三角公式

三角公式,第1张

三角公式全部如下:

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等。

sin(2kπ+α)=sinα(k∈Z)。

cos(2kπ+α)=cosα(k∈Z)。

tan(2kπ+α)=tanα(k∈Z)。

cot(2kπ+α)=cotα(k∈Z)。

2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα。

cos(π+α)=-cosα。

tan(π+α)=tanα。

cot(π+α)=cotα。

三角函数的相关应用:

三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质。

这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力,要求大家掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力。

以上内容参考—三角函数

三角函数公式

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA•CosA

Cos2A = Cos^2 A--Sin² A

=2Cos² A—1

=1—2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)³;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

半角公式

sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √{(1+cosA)/2}

tan(A/2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)}

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b) = -1/2[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2[sin(a+b)-sin(a-b)]

诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tgA=tanA = sinA/cosA

万能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a•sin(a)+b•cos(a) = [√(a²+b²)]sin(a+c) [其中,tan(c)=b/a]

a•sin(a)-b•cos(a) = [√(a²+b²)]cos(a-c) [其中,tan(c)=a/b]

1+sin(a) = [sin(a/2)+cos(a/2)]²;

1-sin(a) = [sin(a/2)-cos(a/2)]²;

其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A•sin(ωt+θ)+ B•sin(ωt+φ) =

√{(A² +B² +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A² +B²; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

三角函数图形曲线在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数

sinθ=y/r

余弦函数

cosθ=x/r

正切函数

tanθ=y/x

余切函数

cotθ=x/y

正割函数

secθ=r/x

余割函数

cscθ=r/y

(斜边为r,对边为y,邻边为x。)

以及两个不常用,已趋于被淘汰的函数:

正矢函数

versinθ

=1-cosθ

余矢函数

coversθ

=1-sinθ

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

[编辑本段]同角三角函数间的基本关系式:

·平方关系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα

·cotα=1

sinα

·cscα=1

cosα

·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·[1]三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

sint=B/(A²+B²)^(1/2)

cost=A/(A²+B²)^(1/2)

tant=B/A

Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan

a

·

tan(π/3+a)·

tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+c

很高兴回答楼主的问题

如有错误请见谅

高中三角函数用到的公式其实并不多。主要分为以下这几类:

一、诱导公式,他的作用就是将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 主要有四组,利用的是三角函数图像的周期性和(点)对称性。

(1)终边相同的角三角函数值相同

终边相同的角三角函数值相同

(2)相差单倍的π的角三角函数值关系

相差单倍π的角,三角函数值关系

(3)负角的三角函数值关系

负角的三角函数值关系

(4)相差π/2的角之间的三角函数关系

已经高中毕业很多年的人都能记住但是不知道啥意思的那个十字箴言,就是诱导公式的口诀:

奇变偶不变,符号看象限。注意口诀里面的意思:

1、奇偶指的是带π的那个数字,是π/2的奇数倍还是偶数倍;

2、变得不是正负号,而是sin变cos,cos变sin(不适用于tan)

3、我们是把α看做第一象限角,加减那个多少倍的π,根据变号之前sin/cos来判断是正的还是负的。

如果实在不理解这个口诀,建议找学校老师记忆。如果还不理解,就别理解了,也不用记忆,直接记住下面的公式即可(高考仅仅考1道最多2道这种题目,所以我们记忆下面的公式,通过推导浪费5分钟,并不影响整体考试成绩)

二、和差角公式

我们发现,直接用和差角公式中β换成诱导公式中的对应数值,就得到诱导公式的结果了。

三、倍角半角公式(也有叫升角降幂,降角升幂等等名称)

倍角公式

倍角公式就是把和角公式中的β等于α得出的。

半角公式

就是倍角公式反推出来的

综上所述,只要记住和差角公式就可以得出上述所有公式。如果记忆不下来,可以继续沟通,教你更好的记忆方法和解题技巧。

最后还有一个更常用的公式,叫做提斜公式:

acosA+bsinA=√(a^2+b^2)sin(A+M)

PS: (tanM=a/b)

希望我的回答对你有帮助。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/lianai/5281078.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-31
下一篇2023-08-31

发表评论

登录后才能评论

评论列表(0条)

    保存