我们生活在3+1维时空之中,对此我们并不特别意外。当描述自然的
偏微分方程是椭圆或者超双曲线方程时,也就是空间或者时间其中之一是0维或
同时多维,对观测者来说,宇宙不可能预测(紫色和绿色部分)。
其余情况下(双曲线方程),若n>3,原子无法稳定存在,n<3,复杂度太低以
至于无法产生自我意识的观测者(没有引力,拓扑结构也成问题)。
那是1915年,爱因斯坦发表了他的杰作——广义相对论,使我们理解了宇宙空间弯曲的含义,彻底革新了我们的宇宙时空观。1917年,爱因斯坦将广义相对论公式应用到整个宇宙,想看看能否获得对宇宙本质的新认识。当时,所有人都相信,宇宙是封闭而静止的——既不膨胀,也不收缩。但爱因斯坦的公式却让他十分惊讶:公式表明宇宙要么在膨胀,要么在收缩,但就是不能保持静止!
面对着如此不符合“常识”的公式,爱因斯坦觉得他唯一的选择就是引进一个附加因素,以使他的理论导出一个静止不变的宇宙。这个附加因素就是宇宙常数,宇宙常数更准确的说法应该是“宇宙常量”,它代表着真空中有一种看不见的能量,其密度是一个常数,会产生宇宙排斥力, 同引力相反,它随着天体之间距离的增大而增强。这是一个假想的、用以抵消引力作用的力。宇宙常数就是指这种宇宙空间中恒定的能量密度。我们只要调整这个常数,就可以平衡引力与宇宙排斥力,而得到静止且封闭的宇宙。
在发现了宇宙膨胀这个事实后,爱因斯坦抛弃了自己过去信奉的稳态宇宙理论,就急急忙忙把他方程中的宇宙常数项去掉了,并认为宇宙常数是他“一生中最大的错误”。随后,宇宙常数被抛进历史的垃圾堆。
爱因斯坦认为,量子力学只不过是对原子及亚原子粒子行为的一个合理的描述,是一种唯象理论,它本身不是终极真理。他说过一句名言:“上帝不会掷骰子。”他不承认薛定谔的猫的非本征态之说,认为一定有一个内在的机制组成了事物的真实本性。他花了数年时间企图设计一个实验来检验这种内在真实性是否确在起作用,但他没有完成这种设计就去世了。
即使我们没法观测其他宇宙,多重宇宙理论依然可以被实践验证。关键在于预言第一层多重宇宙中各个平行宇宙的共性并指出其概率分布,也就是数学家所谓的“度量”。我们的宇宙应当是那些“出现可能性最大的宇宙”中的一个。
第二层多重宇宙示意图
如果第一层多重宇宙的概念不太好消化,那么试着想象下一个拥有无穷组第一层多重宇宙的结构:组与组之间相互独立,甚至有着互不相同的时空维度和物理常量。这些组构成了第二层多重宇宙,被称为“无序的持续膨胀”的现代理论预言了它们。
“膨胀”作为大爆炸理论的必然延伸,与该理论的许多其他推论联系紧密。比如我们的宇宙为何如此之大而又如此的规整,光滑和平坦?答案是“空间经历了一个快速的拉伸过程”,它不仅能解释上面的问题,还能阐释宇宙的许多其他属性。见《膨胀的宇宙》 by Alan H Guth and Paul J Steinhard; Scientific American, May 1984; 《自我繁殖的膨胀宇宙》 by Andrei Linde, November 1994 “膨胀”理论不仅为基本粒子的许多理论所语言,而且被许多观测证实。“无序的持续”指的是在最大尺度上的行为。作为一个整体的空间正在被拉伸并将永远持续下去。然而某些特定区域却停止拉神,由此产生了独立的“气泡”,好像膨胀的烤面包内部的气泡一样。这种气泡有无数个。它们每个都是第一层多重宇宙:在尺寸上无限而且充满因能量场涨落而析出的物质。
