一)红细胞
红细胞平均直径为75微米,成双凹圆盘状,中央较薄(10微米),周缘较厚(20微米)。红细胞的这种形态使它具有较大的表面积(约140微米�2)同时使细胞内的每一点都不致于离细胞表面太远,有利于气体变换。成熟的红细胞无核、无细胞器,胞质内充满大量的血红蛋白。血红蛋白是含铁的蛋白质,约占红细胞重量的33%,具有结合和运输氧气和二氧化碳的功能,在组织器官内,根据气体的分压高低决定血红蛋白与其结合还是释放。红细胞有一定的弹性的可塑性,可改变形状通过毛细血管。红细胞通过糖酵解的方式产生ATP供能。�
红细胞又称红血球,是血液中数量最多,存活时间最久,行程最长,工作最繁忙的成员。�
红细胞在血液总容量中的数量最多,成年男子的红细胞个数为(40—60)×10�12/L成年女子的则为(38—55)×10�12/L。�
在电子显微镜下看,红细胞的外形像一个中间凹陷的小红帽,直径只有7微米。生成红细胞的器官是骨髓,骨髓每分钟可产生300万个红细胞。刚从骨髓产生的红细胞体积较大,中间有个大的细胞核,当红细胞发育成熟进入血液后体积就变小了,中间的那个大细胞核也随之消失。成熟红细胞里边的主要物质是血红蛋白。由于细胞核消失了,红细胞的身子也变得柔软起来,它可以通过很窄的毛细血管去接近每个组织细胞。把氧气和养料送给组织细胞,并将组织代谢过程中产生的二氧化碳和废料带走。�
红细胞的平均寿命为120天,在这120天里,每个红细胞在血管内不知疲倦地循环运动达30万次,在完成了自己的历史使命之后悄然解体。死亡的红细胞被脾脏内的巨噬细胞吞食掉,红细胞留下的铁质可作为造血的再生原料。�
红细胞含有血红素。血红素的性质十分活跃,它既能和氧结合在一起,也能和二氧化碳结合。和氧结合时血液就变得鲜红,和二氧化碳结合时,血液就变成暗红。血红素既能和它们很快地结合,又能够和它们迅速地分开。 红细胞将氧气运送到指定部位后,就很快地和氧气分离。同时又立刻与这些细胞排出的二氧化碳结合,并将它们运送到肺部呼出体外。�
然而,在某些情况下,红细胞也会误带上对人体有害物质,例如 一氧化碳,也就是我们常说的煤气。它与血红蛋白的亲合力特别强。一氧化碳与血红蛋白的亲合力比氧气大200多倍。 当人们吸入大量的一氧化碳后,一氧化碳就同血红蛋白迅速结合,从而导致血红蛋白与氧气的结合能力下降,甚至丧失携带氧气的能力,使人体缺氧,造成煤气中毒。�
(二)白细胞
白细胞为无色有核的球形细胞,一般较红细胞体积大,能作变形运动穿过毛细血管进入周围组织,发挥其防御和免疫功能。光镜下根据白细胞质内有无特殊颗粒可将其分为有粒白细胞和无粒白细胞两类,有粒白细胞又可以根据颗粒的嗜色性,分为中性粒细胞,嗜酸性粒细胞和嗜碱性粒细胞。无粒白细胞有单核细胞和淋巴细胞两种。�
白细胞是有核无色的圆形细胞。其实血液中的白细胞并不是白色的而是无色的。白细胞的种类很多,有中性粒细胞、单核细胞、淋巴细胞、嗜酸性和嗜碱性粒细胞等,其中中性粒细胞数目最多,占白细胞总数的50%—70%,是白细胞中的主力军;淋巴细胞次之,占20%—40%。 制造白细胞的器官有骨髓、淋巴结、脾脏和胸腺等。白细胞的体积比红细胞要大些,直径为10—15微米,正常人的血液中每立方毫米中有6000—8000个白细胞少于4000或超过10000个,都是有病的信号,所以医生常把它作为判断某些疾病的重要依据。白细胞是人体健康的卫士。当身体某处受伤,侵入了病菌,就会有大量的白细胞穿过毛细血管壁,聚集在伤口周围吞食病菌,同时伤口周围也出现红肿现象。病菌被消灭,炎症消失伤口也就愈合了。白细胞在战斗吞食了很多病菌后,自己也中毒身亡,伤口流出的脓液,主要由死亡的白细胞组成。因此,白细胞算得上是保卫人体健康的忠实“卫士”。�
白细胞中有五种细胞,对敌作战各有分工。其中中性粒细胞在人体伤口处抵抗外敌入侵,包围细菌和异物。中性粒细胞是人体主要的循环吞噬细胞, 中性粒细胞通过变形粘附,调理识别,吞噬消化直至杀灭细菌而执行防御功能,它还吞噬机体内的坏死细胞,参与炎症反应。�
嗜酸性颗粒细胞能够消除异物的毒性。�
嗜碱性粒细胞则可以释放抗凝血剂使血管扩张与收缩。�
淋巴细胞可以和病菌作战并能使肿瘤缩小。按淋巴细胞的生成和功能,至少可分两个亚群,即T淋巴细胞和B淋巴细胞。T淋巴细胞主要参与细胞
免疫;B淋巴细胞主要参与体液免疫。T淋巴细胞在接受抗原刺激后,先转化为淋巴母细胞而后繁殖分化 参与细胞免疫。B淋巴细胞在抗原刺激下转化为原浆细胞,然后继续成熟为浆细胞,合成并分泌特异性抗体,此外淋巴细胞还合成并分泌多种淋巴因子参与造血调控。�
