1、羊舍类型对绵羊日增重、采食量无显著影响,添加脂肪酸钙也不影响绵羊总采食量。
2、基于织物化学镀技术,开发出不同增重率的化学镀镍电磁屏蔽涤纶织物。
3、氧化热增重、热重分析结果以及闪点、氧指数等测试结果表明,采用2E4MZ促进的共固化体系固化产物抗氧化和阻燃性能获得改善。
4、溶胀渗漏油是指密封因吸油增重,油再透过密封圈渗漏到变压器体外的过程。
5、结果表明,C方促进大鼠生长效果最好,体重增重,FE、CE、及每克蛋白质增加体重克数均明显高于A方与B方,但B方与A方相似。
6、结果表明,饲粮中含少量动物性饲料可提高仔猪增重和饲料利用率。
7、目的饲喂不同的饲料,对土鳖虫若虫增重的影响。
8、消化酶肠蛋白酶表现与增重率存在一定的正向关系。
9、研究了整粒玉米对绵羊日增重、饲料转化率和养分消化率等的影响。
10、这个男人正增高并增重,由于松果腺和脑垂体的增长以及颅腔的扩张,他的脸变得非常之圆。
11、结果发现球抗能提高球虫病鸡的存活率和相对增重率,减少血便记分和盲肠内容物卵囊数,减轻盲肠病变。
11、祝您造句快乐
天天向上lishixinzhi!
12、它对提高育肥牛的增重效果明显。经济效益分析表明,太阳能牛舍有推广前景。
13、理论上,根据时间变化绘制出所增重量,所绘曲线的形状就可以表明陶瓷的年龄。
14、龄苗定值后药材单株增重明显高于1龄苗,提倡使用大苗或高龄苗进行栽培生产。
15、改进调制秸秆技术
使牦犊牛冷季暖棚补饲增重更上一个台阶
16、这个季节气温高,如不减肥受不了;人家走路轻飘飘,自个走路汗水浇;运动药物全用了,只见增重不增高;其实减肥有诀窍,捂着手机自个瞧:瘦肉精一包!
17、二次育种值模型下的选择指数具有通用性,通常的线性选择指数是这种选择指数的特殊形式。我国本地猪瘦肉型品系选育的选择指数包括日增重和背膘厚两性状。
18、用BLUP法估测了10头二花脸种公猪自初生至六月龄平均日增重的育种值,同时用最小二乘常数和离差法作对照。
19、研究表明,那些离婚或结婚的人比从未有过婚史的人更易在两年内增重。
20、“我宁肯看到一个10磅的上限,”莫氏谈及针对过度肥胖病人增重新建议时说。
21、仔猪饲喂颗粒饲料26天,记载与计算最终身体的重量,增重,饲料耗损量及饲料转化率,并进行方差分析。
22、出生类型对所有抓绒性状无影响,但对早期生长性状中的初生重、断乳重和日增重有显著影响。
23、结果表明:由高GI混合粗饲料组成的日粮不用增加精料即可获得好的增重效益,由低GI混合粗饲料组成的日粮只有增加精料才有可能达到高GI混合粗饲料日粮的效益。
24、在相同饲养管理条件下,三组半番鸭分别饲喂不同营养水平的日粮,观察各组肉鸭的增重、成活率、饲料报酬、屠体品质等性状。
25、方法采用不同干湿度条件,考察胃康U双层药片外观、引湿增重及膨胀度的变化。
26、结果表明,伊朗重质减渣馏分的扩张粘弹性参数随馏分的增重以及扩张频率增大而递变。
27、叶蓓最喜欢妈妈做的豆腐羹,里面掺着蔬菜,既美味可口,又不必为增重而担忧。
28、用稀土金属离子通过形成配位结合来固着丝胶,制备了不同增重率的丝纤维,研究了增重丝纤维结构变化。
29、同时用两种不同草粉分别进行幼兔饲养试验,31天后表明,脱水苜蓿草粉组的增重效果显著优于晒干草粉组。
30、采用凯氏定氮法,测定配套杂交肉鹅不同生长阶段羽毛、胴体和内脏的增重和蛋白质沉积量。