第二层多重宇宙与第一层的区别非常之大。各个气泡之间不仅初始条件不同,在表观面貌上也有天壤之别。当今物理学主流观点认为诸如时空的维度、基本粒子的特性还有许许多多所谓的物理常量并非基本物理规律的一部分,而仅是一种被称作“对称性破坏”过程的结果而已。举例言之,理论物理学家认为我们的宇宙曾一度由9个相互平等的维度组成。在宇宙早期历史中,只有其中3个维度参与空间拉神,形成我们现在观察到的三维宇宙。其余 6个维度现在观察不到了,因为它们被卷曲在非常微小的尺度中,而且所有的物质都分布在这三个充分拉伸过的维度“表面”上(对9维来说,三维就是一个面而已,或者叫一层“膜”)。
产生第二层多重宇宙的另一条路是经历宇宙从创生到毁灭的完整周期。科学史上,该理论由一位叫Richard C的物理学家于二十世纪30年代提出,最近普林斯顿大学的Paul J Steinhardt和剑桥大学的Neil Turok两位科学家对此作了详尽阐述。Steinhardt和Turok 提出了一个“次级三维膜”的模型,它与我们的空间相当接近,只是在更高维度上有一些平移。see "Been There, Done That," by George Musser; News Scan, Scientific American, March 2002该平行宇宙并非真正意义上的独立宇宙,但宇宙作为一个整体--过去、现在和未来--却形成了多重宇宙,并且可以证明它包含的多样性恰似无序膨胀宇宙所包含的。此外,沃特卢的物理学家Lee Smolin还提出了另一种与第二层多重宇宙有着相似多样性的理论,该理论中宇宙通过黑洞创生和变异而非通过膜物理学。
尽管我们没法与其他第二层多重宇宙之中的事物相互作用,宇宙学家仍能间接地指出它们的存在。因为他们的存在可以用来很好地解释我们宇宙的偶然性。做一个类比:设想你走进一座旅馆,发现了一个房间门牌号码是1967,正是你出生那年。多么巧合呀,在那瞬间你惊叹到。不过你随即反应过来,这完全不算什么巧合。整个旅馆有成百上千的房间,其中有一个和你生日相同很正常。然而你若看见的是另一个与你毫无干系的数字,便不会引发上面的思考。这说明什么问题呢?即便对旅馆一无所知,你也可以用上面的方法来解释很多偶然现象。
让我们举个更切题的例子:考察太阳的质量。太阳的质量决定它的光度(即辐射的总量)。通过基本物理运算我们可知只有当太阳的质量在16X10^30~24X10^30千克这么个狭窄范围内,地球才可能适合生命居住。否则地球将比金星还热,或者比火星还冷。而太阳的质量正好是20X10^30千克。乍看之下,太阳质量是种惊人的幸运与巧合。绝大多数恒星的质量随机分布于10^29~10^32千克的巨大范围内,因此若太阳出生时也随机决定质量的话,落在合适范围的机会将微乎其微。然而有了旅馆的经验,我们便明白这种表面的偶然实为大系统中(在这个例子里是许多太阳系)的必然选择结果(因为我们在这里,所以太阳的质量不得不如此)。这种与观测者密切相关的选择称为“人择原理”。虽然可想而知它引发过多么大的争论,物理学家们还是广泛接收了这一事实:验证基础理论的时候无法忽略这种选择效应。
适用于旅馆房间的原理同样适用于平行宇宙。有趣的是:我们的宇宙在对称性被打破的时候,所有的(至少绝大部分)属性都被“调整”得恰到好处,如果对这些属性作哪怕极其微小的改变,整个宇宙就会面目全非--没有任何生物可以存在于其中。如果质子的质量增加02%,它们立即衰变成中子,原子也就无法稳定的存在。如果电磁力减小4%,便不会有氢,也就不会有恒星。如果弱相互作用再弱一些,氢同样无法形成;相反如果它们更强些,那些超新星将无法向星际散播重元素离子。
第一层和第二层多重宇宙预示的平行世界相隔如此之遥远,超出了天文学家企及的范围。但下一层多重宇宙却就在你我身边。它直接源于著名的、备受争议的量子力学解释,任何随机量子过程都导致宇宙分裂成多个,每种可能性一个。