单核细胞会突然变大,变成巨噬细胞,把大个的敌人整个吞掉,单核细胞约占细胞总数的3%—8%,通过阿米巴变形运动趋化运动,清除、杀灭外来微生物,消除受伤或死亡细胞和细胞碎片。并识别加工处理抗原向淋巴细胞提供抗原,在免疫反应的诱导期 起协同细胞和效应细胞作用,识别和杀伤异己细胞;分泌和释放集落刺激因子和前列腺素,调节粒系和单核巨噬系造血,运送铁而参与红系造血。�
(一)口腔粘膜的一般结构
口腔粘膜只有上皮和固有层,无粘膜肌。上皮为复层扁平,仅在硬腭部出现角化。固有层结缔组织突向上皮形成乳头,其内富有毛细血管,故新鲜粘膜呈红色。乳头及上皮内有许多感觉神经末梢。固有层中尚有粘液性和浆液性的小唾液腺。固有层下连骨骼肌(于唇、颊等处)或骨(于硬腭)。
(二)舌
舌由表面的粘膜和深部的舌肌组成。舌肌由纵行、横行及垂直走行的骨骼肌纤维束交织构成。粘膜由复层扁平上皮与固有层组成。粘膜由复层扁平上皮与固有层组成。舌根部粘膜内有许多淋巴小结,构成舌扁桃体。舌背部粘膜形成许多乳头状隆起,称舌乳头(lingual papillae),可分为四种。
1.丝状乳头 丝状乳头(filiform papillae)数目最多,遍布于舌背各处。乳头呈圆锥形,尖端略向咽部倾斜,浅层上皮细胞角化脱落,外观白色,称舌苔(图12-2)。
2.菌状乳头 菌状乳头(fungiform papillae)数目较少,多位于舌尖与舌缘部,散在于丝状乳头之间。乳头呈蘑菇状,上皮不角化,含有味蕾。固有层中有丰富的毛细血管,使乳头外观呈红色
3.轮廓乳头 轮廓乳头(circumvallate papillae)有10余个,位于舌界沟前方。形体较大,顶端平坦,乳头周围的粘膜凹陷形成环沟,沟两侧的上皮内有较多味蕾。固有层中有较多浆液性味腺,导管开口于沟底,味腺分泌的稀薄液体不断冲洗味蕾表面的食物碎渣,以利味蕾不断接受物质刺激(图12-2)。
4.叶状乳头 叶状乳头(foliate papillae)位于舌体后方侧缘,形如叶片整齐排列,乳头间沟的两则上皮中富有味蕾,沟底也有味腺开口。叶状乳头于兔等动物很发达,于人已近退化。
味蕾(taste bud)为卵圆形小体,主要分布于菌状乳头和轮廓乳头,少数散在于软腭、会厌及咽等部上皮内。成人的舌约有味蕾2000~3000个。味蕾顶端有很小的味孔。味蕾由三种细胞组成,均座落在上皮基膜上(图12-3)。长梭形的Ⅰ型细胞与Ⅱ型细胞,在HE染色切片中,前者色深,后者色浅。在电镜下,Ⅰ型细胞顶部胞质中较多小泡,Ⅱ型细胞的滑面内质网较发达;两者都有大量微绒毛伸入味孔,故称味毛;在细胞基底面可见与味觉神经末梢形成突触。因此这两种都属感觉上皮细胞,但其功能差异尚不清楚。第三种为基细胞,锥体形,较小,位于味蕾深部,是未分化细胞。味蕾是味觉感受器。舌不同部位的味蕾对不同味道的物质的感受性不同,舌尖主要感受甜与咸味物质,舌侧面主要感受酸味物质,轮廓乳头处则主要感受苦味物质。
结合水是指在细胞内与其它物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、羧基、羟基等均可与水结合,成为结合水。所有这些水不再能溶解其他物质,较难流动。如心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到最低程度,但原生质的基本结构还可以保持并可抵抗干旱和寒冷等不良环境。另外,据对人和动物的研究发现,人和动物的年龄愈大,细胞中的结合水愈少,生病时,结合水也有变化。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。
结合水 一、生物方面:
1、概念:结合水是水在生物体和细胞内的存在状态之一,是吸附和结合在有机固体物质上的水,主要是依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成的水胶体。
2、功能:
(1)组成细胞和生物体结构的成分:水分子是极性分子,细胞内部一部分水主要以氢键的形式与蛋白质,多糖、磷脂等固体物质相结合,这部分水不蒸发、不能析离,失去了流动性和溶解性,是生物体的构成物。如心脏,心肌含水量是79%,和血液含水量差不多。但其所含的水均为结合水,故成坚实形态。