在研制好配合饲料时,常用的评定指标及计算公式有如下几种。
一是饵料系数评定法,又叫饲料系数,是评价饵料质量的标准之一,就是指每增加1单位重量鱼所消耗的饲料数量。在养殖品种、放养密度、规格、温度、鱼池条件、养殖技术水平均同等的条件下,饲料系数越低,饲料的质量就越好。计算公式为:饵料系数=投饵量/鱼体增重。
二是饲料效率评定法,又叫饲料转换率,也就是饵料系数的倒数,即每单位重量的饲料转换成鱼体增重的百分比,用以说明饲料的养鱼效果,饲料效率越高,说明本饲料配方效果越好。计算公式为:饲料效率(%)=鱼体增重/投饵量×100%。
三是饲料的经济效益评定法,又称饲料产投比,是一项经济指标,即每单位重量的市场售价,和该重量鱼所消耗的饲料成本价格之比。当鱼价相同,饵料系数相同,而饲料单价不同时,其经济效益(投入产出比)就不同。当饵料系数相同,饵料单价相同,而鱼的市场价不同时,其经济效益也不同。计算公式为:饲料产投比=鱼价/相应增重的饲料成本=鱼产品产值/投入饲料成本。
四是鱼增重指标评定法,包括鱼的生长速度、绝对或相对增重、增重倍数、日尾增重等一系列评定指标进行综合评价。公式为:生长速度=鱼体增重(千克)/养殖天数×100%;增重倍数=收获鱼重/投放鱼重日尾增重;鱼体增重/养殖天数×尾数绝对增重=收获鱼重-投放鱼重相对增重(%)=(收获鱼平均尾重-投放鱼平均尾重)/鱼平均尾重×100%=绝对增重/投放鱼重×100%。
中文名称:喹烯酮
中文别名:3-甲基-2-肉桂酰基喹喔啉-1,4-二氧化物
英文名称:Quinocetone
英文别名:1-(3-Methyl-1,4-dioxido-2-quinoxalinyl)-3-phenyl-2-propen-1-one; 1-(3-Methyl-2-quinoxalinyl)-3-phenyl-2-propen-1-one N,N'-dioxide
CAS:81810-66-4
分子式:C18H14N2O3
分子量:30632
其化学名称为: 3 - 甲基- 2 - 苯乙烯酮基- 喹恶啉-1, 4 - 二氧化物,分子式为C8H14N2O3 ,结构式如图1所示,分子量306 5,熔点182 5~189℃,淡**或黄绿色粉末,不溶于水,略溶于部分有机溶剂,对光敏感,较易发生光化学反应。喹烯酮属喹恶啉类药物,可促进生长并提高饲料转化率,对多种肠道致病菌(特别是革兰氏阴性菌)有抑制作用,可明显降低畜禽腹泻发生率。该药效果确实,毒性极低,排泄快,不蓄积,无残留,无三致作用,使用安全。既适用于猪,也适用于禽及水产,还适用于幼畜、幼禽的防病促生长。国内外作为饲料添加剂的兽用药物有“肉多加”(Carbadox) , 亦称“痢立清”;“奥拉金”(Olaquindox) ,亦称“喹乙醇”,“痢菌净”也称“乙酰甲喹”(Mequindox)等。上述药物一般毒性偏大,不适于作为禽用药物性饲料添加剂。喹乙醇作为药物饲料添加剂,只用在养猪业上,有明显的防病和促生长作用。由于喹乙醇作为药物饲料添加剂的毒性偏大(小白鼠口服LD50为3 316 mg/kg体重,大白鼠口服LD50为1 704 mg/kg体重) ,在肉用仔鸡的饲料中添加屡见喹乙醇中毒的报道,我国政府严格禁止将喹乙醇作为饲料添加剂应用于养禽生产。