20世纪早些年,量子力学理论在解释原子层面现象方面的成功掀起了物理学革命。在原子领域下,物质运动不再遵守经典的牛顿力学规律。在量子理论解释它们取得瞩目成功的同时却引发了爆炸性激烈的争论。它到底意味着什么?量子理论指出宇宙并不像经典理论描述的那样,决定宇宙状态的是所有粒子的位置和速度,而是一种叫作波函数的数学对象。根据薛定鄂方程,该状态按照数学家称之为“统一性”的方式随时间演化,意味着波函数在一个被称为“希尔伯特空间”的无穷维度空间中演化。尽管多数时候量子力学被描述成随机和不确定,波函数本身的演化方式却是完全确定,没有丝毫随机性可言的。
许多年过去了,物理学家们逐渐抛弃了这种假设,转而开始接受普林斯顿大学毕业生Hugh Everett在1957年提出的一种观点。他指出“波函数坍塌”的假设完全是多余的。纯粹的量子理论实际上并不产生任何矛盾。它预示着这样一种情形:一个现实状态会逐渐分裂成许多重叠的现实状态,观测者在分裂过程中的主观体验仅仅是经历完成了一个可能性恰好等于以前“波函数坍塌假设结果”的轻微的随机事件。这种重叠的传统世界就是第三层多重宇宙。
四十多年来,物理界为是否接受Everett的平行世界犹豫不决,数度反复。但如果我们将之区分成不同视点分别来看待,就会更容易理解。研究它数学方程的物理学家们站在外部的视点,好像飞在空中的鸟审视地面;而生活在方程所描述世界里的观测者则站在内部的视点,就好比被鸟俯瞰的一只青蛙。
在鸟看来,整个第三层多重宇宙非常简单。只用一个平滑演化的、确定的波函数就能就能描绘它而不引发任何分裂或平行。被这个演化的波函数描绘的抽象量子世界内部却包含了大量平行的经典世界。它们一刻不停的分裂、合并,如同经典理论无法描述的一堆量子现象。在青蛙看来,观察者感知的只有全部真相的一小部分。它们能观测到自己所在那个第一层宇宙,但是一种模仿波函数坍塌效果而又保留统一性、被称为“去相干”的作用却阻碍他们观测到与之平行的其他宇宙。
世界是众多宇宙相连的,中间有光带连接,这种宇宙格支撑着各个宇宙,达到平衡。每一个星系中心都有一个超级黑洞,组成星系的恒星围绕着黑洞转动。
相连宇宙的外面的外面,是宇宙形成之前的状态,是虚子构成的虚无太空。
如果刨根问底的话,问虚子太空外面的外面是什么,应该站到宇宙上方来观察宇宙,进入12维时空就看明了了。
据量子力学和平行宇宙理论,我们人类生活在3+1维空间内,生活在一维空间的人类,他们只知道前后移动,不会拐弯,2维空间的人会拐弯,但不会上下,我们3+1维空间的人会坐飞机,潜水,5维空间的人会穿越,看得到时空点>>>>>>>12维空间的人可以制造时间,时间只是物质。
1 长征一号 1970424 酒泉 东方红一号科学试验卫星 近地 1 成功
2 长征一号 197133 酒泉 实践一号科学实验卫星 近地 2(停止使用) 成功,入轨第7天开始正常工作
未计入 风暴一号 1973918 酒泉 科学实验卫星 近地 1 失败
未计入 风暴一号 1974712 酒泉 科学实验卫星 近地 2 失败
3 长征二号 1974115 酒泉 返回式卫星 近地 1 FSW-0-1 失败,火箭起飞后爆炸
未计入 风暴一号 1975726 酒泉 长空一号科学实验卫星 近地 3 中国首颗超过1吨的卫星 成功
4 长征二号 19751126 酒泉 第1颗返回式卫星 近地 2 FSW-0-2 成功
未计入 风暴一号 19751216 酒泉 长空一号科学实验卫星 近地 4 成功
风暴一号 1976830 酒泉 长空一号科学实验卫星 近地 5 成功
5 长征二号 1976127 酒泉 第2颗返回式卫星 近地 3 FSW-0-3 成功
6 长征二号 1978126 酒泉 第3颗返回式卫星 近地 4(停止使用) FSW-0-4 成功
未计入 风暴一号 1979728 酒泉 实践二号、实践二号甲、实践二号乙 近地 6 失败,未入轨