(2)稳定大分子结构:结合水因离颗粒表面远近不同,受电场作用力的大小也不同,所以分为强结合水和弱结合水。
大家知道,生物大分子具有一定的空间构象,它们的许多功能都与构象的相互转化有关。结合水是稳定大分子结构的必要因素。现已证明,脱氧核糖核酸的双股螺旋,胶原蛋白的三股螺旋,胰岛素、红氧还素等蛋白质晶体结构的形成,蛋白质分子向折叠的转化,类脂双分子膜的稳定等等,无一不和结合水的存在有关。
(3)在生物体系中,质子的传递对能量的转换起着十分重要的作用。而结合水所形成的有序水的网络,为这种质子传递提供了必要的结构基础钠离子和钾离子的主动转移是重要的生命现象。主动转移是指细胞内外的离子或溶质的一种抗电化学梯度的反常运动,通常用膜泵理论给以解释。近年来,也有人从细胞内有序结构水对离子的排斥作用来讨论这一问题,并为实验所证实结合水对某些生物体系的代谢具有决定性的影响。美国科学家克列格最近完成了一个很有说服力的实验。他在一种小海虾上发现,随着水合程度的不同,可出现无代谢、限制性代谢、正常代谢三个阶段,并证明了不同的代谢状态与结合水密切相关结合水在肌肉收缩中的作用是圣乔治在1972]年提出的。他认为肌肉收缩是收缩蛋白肌球蛋白周围水结构的形成与破坏的过程。其后不少实验都证实,在肌肉收缩过程中,水的状态确实发生着变化。
(4)生命活动:
老年医学与癌症是目前医学界最为关心的问题。人们对水状态的研究也对此做出了有益的贡献。年代初报道,一些肿癌组织中结合水量减少,水状态与正常组织不同。显然这方面的研究不但与探讨肿瘤发生的机理有关,而且对其早期诊断亦可提供有意义的信息。老年医学中关于衰老机制有着多种不同的解释。蛋白质分子交叉结合产生冰结区,从而抑制代谢的观点,就是其中的一种。它与细胞内水的状态不无联系。而衰老过程中组织可塑性的衰减可能与蛋白质大分子结合水的能力有关
低温生物学的研究有着重要的理论和实际意义。在深低温条件下,细胞内结合水状态的改变,对生物活性的恢复能力有着直接的影响
从以上的叙述不难看出,生物体系中结合水对于生命活动是十分重要的。它不但对于阐明生命本质具有理论价值,而且可能对医学实践有所贡献。此外,其研究成果还有可能广泛应用于食品加工、纺织、制革、冷冻、包藏等工业生产中。可以预料,人们对于生命体系内水所进行的深入研究,必将结出丰硕的果实。
二、工程方面:
中文词条名:结合水
英文词条名:hydration water combined moisture bound Water
系指受电分子吸引力吸附于土粒表面的土中水,这种电分子吸引力高达几千到几万个大气压,使水分子和土粒表面牢固的粘结在一起。处于土颗粒表面水膜中的水,受到表面引力的控制而不服从静水力学规律,其冰点低于零度。
结合水又可分为:强结合水和弱结合水。
1)、强结合水存在于最靠近土颗粒表面处,水分子和水化离子排列非常紧密,以致于密度大于1,并有过冷现象(即温度降到0度以下也不发生冻结现象)。
2)、弱结合水距土粒表面较远地方的结合水,因为引力降低,弱结合水的水分子的排列不如强结合水紧密,可能从较厚水膜或浓度较低处缓慢地迁移到较薄的水膜或浓度较高处,亦可从土里周围迁移到另一个土粒的周围,这种运动与重力无关,这层不能传递静水压力的水定义为弱结合水。
结合水因离颗粒表面远近不同,受电场作用力的大小也不同,所以分为强结合水和弱结合水。
三、自然方面:
水在固体物料中可以不同的形态存在,以不同的方式与固体相结合。
当固体物料具有晶体结构时,其中可能含有一定量的结晶水,这部分水以化学力与固体相结合,如硫酸铜中的结晶水等。
当固体为可溶物时,其所含的水分可以溶液的形态存在于固体中。
当固体的物料系多孔性、或固体物料系由颗粒堆积而成时,其所含水分可存在于细孔中并受到孔壁毛细管力的作用。
当固体表面具有吸附性时,其所含的水分则因受到吸附力而结合于固体的内、外表面上。
以上这些借化学力或物理化学力与固体相结合的水统称为结合水。
当物料中含水较多时,除一部分水与固体结合外,其余的水只是机械地附着于固体表面或颗粒堆积层中的大空隙中(不存在毛细管力),这些水称为非结合水。
结合水与非结合水的基本区别是其表现的平衡蒸汽压不同。非结合水的性质与纯水相同,其表现的平衡蒸汽压即为同温度下纯水的饱和蒸汽压。结合水则不同,因化学和物理化学力的存在,所表现的蒸汽压低于同温度下的纯水的饱和蒸汽压。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)