋白激酶(简称C激酶,PKC)等。cAMP和cGMP分别变构活化A激酶和G激酶,三磷酸肌醇使Ca2+浓度升高,二酰甘油提高C激酶对Ca2+的敏感性。

G激酶系统的调节效应,常与A激酶系统相反,组织中cAMP和cGMP的浓度变化也常互相消长。二者构成对立统一的调控系统。cAMP和cGMP分别在各自的磷酸二酯酶催化下水解灭活。

三磷酸肌醇作用于细胞内的钙储存库(线粒体、内质网),促进钙的释放,使其浓度急剧升高。钙作为胞内化学信使,通过活化C激酶和钙调蛋白,发挥其调节作用。PKC可以磷酸化多种蛋白,如糖原合成酶,磷酸化后活性降低。钙调蛋白(CaM)是一种钙依赖性调节蛋白,广泛存在于一切真核细胞中,结构十分保守。它是一种小分子酸性蛋白,分子量16700,有4个钙结合部位。钙调蛋白与钙结合后被活化,可刺激多种酶的活性,包括C激酶、腺苷酸环化酶、磷酸二酯酶和糖原磷酸化酶、糖原合成酶激酶等15种酶。

三磷酸肌醇和二酰甘油的寿命都很短。前者被水解生成肌醇,后者被磷酸化生成磷脂酸,通过磷脂酰肌醇循环,使二磷酸磷脂酰肌醇得以再生。

三、基因表达模式

类固醇激素是非极性分子,容易透过质膜进入细胞,通过与胞内专一性受体结合,发挥调节特定基因表达的作用。类固醇激素的受体是多亚基蛋白,与激素结合后发生变构,暴露出DNA结合部位。该复合物与特定的DNA序列(增强子)结合后,可加速受控基因的转录表达。如糖皮质激素与肝细胞受体结合,可促进糖异生过程中四种关键酶的合成。

四、激素的合成与灭活

(一)合成

1 蛋白质和多肽激素是基因表达的产物

蛋白质激素 其基因表达的最初产物是无活性的前激素原,经剪切加工成为激素原,再经酶促激活,成为有活性的激素。前激素原的N末端都有一段由20-30个残基构成的信号肽序列。例如,胰岛素基因表达产生由105个残基构成的前胰岛素原,剪切加工后成为有两条肽链,共51个残基的胰岛素。

多肽激素 一般比其前体小得多。如催产素和加压素都是九肽,而其前体分别是由160个和215个残基构成的后叶激素运载蛋白原。后者经剪切产生活性激素和相应的运载蛋白,结合成复合物,包装于囊泡中,运往神经垂体。分泌时,激素与运载蛋白分离。另外,垂体分泌一种前阿黑皮素原,由265个残基构成,在不同细胞内经不同方式剪切加工产生多种激素,包括促肾上腺皮质激素、各种促脂解素、各种促黑激素以及调控痛觉的阿片样多肽、内啡肽、脑啡肽等。

2 氨基酸衍生物激素

甲状腺素 是酪氨酸衍生物,来自甲状腺球蛋白的酪氨酸残基。甲状腺球蛋白是660kd的糖蛋白,含上百个酪氨酸残基。合成甲状腺素就以其中的部分残基作为酪氨酸供体,经碘化、缩合、水解,产生甲状腺素。

肾上腺素 也是酪氨酸衍生物,属于儿茶酚胺类。由自由酪氨酸经羟化、脱羧而成。

3类固醇激素

肾上腺皮质激素、性激素等是以胆固醇为前体,经切断侧链和羟化等步骤合成。

4脂肪酸激素

前列腺素等脂肪族激素是以花生四烯酸为前体合成的。

(二)激素的储存和释放

1 含氮激素:含氮激素的释放是受调控的。此类激素合成后以膜质小泡的形式储存在胞液中,只有内分泌细胞受到某种刺激时,才释放到胞外。这种受控分泌机制与其作用的迅速和短暂有关。这样可以在需要时大量分泌,及时起到调节作用。