未计入 风暴一号 1981920 酒泉 实践二号、实践二号甲、实践二号乙 近地 7(停止使用) 首次一箭三星成功 成功
7 长征二号丙 198299 酒泉 第4颗返回式卫星 近地 1 FSW-0-5 成功
8 长征二号丙 1983819 酒泉 第5颗返回式卫星 近地 2 FSW-0-6 成功
9 长征三号 1984129 西昌 东方红二号试验通信卫星01 同步 1 东方红二号首发 失败,三级发动机未能二次点火
10 长征三号 198448 西昌 东方红二号试验通信卫星02 同步 2 成功
11 长征二号丙 1984912 酒泉 第6颗返回式卫星 近地 3 FSW-0-7 成功
12 长征二号丙 19851021 酒泉 第7颗返回式卫星 近地 4 FSW-0-8 成功
13 长征三号 198621 西昌 东方红二号通信卫星 同步 3 成功
14 长征二号丙 1986106 酒泉 第8颗返回式卫星 近地 5 FSW-0-9 成功
15 长征二号丙 198785 酒泉 第9颗返回式卫星 近地 6 FSW-0-10 成功
16 长征二号丙 198799 酒泉 第10颗返回式卫星 近地 7 FSW-1-1 成功
17 长征三号 198837 西昌 东方红二号甲通信卫星01 同步 4 东方红二号甲首发 成功
18 长征二号丙 198885 酒泉 第11颗返回式卫星 近地 8 FSW-1-2 成功
19 长征四号甲 198897 太原 风云一号A星 太阳 1 中国首颗气象卫星 成功
20 长征三号 19881222 西昌 东方红二号甲通信卫星02 同步 5 成功
21 长征三号 199024 西昌 东方红二号甲通信卫星03 同步 6 成功
22 长征三号 199047 西昌 亚洲一号通信卫星 同步 7 外星1 成功
23 长征二号捆 1990716 西昌 巴基斯坦科学试验卫星、澳星模拟星 近地 1 外星2、3 部分成功,澳星模拟星未入轨
24 长征四号甲 199093 太原 风云一号B星、大气一号甲、大气一号乙 太阳 2(停止使用) 成功
25 长征二号丙 1990105 酒泉 第12颗返回式卫星 近地 9 FSW-1-3 成功
26 长征三号 19911228 西昌 东方红二号甲通信卫星04 同步 8 部分成功,星未入轨
未计入 长征二号捆 1992322 西昌 澳普图斯B1通信卫星 同步 外星4 未发射,紧急关机,卫星无恙
27 长征二号丁 199289 酒泉 第13颗返回式卫星 近地 1 FSW-2-1 成功
28 长征二号捆 1992814 西昌 澳普图斯B1通信卫星 同步 2 外星4 成功
29 长征二号丙 1992106 酒泉 第14颗返回式卫星、瑞典弗利亚科学卫星 近地 10 FSW-1-4、外星5 成功
30 长征二号捆 19921221 酒泉 澳普图斯B2通信卫星 同步 3 外星失败 失败,卫星爆炸
31 长征二号丙 1993108 酒泉 第15颗返回式卫星 近地 11 FSW-1-5 部分成功,卫星未返回
32 长征三号甲 199428 西昌 实践四号科学卫星(模拟星)、夸父一号 同转 1 成功
33 长征二号丁 199473 酒泉 第16颗返回式卫星 近地 2 FSW-2-2 成功
34 长征三号 1994721 西昌 亚太一号通信卫星 同步 9 外星6 成功
35 长征二号捆 1994828 西昌 澳普图斯B3通信卫星 同步 4 外星7 成功
36 长征三号甲 19941130 西昌 东方红三号通信卫星 同步 2 东方红三号首发 部分成功,卫星未能定点
37 长征二号捆 1995126 西昌 亚太二号通信卫星 同步 5 外星失败 失败,火箭爆炸
