比∞还大的符号是什么?

比∞还大的符号是什么?,第1张

没有。比这个还要大的数是没有的,因为这个符号就是无穷符号。

古希腊哲学家亚里士多德(Aristotle,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的,但是无限是不能达到的。

12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近理论化的概念。

将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis,)的论文《算术的无穷大》(1655年出版)一书中首次使用的。

早期无限的观点

最早关于无限的记载出现在印度的夜柔吠陀(公元前1200-900)。书中说:“如果你从无限中移走或添加一部分,剩下的还是无限。”

印度耆那教的经书《Surya Prajnapti》(c 400 BC)把数分作三类:“可计的”、“不可计的”及“无限”。每一类再细分作三序分:

可计的:小的、中的与大的。不可计的:接近不可计的、真正不可计的与计无可计的。无限:接近无限、真正无限与无穷无尽。这是在人类记载上第一次出现无限也可以分类这一个念头。

莫比乌斯带常被认为是无穷大符号「∞」的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为「∞」的发明比莫比乌斯带还要早。

古希腊哲学家亚里士多德(Arixtote,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的,但是无限是不能达到的。

12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近理论化的概念。

将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis,)的论文《算术的无穷大》(1655年出版)一书中首次使用的。

莫比乌斯带是公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。(也就是说,它的曲面只有一个)

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/liwu/8011117.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存