2 固醇激素:合成后立即全部释放,进入血液,不在细胞内储存。所以调节其分泌的关键在控制其合成速度。这与其作用的缓慢和长久是一致的。

(三)运输

固醇激素和甲状腺素是脂溶性分子,在血液中运输时,大部分与专一的载体蛋白结合,只有少量呈游离状态。如甲状腺素与甲状腺素结合球蛋白结合,皮质醇与皮质类固醇结合球蛋白结合。

(四)灭活

激素要迅速灭活才能保证生理功能的及时、适度的调节。灭活的主要场所是肝和肾。多肽和蛋白质激素,在专一性肽酶和蛋白酶的催化下,被水解而灭活。胺类激素(肾上腺素等)由单胺氧化酶催化氧化脱氨而灭活。固醇激素经切除侧链、还原、羟化等反应灭活。许多激素的代谢产物从尿中排出。大多数激素在体液中的半衰期只有几分钟。例如,胰岛素半衰期为5-15分钟。在肝脏,先将胰岛素分子中的二硫键还原,产生游离的AB链,再经胰岛素酶水解成为氨基酸而灭活。

在激素作用下生成的第二信使也要及时灭活。cAMP和cGMP在专一性磷酸二酯酶催化下水解为相应的5’核苷酸。释放于胞液中的钙离子,被内质网中的钙泵运回内质网钙库。三磷酸肌醇和二酰甘油进入磷脂酰肌醇循环,重新合成二磷酸磷脂酰肌醇。

在激素调节中被磷酸化的酶或蛋白,被磷蛋白磷酸酶水解而除去磷酸基。

佛波酯(phorbol esters)是DAG的类似物,可以激活PKC,但又不能灭活,其作用是持久的,因此是一种致癌剂。许多致癌基因的产物具有酪氨酸激酶活性,但不受调控,因而致癌。top

第三节 部分激素介绍 top

一、含氮激素

(一)肾上腺素

1结构及生成

肾上腺髓质分泌的激素有肾上腺素和去甲肾上腺素(正肾上腺素)。这两种物质也是交感神经末梢的化学介质。二者均由酪氨酸转变而来。酪氨酸在酪氨酸酶催化下羟化、脱羧、再羟化,生成正肾上腺素,再甲基化则成为肾上腺素。

2生理功能

肾上腺素在生理上的作用与交感神经兴奋的效果很相似,都对心脏、血管有作用,可使血管收缩,心脏活动加强,血压急剧上升,但它对血管的作用是不连续的。另一方面,它可促进分解代谢,尤其是对糖代谢影响最大,可加强肝糖原分解,迅速升高血糖。这种作用是机体应付意外情况的一种能力。此外,它还有促进蛋白质、氨基酸及脂肪分解,增强机体代谢,升高体温等作用。

去甲肾上腺素的作用有所不同,它对血管作用强,是加压剂,而肾上腺素是强心剂,使心跳加速。去甲肾上腺素对糖代谢的作用较弱,只有肾上腺素的二十分之一。

麻黄碱的化学结构与生理功能都与肾上腺素相似,在药物上可代替肾上腺素,这类物质称为拟肾上腺素。

3作用机制

肾上腺素与细胞表面受体结合,使偶联的腺苷酸环化酶活化,催化ATP分解为cAMP和焦磷酸。cAMP使蛋白激酶活化,蛋白激酶可活化磷酸化酶激酶,后者再激活磷酸化酶,使糖原分解。这是一个五级的级联放大,信号被放大了300万倍,由10-8-10-10M的肾上腺素在几秒之内产生5mM的葡萄糖。

肾上腺素还可使肌糖原分解,产生乳酸;使脂肪细胞中的三酰甘油分解产生游离脂肪酸。此外,蛋白激酶还能使许多蛋白质磷酸化,如组蛋白、核糖体蛋白、脂肪细胞的膜蛋白、线粒体的膜蛋白、微粒体蛋白及溶菌酶等。