38 长征二号捆 19951128 西昌 亚洲二号通信卫星 同步 6 外星8 成功
39 长征二号捆 19951228 西昌 艾科斯达通信卫星 同步 7 外星9 成功
40 长征三号乙 1996215 西昌 国际708通信卫星 同步 1 外星失败 失败,火箭起飞后坠地
41 长征三号 199673 西昌 亚太一号A通信卫星 同步 10 外星10 成功
42 长征三号 1996818 西昌 中星7号通信卫星 同步 11 失败,未进入轨道
43 长征二号丁 19961020 酒泉 第17颗返回式卫星 近地 3 FSW-2-3 成功
44 长征三号甲 1997512 西昌 东方红三号通信卫星 同步 3 成功
45 长征三号 1997610 西昌 风云二号气象卫星A星 同步 12 中国首颗静止气象卫星 成功
46 长征三号乙 1997820 西昌 马部海通信卫星 同步 2 外星11 成功
47 长征二号丙SD199791 太原 铱星模拟星(双星) 近地 12 外星12、13 成功
48 长征三号乙 19971017 酒泉 亚太二号R通信卫星 同步 3 外星14 成功
49 长征二号丙SD1997128 太原 铱星(双星) 近地 13 外星15、16 成功
50 长征二号丙SD1998326 太原 铱星(双星) 近地 14 外星17、18 成功
51 长征二号丙SD199852 太原 铱星(双星) 近地 15 外星19、20 成功
52 长征三号乙 1998530 西昌 中卫一号通信卫星 同步 4 美国制造 成功
53 长征三号乙 1998718 西昌 鑫诺一号通信卫星 同步 5 法国制造 成功
54 长征二号丙SD1998820 太原 铱星(双星) 近地 16 外星21、22 成功
55 长征二号丙SD19981219太原 铱星(双星) 近地 17 外星23、24 成功
56 长征四号乙 1999510 太原 风云一号C星、实践五号科学实验卫星 太阳 1 成功
57 长征二号丙SD1999612 太原 铱星(双星) 近地 18 外星25、26 成功
58 长征四号乙 19991014 太原 资源一号01星 太阳 2 中国巴西合作研制 成功
59 长征二号F 19991120 酒泉 神舟号无人试验飞船 近地 1 成功
60 长征三号乙 2000126 西昌 中星22号 同步 6 东方红三号平台 成功
61 长征三号 2000625 西昌 风云二号B星 同步 13 成功
62 长征四号乙 200091 太原 资源二号01星 太阳 3 成功
63 长征三号甲 20001031 西昌 北斗导航卫星1A 同步 4 成功
64 长征三号甲 20001221 西昌 北斗导航卫星1B 同步 5 成功
65 长征二号F 2001110 酒泉 神舟二号无人试验飞船 近地 2 成功
66 长征二号F 2002325 酒泉 神舟三号无人飞船 近地 3 成功
67 长征四号乙 20020515 太原 风云一号D星、海洋一号A 太阳 4 首颗海洋水色卫星 成功
68 长征四号乙 20021027 太原 资源二号02星 太阳 5 成功
69 长征二号F 20021230 酒泉 神舟四号无人飞船 近地 4 成功
70 长征三号甲 2003525 西昌 北斗导航卫星1C 同步 6 成功
71 长征二号F 20031015 酒泉 神舟五号载人飞船 近地 5 中国首次载人航天飞行 成功
72 长征四号乙 20031021 太原 资源一号02星、创新一号 太阳 6 中国巴西合作研制 成功
73 长征二号丁 2003113 酒泉 第18颗返回式卫星 近地 4 FSW-3-1 成功