喹烯酮作为新的药物饲料添加剂,具有防病和促生长作用[ 1, 2 ] ,其药效与毒性及体内代谢情况完全不同于喹乙醇和肉多加[ 3~5 ] 。用喹烯酮中试产品进行的一系列毒性试验表明, 小白鼠口服LD50 为14 398 mg/kg体重,大白鼠口服LD50为8 179 mg/kg体重,其毒性仅为喹乙醇的1 /4,近于无毒。经过近1万只鸡和250多头猪的药理和临床验证实验,证明喹烯酮有显著的抗菌和促生长作用。十多年来,喹烯酮已在国内十余个省市的一些饲养场和农户中试用,其防病促生长效果良好,且安全、无毒副作用。
喹烯酮的作用机理主要是促进同化代谢和生长激素的继发性增加,加速动物生长。并通过有效抑制细菌DNA的合成,抑制消化道内病原微生物的生长、繁殖。对兽禽,特别是幼小兽禽,抗菌、止泻、促生长效果显著。
李剑勇等对喹烯酮在猪体内的代谢进行了观察。试验猪6 头, 按单剂量14 C 标记的喹烯酮0 406 5 mg/kg体重(比活度24 6 μci·mg- 1 )静脉注射, 30 d后按31 15 mg/kg体重(比活度5 187μci·mg- 1 )口服给药,用液体闪烁谱仪进行测定,结果:喹烯酮以原药的形式代谢排出,静脉注射给药符合二室开放模型,分布半衰期: T1 /2α = 0 189 9 h,消除半衰期: T1 /2β = 4 552 8 h,消除速率常数: Kel =0 865 4 h, AUC = 0 009 25 mg·L - 1·h- 1 ;口服给药符合一级吸收一室开放模型, T1 /2ka = 0 467 8 h,
T1 /2β = 3 744 5 h, Tp = 1 336 7 h, Cmax = 0 000 713μg/mL,AUC = 0 003 03 mg·L - 1·h- 1 ,提示喹烯酮口服给药后,其吸收较快,消除相对也较快,生物利用度低。
李剑勇等[ 7 ]进行的喹烯酮在猪、鸡体内药代动力学研究表明: 猪口服喹烯酮的生物利用度为0 5% ,鸡口服喹烯酮的生物利用度为3 0%。这说明喹烯酮经口服给药后吸收进入血液和组织的药物很少,大部分药物以原形从胃肠道排出。由此说明喹烯酮主要是通过猪、鸡胃肠道而发挥其促生长作用的。
喹烯酮在猪、鸡的代谢动力学实验都表明其在二者体内可广泛分布,消除半衰期较短,在体内的消除很快。
王玉春等进行的喹烯酮急性毒性试验表明,大白鼠LD50为8 178 996 mg/kg体重,小白鼠LD50为14 397 928 mg/kg体重,均属实际无毒(大白鼠口服LD50为5000 ~15 000 mg/kg体重为实际无毒) 。
严相林等进行了喹烯酮对小白鼠精子的畸变试验,分别用1 /20、1 /10、1 /5 LD50的剂量,采用灌胃方式给药,每d 1次,共持续5 d,末次给药后30 d进行了精子畸变镜检。结果表明,喹烯酮未引起小白鼠精子畸变率的明显增加。
王玉春等[ 3 ]进行了长期饲喂喹烯酮对小白鼠的致癌试验,在小白鼠的饲料中添加75、150、300mg/kg饲养20 个月后,经过临床检验、血液学检查、生物化学检查和病理组织学检查,结果未发现喹烯酮有致癌作用。试验还发现喹烯酮具有一定的防病(死亡率低、发病率低) 、促生长以及提高饲料利用率的作用。
许建宁等研究了新兽药喹烯酮对大鼠的亚慢性毒性作用。试验表明,喹烯酮对大鼠的最大无作用剂量为32 8mg/ ( kg体重·d) 。
用法用量