(二)甲状腺素

1结构和生成

甲状腺素主要是四碘甲腺原氨酸(T4),也有少量三碘甲腺原氨酸(T3)和反三碘甲腺原氨酸(rT3)。甲状腺过氧化物酶首先催化碘离子生成活性碘(I2),再使甲状腺球蛋白中的酪氨酸碘化,生成3,5-二碘酪氨酸(DIT)。两分子DIT再作用形成甲状腺素。当甲状腺球蛋白被溶酶体中的蛋白酶水解后,T3、T4被放出,与肝脏合成的甲状腺素结合球蛋白结合而运输。

2功能

可刺激糖、蛋白质、脂肪和盐的代谢,促进机体生长发育和组织分化,对中枢神经系统、循环系统、造血过程、肌肉活动等都有显著作用。总的表现是增强新陈代谢,引起耗氧量和产热量的增加,并促进智力和体质的发育。

3作用机制

甲状腺素是脂溶性的,可进入细胞。与受体结合后,可使特异基因活化,促进转录,合成蛋白质。此外,在线粒体和质膜上也有其受体,可促进ATP形成。甲状腺素还能影响儿茶酚胺的作用。

(三)下丘脑及垂体激素

1下丘脑激素 下丘脑分泌激素释放因子及释放抑制因子,调节垂体前叶功能。主要有:

l促甲状腺激素释放因子(TRF) 是焦谷-组-脯三肽,可促进促甲状腺激素(TSH)的分泌。N端的焦谷氨酸可防止氨肽酶破坏,C端有酰胺,可避免羧肽酶水解。

l促黄体生成激素释放因子(LRF) 是十肽,N端为焦谷氨酸,C端有酰胺。

l促肾上腺皮质激素释放因子(CRF) 是9-11肽。

l生长激素释放抑制因子(GRIF) 是14肽,分布广泛,多功能。不仅抑制生长激素的分泌,还抑制胰岛素、胰高血糖素及肠胃激素的分泌。

2垂体激素 垂体分前叶、中叶和后叶三部分,由垂体柄与下丘脑相连。前叶和中叶可自行合成激素,后叶只能储存和分泌激素,其激素来自下丘脑。

(1)前叶激素 前叶直接受下丘脑控制,调节某些内分泌器官的发育及分泌,与动物的生长、性别及代谢密切相关。

l生长激素(GH) 是蛋白质,可刺激骨和软骨的生长,促进粘多糖和胶原的合成,影响蛋白质、糖类和脂类的代谢,最终影响体重的增长。

l促甲状腺激素(TSH) 是糖蛋白,可促进甲状腺的发育和分泌,从而影响全身代谢。

l促黄体生成激素(LH) 糖蛋白,促使卵泡发育成黄体,促进胆固醇转变成孕酮并分泌孕酮,阻止排卵,抑制动情,或促使睾丸的间质细胞发育,刺激睾丸分泌激素。

l促卵泡激素(FSH) 糖蛋白,促使卵巢或精巢发育,促进卵泡或精子生成和释放。

l催乳激素(LTH) 单链多肽,刺激乳汁分泌,刺激并维持黄体分泌孕酮。

l促肾上腺皮质激素(ACTH) 含39个残基的直链多肽,促进胆固醇转化成肾上腺皮质酮,并刺激肾上腺皮质分泌激素。通过cAMP起作用。

l脂肪酸释放激素(LPH) 有β和γ两种,可促进脂肪水解。生理条件下分泌量很少,分解脂肪的效果不明显。

l内啡肽(EP)类激素:有镇痛作用,在针刺麻醉时脑脊液中的含量增加。

前叶激素按结构可分为三类,生长激素和催乳激素为一类,都是单链蛋白;促甲状腺激素、促黄体生成激素、促卵泡激素都是糖蛋白,其α-亚基结构相似,β-亚基结构不同;促肾上腺皮质激素、脂肪酸释放激素和脑肽类激素都是由一种前体加工而成的。每一类的激素之间结构相近,序列同源,抗体有交叉反应,受体之间也有一定的亲和力。同一类的激素很可能是由同一基因进化而成的。