74 长征三号甲 20031115 西昌 中星20号 同步 7 东方红三号平台 成功
75 长征二号丙SM20031230 西昌 探测一号 超椭圆 19 成功
76 长征二号丙 2004418 西昌 试验卫星一号、纳星一号 近地 20 成功
77 长征二号丙SM2004725 太原 探测二号 超椭圆 21 成功
78 长征二号丙 2004829 酒泉 第19颗返回式卫星 近地 22 FSW-3-2 成功
79 长征四号乙 200499 太原 实践六号双星01组 太阳 7 成功
80 长征二号丁 2004927 酒泉 第20颗返回式卫星 近地 5 FSW-3-3 成功
81 长征三号甲 20041019 西昌 风云二号C星 同步 8 成功
82 长征四号乙 2004116 太原 资源二号03星 太阳 8 成功
83 长征二号丙 20041118 西昌 试验卫星二号 近地 23 成功
84 长征三号乙 2005413 西昌 亚太六号 同步 7 外星27 成功
85 长征二号丁 200576 酒泉 实践七号 近地 6 成功
86 长征二号丙 200582 酒泉 第21颗返回式卫星 近地 24 FSW-3-4 成功
87 长征二号丁 2005829 酒泉 第22颗返回式卫星 近地 7 FSW-3-5 成功
88 长征二号F 20051012 酒泉 神舟六号载人飞船 近地 6 成功
89 长征四号乙 2006427 太原 遥感卫星一号 太阳 9 成功
90 长征二号丙 200699 酒泉 实践八号 近地 25 成功
91 长征三号甲 2006913 西昌 中星22A 同步 9 东方红三号平台 成功
92 长征四号乙 20061024 太原 实践六号双星02组 太阳 10 成功
93 长征三号乙 20061029 西昌 鑫诺二号 同步 8 东方红四号首发 部分成功,卫星故障
94 长征三号甲 2006128 西昌 风云二号D星 同步 10 成功
95 长征三号甲 200723 西昌 北斗导航卫星1D 同步 11 成功,故障抢修成功
96 长征二号丙 2007411 太原 海洋一号B 太阳 26 成功
97 长征三号甲 2007414 西昌 北斗导航卫星 中高 12 成功
98 长征三号乙 2007514 西昌 尼日利亚通信卫星一号 同步 9 外星28,东方红四号平台 成功
99 长征二号丁 2007525 酒泉 遥感卫星二号、皮星一号 近地 8 成功
100 长征三号甲 200761 西昌 鑫诺三号 同步 13 东方红三号平台 成功
101 长征三号乙 200775 西昌 中星6B 同步 10 法国制造 成功
102 长征四号乙 2007919 太原 资源一号03星 太阳 11 中国巴西合作研制 成功
103 长征三号甲 20071024 西昌 嫦娥一号! 月球极轨 14 首颗月球探测卫星 成功
104 长征四号丙 20071112 太原 遥感卫星三号 太阳 1 成功
105 长征三号丙 2008425 西昌 天链一号01星 同步 1 首颗中继卫星 成功
106 长征四号丙 2008528 太原 风云三号01星 太阳 2 风云三号首发 成功
107 长征三号乙 200869 西昌 中星九号 同步 11 法国制造 成功
注:发射地球同步轨道卫星时,火箭只负责将卫星送至同步转移轨道,故此后若发生意外,仍算作部分成功
1995年前,长二捆发射外国同步卫星时,火箭一般只负责送入近地停泊轨道,此后的工作由卫星发动机或引进的第三级完成
理论上“时间倒流”也同样具备了一定的条件。要达到“时间倒流”有两种方式:一是超光速,二是“虫洞”(Wormholes)。