喹烯酮口服后机体内吸收很少且代谢较快,大部分从消化道以原形排出,生物利用率较低。临床上将喹烯酮预混剂与饲料混合后应用。具体用量如下:喹烯酮原粉混饲:猪、禽、仔猪、雏鸡、水产动物每1 000 kg饲料添加50~75 g。5%喹烯酮预混剂混饲:猪、禽、仔猪、雏鸡、水产动物每1 000 kg饲料添加1 000 g。用喹烯酮及其预混剂混合饲料时,应分级混合,逐渐稀释,务必充分搅拌并混合均匀。勿用于蛋鸡。喹烯酮应该储存在通风、凉爽、干燥的环境中,保质期2年。
喹烯酮抗菌促生长作用机理:喹烯酮分子结构中,母核是喹恶啉- 1, 4 - 二氧化物,其2位上的侧链与喹乙醇完全不同,因而生物活性也有很大的差异,保留了其抗菌促生长作用,毒性却大大降低。其抗菌促生长作用的机理可能主要取决于其母核结构,当然也不能完全排除其侧链对母核药效的重要影响。就此推理,其作用机制与喹乙醇大体相似,即喹烯酮可选择性地抑制肠道致病性大肠杆菌,但不影响有益大肠杆菌和其他革兰氏阳性菌,故能有效地控制小猪腹泻和禽巴氏杆菌病等。喹烯酮抑制肠道内的有害菌而保持其中有益菌群,可增加饲料营养的消化吸收能力。
邹仕庚进行的体外抑菌试验表明,喹烯酮对金**葡萄球菌、大肠杆菌、科雷伯氏杆菌、变形杆菌、禽巴氏杆菌、鼠伤寒、痢疾杆菌等均有显著的__抑制作用,最小抑菌浓度(M IC)与现用的某些化学药物相同。
对仔猪增重的影响
徐忠赞等进行了10批仔猪添加喹烯酮的增重效果试验。结果表明,在30~60 d的饲喂期内,与对照组相比, 50 mg/kg喹烯酮组多增重3 44% ~31 25% , 10批试验的平均增重比对照组高12 25% ,试验组的饲料效率比对照组提高6 67% ~22 23%。与喹乙醇组相比,在3批对比试验中,喹烯酮组有2批增重高于喹乙醇,分别高出3 44%和7 82% ,有1批低于喹乙醇组3 47%。试验期间,喹烯酮组仔猪腹泻率仅为对照组的32%~49%。
李娟等研究也证明,喹烯酮具有改善仔猪日增重,降低腹泻率的作用;可节约药物费用、增加经济收入,作为饲料添加剂使用是可行的。
对肉鸭生长的影响
陈权军等的试验发现喹烯酮与空白对照组相比,增重提高了10 7% ,料肉比下降了8 9%;与喹乙醇相比,肉鸭增重能提高6 5% ,料肉比降低6 0% ,差异显著( P < 0 05) 。
在采食量和成活率方面,显著不差异,这说明喹烯酮具有良好的促生长作用。
对肉鸡生产性能的影响
王玉春等在饲料中分别添加0 002 5%、0 005%及0 007 5%的喹烯酮和喹乙醇对肉仔鸡进行了饲养试验,结果表明, 0 005%、0 007 5%组的喹烯酮和喹乙醇均能显著促进肉仔鸡生长,其中以0 007 5%组最佳。与空白对照组相比,喹烯酮的增重率为121 995% ,喹乙醇的增重率为118 14%。用0 007 5%的喹烯酮作扩大试验,共进行9批,与空白对照组相比,平均增重率为117% ,死亡率降低5 42% ,饲料效率提高12%。
对鱼类生长的影响
李金善等将喹烯酮分别添加于鱼饲料和养鱼水中,在小环境内观察了其对鱼病防治的影响。结果,水中应用50 mg/L组存活13尾,存活率为93%; 75 mg/L组存活11尾,存活率为85%;空白对照组(不给药)全部死亡,死亡率为100%。饲料中添加50 mg/kg 组(共11尾) ,存活11尾,存活率为100%; 75 mg/kg组存活9尾,存活率占82% ,空白对照组(不给药)试验结束时全部死亡,死亡率100%。以上两种用药方法的两个不同浓度的试验组与空白对照组(不给药)相比较,成活率差异极显著( P < 0 01) 。实验表明喹烯酮能提高鱼的成活率,且有净化水质的作用及防病效果。