(2)中叶激素 只有促黑素细胞激素(MSH),分αβ两种,调节动物表皮细胞色素的增加及减少。

(3)后叶激素 包括催产素和加压素,都是九肽。前者使多种平滑肌收缩,具有催产及排乳作用;后者又称抗利尿激素(ADH),使小动脉收缩,可减少排尿,在大量失血时可升高血压。

(四)胰岛素

1结构 胰岛素是胰岛β细胞分泌的,有AB两条链,分别有21和30个残基。两条链间由两个二硫键连接,A链还有一个链内二硫键。其高级结构是发挥活性所必须的。

2作用 胰岛素的主要作用是降血糖。一方面可提高组织摄取葡萄糖的能力,另一方面可抑制肝糖原分解,促进肝糖原和肌糖原的合成。此外,胰岛素还抑制脂肪分解,促进蛋白质合成,并增加葡萄糖的有氧分解过程等。因此,胰岛素对靶细胞有着综合性的作用。

3机制 葡萄糖可自由通过肝细胞,但通过心肌、骨骼肌和脂肪细胞时需要借助于质膜上的糖载体系统。这是这些组织利用糖的限速步骤,胰岛素可加速其转运过程。

胰岛素可促进肝脏中葡萄糖激酶的合成,这个酶是肝脏利用葡萄糖的第一个限速酶。在肌肉中葡萄糖磷酸化由己糖激酶催化,胰岛素可使其活性增加。

糖原合成酶有活化型(I)和非活化型(D)两种,蛋白激酶催化活化型转变为非活化型。肝细胞表面有胰岛素受体,胰岛素可增加肝脏cGMP浓度,促进cAMP分解,从而抑制蛋白激酶,促进糖原合成。

(五)胰高血糖素

1结构 由胰岛α细胞分泌的多肽激素,由29个残基组成。首先合成的是胰高血糖素原,切去C端8肽后成为有活性的激素。

2功能 升高血糖。可促进肝糖原分解,加快糖的异生,增加蛋白质和脂类的分解代谢。与肾上腺素不同,它不作用于肌糖原,也不被肾上腺素能阻断剂所抑制。

3机制 与靶细胞表面受体结合,活化鸟苷酸条件蛋白,后者活化腺苷酸环化酶,使cAMP浓度升高,促进糖原分解。其受体是脂蛋白,而胰岛素受体是糖蛋白。

(六)甲状旁腺素

甲状旁腺素和降钙素都是由甲状旁腺分泌的多肽激素,都作用于骨基质及肾脏,调节钙磷代谢。前者升高血钙,后者降低血钙。此外,1,25-二羟胆钙化醇也是激素,由肾脏分泌,可促进小肠上皮细胞合成钙离子携带蛋白,增强对钙的吸收。

二、固醇激素

固醇激素都是环戊烷多氢菲衍生物,区别在于侧链不同。其合成都是由胆固醇转变为孕酮,再生成其他激素。

(一)肾上腺皮质激素

肾上腺皮质中可提取出数十种固醇结晶,其中7种统称肾上腺皮质激素,可矫正因切除肾上腺而出现的致死症状。其他为雄性激素、雌性激素及孕酮等。

皮质激素按生理功能可分为糖皮质激素和盐皮质激素。前者包括皮质醇、可的松和皮质酮,皮质醇最重要。其功能较复杂,主要是升高血糖,大剂量时还有减轻炎症和过敏反应的作用。后者的功能是保钠排钾,调节水盐代谢,以醛固酮的效应最强。

固醇激素可进入细胞,与细胞内受体结合,复合物经活化和移位,进入细胞核,诱导产生特异的蛋白质,发挥作用。

(二)性激素

雌性激素包括雌二醇和孕酮等。前者促进性器官发育,后者起安胎作用。雄性激素包括睾酮和雄酮等,可促进性器官发育。

雄激素和雌激素的结构很相似,可互相转化。在动物体内都有一定比例,保持平衡。

三、脂肪族激素

脂肪族激素指前列腺素(PG)。它是二十碳酸衍生物,最初发现于精液中。其实它在人体中广泛存在,作用多样。它不是由特定腺体产生的,有些还只能在产生的局部发挥作用,所以有人认为它不属于激素。

前列腺素有16种,其基本结构是前列腺烷酸,有一个环戊烷和两条侧链。根据取代基不同,可分为A-I等9类,其中EFABI是重要的五种。

各种前列腺素结构相似,功能却相差甚远。PGE和PGF对生殖系统有显著作用,PGF2α可用于引产,PGI2对它有拮抗作用。许多组织有前列腺素表面受体,结合后可改变cAMP浓度,但对不同组织作用不同。此外,前列腺素可增加发炎,而阿司匹林可干扰其酶促合成,能减少发炎。

荷尔蒙与多巴胺

爱情=多巴胺+肾上腺素+荷尔蒙+睾丸酮

                多巴胺——爱的幸福源泉

          男女第一次渴望对方的时候,会分泌所谓性荷尔蒙的睾丸素和雌激素,当这个渴望持续进而坠入情网的时候,会分泌多巴胺和羟色胺,羟色胺是男女相爱最重要的化学物质,它会让一个人暂时失去理智,如果到了下一个阶段,男女因关系持续而渴望更加亲密,进而发展成性爱或婚姻,这时候大脑会分泌出催产素和垂体后叶荷尔蒙,催产素不是只在男女发生情爱关系甚至在母亲喂乳时也会出现,而且对女性而言,母爱和爱情是一样的,羟色胺会让一个人看不清对方的缺点,因此让爱情变得很盲目。

如果说大脑中心——丘脑是人的情爱中心,其间贮藏着丘比特之箭——多种神经递质,也称为恋爱兴奋剂,包括多巴胺,肾上腺素等。多巴胺是什么?他能左右人们的行为,还参与情爱过程,激发人对异性情感的产生。当一对男女一见钟情或经过多次了解产生爱慕之情时,丘脑中的多巴胺等神经递质就源源不断地分泌,势不可挡地汹涌而出。于是,我们就有了爱的感觉。

在多巴胺的作用下,我们感觉爱的幸福。人们品尝巧克力时或瘾君子们在“腾云驾雾”时,所体验到的那种满足感,都是同样的机制在发生作用。幸好,我们的大脑能够区别彼此之间的不同。多巴胺好像一把能打开许多锁的万能钥匙,根据所处情景不同,在体内产生不同的反应。巧克力的气味、口味告诉大脑,我们正在吃东西;情侣的体味和香味提醒大脑,我们正在身陷爱中。

多巴胺带来的“激情”,会给人一种错觉,以为爱可以永久狂热。不幸的是,我们的身体无法一直承受这种像古柯碱的成分刺激,也就是说,一个人不可能永远处于心跳过速的颠峰状态。所以大脑只好取消这种念头,让那些化学成分在自己的控制下自然地新陈代谢。这样一个过程,通常会持续一年半到3年。随着多巴胺的减少和消失,激情也由此变为平静。

催产素——保持忠诚的爱

大约20年前,神经内分泌学家休·卡特开始研究大草原上的田鼠,以弄清这种生活在美国中西部平原的啮齿类小动物为什么是自然界最伟大的浪漫主义者。大草原田鼠在交配后终生保持一夫一妻,雌鼠雄鼠共同养育后代,过着田鼠版本的幸福家庭生活。这在自然界中实属罕见:只有不到5%的哺乳动物表现出一夫一妻和双亲行为。

泰勒提醒人们,催产素的力量和影响范围令人着迷,但它对人类情感的作用却决非简单的话就可以概括。“很多人说,‘催产素是亲热激素’,或者‘催产素是爱情激素’。其实,催产素要难捉摸得多,它与心理学的种种状态并没有一一对应的关系。要把这些分子与特定状态对应起来实在相当危险。”有些科学家认为,催产素与身体天然产生的“鸦片”有协同作用:催产素启动依恋他人的愿望,类鸦片活性肽则提供与爱人在一起时那种温暖陶醉的感觉。类鸦片活性肽与催产素的关系强调了泰勒关于“爱情药”简化法的观点。民间传说和文学作品中随处可见关于“爱情药”的故事,但实际情况也远远没这么简单。生物基础决定大脑能创造并维持我们所谓的“爱”,但其原因却不能简化为一个分子。催产素和类鸦片活性肽之间存在不可否认的相互作用。大草原田鼠的大脑解剖表明,多巴胺与催产素之间也有紧密的关系。更重要的是,催产素的影响可能因雌激素得到加强,而因雄激素得到减弱:这或许有助于解释雌雄两性在压力之下的不同反应。爱或许并不像民间所说的那样存在于内心,但也并非依赖于某种单一的分子。当我们感受到让我们心潮澎湃的男女之爱或父母之爱时,我们大脑的化学物质正在发生复杂的相互作用,引发着大脑特定区域的各种活动。催产素对这种相互作用至关重要,但却不能代表一切。