喹烯酮用作水产饲料添加剂时,还能够显著提高鱼等水产动物的成活率;可有效地防治鱼虾等水生动物胃肠道疾病———诸如胃胀、肠炎、厌食等。
戴述诚等研究表明: 喹烯酮在水产饲料中以40 mg/kg添加,即使其原料价格按300元/kg计算,每t饲料只增加12元成本。因此将喹烯酮应用于水产动物的养殖有现实的研究意义。
药物残留
根据美国食品和药物管理局规定,依据公式:安全组织浓度( STC) = (AD I ×人体重) ÷(所消费组织的g数·d- 1 ) ,求得STC如下:肝192 mg/kg,停药4 h 后实测最大值为0 061 9 mg/kg; 肾384mg/kg,停药4 h后实测值为0;肌肉64 mg/kg,停药4 h后实测值为0;脂肪384 mg/kg,停药4 h后实测值为0。由此看出,猪食用组织中的喹烯酮含量远远小于安全组织浓度,故该药相当安全。
李剑勇等[ 7 ]饲喂后2 5个月个体动物可食用组织中所含的喹烯酮水平为:喹烯酮在肌肉、脂肪和肾脏中均无残留,在肝脏中的残留量也很小, 4 d以后无残留,这与喹烯酮代谢动力学研究的结果,即喹烯酮生物利用度很低(猪仅为0 5% )相一致。停药后4 h所有可食用猪组织中喹烯酮浓度均低于计算所得的安全组织浓度,故该药用于猪时无休药期,即休药期为0。
金胜录等[10 ]采用RP-HPLC方法测定喹烯酮及其制剂含量,以Symmetry C18柱为固定相,流动相为甲醇:水(60∶40) ,检测波长314 nm,喹烯酮在0 005~0 25 mg/mL浓度范围内呈线性关系( r =0 999 3, ) ,平均回收率为99 89%, RSD =1 13 (n =5)。
李剑勇等[ 6 ]建立了高效液相色谱法,测定口服大剂量喹烯酮的肉鸡、仔猪血液浓度。喹烯酮在两种动物血液中的浓度极低( < 4 0μg/mL) ,以致无法检测到。粪便中喹烯酮的含量以薄层扫描的方法测定[ 11 ] ,得出结论:喹烯酮口服后,作用于消化道,不易被机体吸收,主要以原药形式排出体外,所以喹烯酮在机体内残留极少。
应用前景
自从20世纪40年代发现四环素对畜禽的促生长作用以来,抗生素已广泛用作饲料添加剂,给畜牧业的发展带来了巨大的经济效益。然而研究发现,绝大多数抗生素在消灭致病菌的同时,也杀灭了对机体有益的生理性常住细菌,并且长期使用易产生耐药性菌株以及在畜产品中残留,通过食物链影响人类健康和破坏生态环境。随着人们生活水平的提高和对食品安全的重视,有残留性的抗生素已经不适用于畜牧业生产。近年来学者们研究出了微生态制剂、多糖添加剂、寡糖添加剂、真菌肽添加剂等绿色环保制剂,但试验均表明上述添加剂的促生长作用都不如传统的抗生素,而且从我国现阶段的畜牧业发展水平来看,完全应用这些新制品也是不现实的。
喹烯酮对动物机体无“三致”作用,药物残留接近于零等特点决定了它可能在现在以及以后很长一段时间内可作为一种广泛应用的抗生素使用。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)