羟色胺——快活荷尔蒙

一个人的精神状态是由荷尔蒙决定的,这个道理早已不是秘密。比如说,大脑制造出来的内啡肽能使人产生一种快感,一种满足和轻松的享受。内啡肽中最著名的5—羟色氨正是因此而被称为“快活荷尔蒙”。而肾上腺素通常被称为“痛苦荷尔蒙”,每当我们生气或遭到恐吓时,身体就会分泌出肾上腺素。

虽然多巴胺、苯乙胺、后叶催产素等爱情化学物质的大量释放,会使人产生爱的感觉,但是,我们的大脑不可能长期不断地大量释放这些物质,因为神经细胞只有受到新异刺激时才会兴奋。固定的两性关系时间一长,相互间再无新鲜感,也就再难以兴奋起来,那种刻骨铭心的爱情便消失了。美国康奈尔大学生化博士辛迪·奈克斯调查了37种不同文化氛围中生活的5000对夫妇,并进行医学测试,得出的结论是:18至30个月的时间已经足够男女相识、约会、结合和生子,之后,双方都不会再有心跳及冒汗的情况。

奈克斯说,爱情其实是大脑中的一种“化学鸡尾酒”,是由化学物质多巴胺、苯乙胺和后叶催产素促成的,时间长了,人体便会对这三种物质产生抗体,而经过两年左右的时间,“鸡尾酒”便会失效。之后,男女要么分手,要么让爱变成习惯。

多巴胺是一种神经传导物质,用来帮助细胞传送脉冲的化学物质。这种脑内分泌主要负责大脑的情欲,感觉,将兴奋及开心的信息传递,也与上瘾有关。爱情其实就是脑里产生大量多巴胺作用的结果。所以,吸烟和吸毒都可以增加多巴胺的分泌,使上瘾者感到开心及兴奋。根据研究所得,多巴胺能够治疗抑郁症;而多巴胺不足则会令人失去控制肌肉的能力,严重会令病人的手脚不自主地震动或导致帕金森氏症。最近,有科学家研究出多巴胺可以有助进一步医治帕金森症。治疗方法在于恢复脑内多巴胺的水准及控制病情素。希腊文原意为“奋起活动”,它对机体的代谢、生长、发育、繁殖、性别、性欲和性活动等起重要的调节作用。就是高度分化的内分泌细胞合成并直接分泌入血的化学信息物质,它通过调节各种组织细胞的代谢活动来影响人体的生理活动。由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息。

激素就是高度分化的内分泌细胞合成并直接分泌入血的化学信息物质,它通过调节各种组织细胞的代谢活动来影响人体的生理活动。由内分泌腺或内分泌细胞分泌的高效生物活性物质,在体内作为信使传递信息,对机体生理过程起调节作用的物质称为激素。它是我们生命中的重要物质。

把通过血液循环或组织液起传递信息作用的化学物质,都称为激素。激素的分泌均极微量,为毫微克(十亿分之一克)水平,但其调节作用均极明显。激素作用甚广,但不参加具体的代谢过程,只对特定的代谢和生理过程起调节作用,调节代谢及生理过程的进行速度和方向,从而使机体的活动更适应于内外环境的变化。

类固醇化学式

化学结构大体分为四类。

第一类为类固醇,如肾上腺皮质激素(皮质醇、醛固酮等)、性激素(雌激素、孕激素及雄激素等)。

第二类为氨基酸衍生物,有甲状腺素、肾上腺髓质激素、松果体激素等。

第三类激素的结构为肽与蛋白质,如下丘脑激素、垂体激素、胃肠激素、胰岛素、降钙素等。激素是内分泌细胞制造的。

人体内分泌细胞有群居和散住两种。

群居的形成了内分泌腺,如脑壳里的脑垂体,脖子前面的甲状腺、甲状旁腺,肚子里的肾上腺、胰岛、卵巢及阴囊里的睾丸。

散住的如胃肠粘膜中有胃肠激素细胞,丘脑下部分泌肽类激素细胞等。

每一个内分泌细胞都是制造激素的小作坊。

大量内分泌细胞制造的激素集中起来,便成为不可小看的力量。

种类激素是化学物质。 对各种激素的化学结构基本都搞清楚了。激素是调节机体正常活动的重要物质。它们中的任何一种都不能在体内发动一个新的代谢过程。它们也不直接参与物质或能量的转换,只是直接或间接地促进或减慢体内原有的代谢过程。如生长和发育都是人体原有的代谢过程,生长激素或其他相关激素增加,可加快这一进程,减少则使生长发育迟缓。激素对人类的繁殖、生长、发育、各种其他生理功能、行为变化以及适应内外环境等,都能发挥重要的调节作用。一旦激素分泌失衡,便会带来疾病。 激素只对一定的组织或细胞(称为靶组织或靶细胞)发挥特有的作用。人体的每一种组织、细胞,都可成为这种或那种激素的靶组织或靶细胞。而每一种激素,又可以选择一种或几种组织、细胞作为本激素的靶组织或靶细胞。如生长激素可以在骨骼、肌肉、结缔组织和内脏上发挥特有作用,使人体长得高大粗壮。但肌肉也充当了雄激素、甲状腺素的靶组织。 激素的生理作用虽然非常复杂,但是可以归纳为五个方面:第一,通过调节蛋白质、糖和脂肪等三大营养物质和水、盐等代谢,为生命活动供给能量,维持代谢的动态平衡。第二,促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育,以及细胞的更新与衰老。例如生长激素、甲状腺激素、性激素等都是促进生长发育的激素。第三,促进生殖器官的发育成熟、生殖功能,以及性激素的分泌和调节,包括生卵、排卵、生精、受精、着床、妊娠及泌乳等一系列生殖过程。第四,影响中枢神经系统和植物性神经系统的发育及其活动,与学习、记忆及行为的关系。第五,与神经系统密切配合调节机体对环境的适应。上述五方面的作用很难截然分开,而且不论哪一种作用,激素只是起着信使作用,传递某些生理过程的信息,对生理过程起着加速或减慢的作用

(多巴胺)安全感,满足感

 另一种重要的爱情物质是dopamine(多巴胺,也译作“度巴明”,全名为hydroxytyramine),它能产生一种很欢欣的感觉。多巴胺是去甲肾上腺素生物合成的前体,为中枢性递质之; 可增加心肌收缩力,增加心输出量。脑血管扩张、血流量增加。对周围血管有轻度收缩作用,升高动脉血压。多巴胺的作用之一是刺激oxytocin(后叶催产素)的分泌,这种激素n影响妇女的分娩和哺乳,有消除紧张和抑郁的作用。一般认为拥抱时所感受到的那种安全感和满足感与这种激素密不可分。

 帕金森症病因是患者大脑里缺少“多巴胺”(dopamine)。多巴胺是神经传导物质,它就像大脑中的“传令兵”,负责把神经系统发出的命令传送给肌肉,指挥肌肉工作。缺少多巴胺,神经控制命令不能传达,所以才会出现手脚不听话的现象。多巴胺过多的人,更倾向于发现偶然事件的含义,并且无中生有地拼凑出意义与模式。布拉格(PeterBrugger)6月底在巴黎召开的欧洲神经科学学会联合会的一次会议上披露了上述研究。(去甲肾上腺素)心跳的感觉第三种爱情物质叫norepinephrine(去甲肾上腺素),有强大的血管收缩作用和神经传导作用,会引起血压、心率和血糖含量的增高。所谓心跳的感觉就是去甲肾上腺素在起作用。

 当你头脑中充满着这些爱情物质的时候,也正是你意乱情迷的时候。但很不幸的是。在人体内这些爱情物质不可能永远处在个较高的水平上,人体的自我调节能力很强,总是试图将人体的) 状态调整回正常状况。一旦爱情物质消失。人也就从这样的迷醉状态中恢复过来,或者就像我们常说的那样,失去了爱的感觉。视个体和环境的差别,一般来说PEA的浓度高峰可以持续6个月到4年左右的时间,平均不到30个月(25年)。这和社会学调查得出的数据很接近。

 3endorphin(内啡呔)婚姻的产生

 所有有过恋爱经历的人都知道,爱除了激情外还应该有些其他的东西。在轰轰烈烈地爱过之后,我们需要另外一种爱情物质endorphin(内啡呔)来填补激情。内啡呔的效果非常接近于另外一种毒品——吗啡,是一种镇静剂。可以降低焦虑感,让人体会到一种安逸的、温暖的、亲密的、平静的感觉。

 科学家指出,运动能让大脑释放情绪元素endorphins,它能使人感到快乐和充满活力,你运动越多,这感觉越强烈; 内啡呔所带来的感觉是和PEA之类的物质完全不同的,后者使我们like being inlove,而前者让我们likEloving。虽然这并不能让人激动和兴奋,但这种温馨的感觉一样能使人上隐。一般来说当一个婚姻存在的时间越长久,这种状态也就会越牢固。这里面很大的一个原因就在于夫妻双方已经习惯了内啡呔所带来的宁静。看来让爱情历久长新的关键就在于在PEA之类的激情物质消退之前,分泌出足够多的内啡呔。

 很显然,内啡呔的效果和PEA之类的爱情激素的效果完全不同,或许我们可以称内啡呔为婚姻激素。婚姻激素是在爱情激素水平下降后开始起主导作用的。婚姻的物质基础并不一定需要爱情物质参与其中。

 就像有些人天生很难被爱情打动一样,有些人就是没有办法得到充足的内啡呔使自己安定下来。他们的爱情生活是由一系列热恋——分手所组成的,周期就是爱情物质的波动周期,一般为6个月到4年。如果他们不幸而结婚,那么婚外恋也就成了一种必然。与其说他们有着一种放浪的生活态度不如说这是一种病态的表现,称他们为爱情瘾君子恐怕更加合适。

 爱情瘾君子们追求爱情带来的那种迷醉和疯狂,但当最初的爱情激素分泌高潮一过,他们就会感到空前失落,于是就不得不再次去寻找新的对象以术达到下一次的激情和满足。就像人对兴奋剂会产生抗药性一样。当他们的身体习惯于越来越高水平的PEA浓度时,这些爱情瘾君子们会发现他们已经无法像开始时一样感受到爱情的冲击了。苯基乙胺使人坠入爱河,多巴胺传递亢奋和欢愉的信息。去甲肾上腺素让恋爱的人产生怦然心动的感觉。内啡肽能够使恋人双方持久快乐。脑下垂体后叶荷尔蒙则是控制爱情忠诚度的关键激素。

 爱的真谛:

 爱是需要激情的,当激情退去后爱情就需要变的理智,变成一种社会责任,一种付出……让爱情升华成亲情,人世间最伟大的其实是亲情,彼此成为亲人,让爱情充当调味料,那么两人的幸福生活将白头揩老。执子之手与子揩老那是多么浓厚的亲情呀,两人不论是精神上还是肉体上都到了合而二为一的境界。

 很多人总觉得婚前有爱情婚后没有,其实那只是升华为亲情时人们总还一味的追求着爱情追求着新鲜与刺激,却忽视了亲情才是爱情的归宿。

欢迎分享,转载请注明来源:浪漫分享网

原文地址: https://hunlipic.com/lianai/10865610.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-11-16
下一篇 2023-11-16

发表评论

登录后才能评论

评论列表(0条)

保存