按照爱因斯坦那个著名的能量质量关系式E=mc2,穿越时间隧道从现在回到过去完全是可能的。1905年,爱因斯坦在“狭义相对论”中这样解释一个“奇异”世界:我们所处的宇宙可以看成是一个四维时空,随着物体运动的速度增快,时间流程将会变慢,空间尺度将会缩短。1915年,爱因斯坦进一步提出他的引力理论,叫作“广义相对论”。同样在这个“奇异”世界中,在大质量物体(即强大的引力场)作用之下,时空结构会发生弯曲,时间流程也会变慢。一维时间可以像三维空间一样发生弯曲。1974年在美国杜兰大学的提普勒(Frank J Tipler)就曾做过计算,一个质量很大、无限长的圆柱体,若沿着轴心以接近光速自转,便可让航天员造访他自己的过去;同样的,这也是拖着光线绕着轴,以封闭曲线运动。1991年,美国普林斯顿大学的戈特(Richard Gott)则预测,宇宙弦(宇宙学家认为这种结构是在宇宙大爆炸初期形成)可以造成相似的结果。科学家们研究发现:当宇宙飞船经过重力场时,把重力场的拉力转换成推力,宇宙飞船在那段时间内,便可以以光速甚至超光速飞行。美国航空航天局(NASA)的专家们已经创立了“时空场共振理论”,这是以爱因斯坦和德国物理学家海森堡的“统一场论”为基础建立的。其要旨是:借助电磁、重力、光速和时空共同演变的伸缩性,瞬间跨越时光。但是,就算真能超光速,狭义相对论也提到物体运动速度越快、长度变得越短,越趋近光速、越为显着,此为“罗伦兹收缩”;而“广义相对论”也提到,趋近光速会受到强大潮汐重力场的作用。当到达光速时,换作是人的话,恐怕早已不成人形了,不用说超光速了。
所以说,另一方面“虫洞”就显得更为合理了。
在广义相对论发表后不久,1935年爱因斯坦就在理论上发现了“虫洞”--也就是由两个相连的“黑洞”所构成的时空结构中的“豁口”的存在--一条贯穿空间和时间的隧道。也就是说,只要能够建造一个稳定的虫洞,就可以跨越时间和空间。数学家把这种情形称作“多连通空间”(multiply connected space)。但理论家一直未搞清,虫洞仅允许光线通过?抑或飞船也能穿行?到了1988年,美国加州理工学院的桑恩和摩立斯终于得出了结论:虫洞的两端皆可出入,并非像黑洞那样是一种单向通道,只进不出;再者,旅行者在虫洞内仅受到一般的拉力,不像在黑洞中。并且,该大学柏克莱分校的吉普索恩(Kip Thorne)教授还提出:光找到这样一个“虫洞”还不够,还必须使它的开口时间足够长,这样才能让人有足够的时间钻入它。因为根据量子理论,这个虫洞在强力的作用之下,将于瞬间关闭。有一种假设是利用开斯米效应(Casimir effect)等量子方式向“虫洞”里灌输反物质(Otone),这样就可以延长虫洞开启的时间。并且,同样利用反物质将其“扯大”,钻出一条长度约为一光年的“时间隧道”。这样一条“时间隧道”,便是由“现在”通往“过去”的“快捷方式”。这需要融合爱因斯坦的“广义相对论”和量子力学理论,创造出一个全新的量子引力论。著名的洛斯阿拉莫斯国家实验室(Los Alamos National Lab)的科学家已在如何利用虫洞方面进行开拓。他们对反物质有了更深的研究:一直以来,这种奇怪的反物质只存在于理论之中,而今他们已成功地证明,反物质也存在于我们的现实世界之中。并且得出结论:虫洞的超强(引)力场,也一样可以通过反物质来中和。(“正物质”和“反物质”有一很有意思的差别,前者拥有“正质量”,能产生能量,后者具有“负质量”,却可以吸去周围的能量。)而实际建造一个虫洞要分3步:第一步,寻找或建立一个虫洞,开辟一个隧道用来连接太空中两个不同的区域。第二步,使虫洞稳定下来。由量子产生的负能量,虫洞便允许信号和物体安全地穿越它。负能量会抵制虫洞变为密度无穷大或接近无穷大。换句话说,它阻止了虫洞演变成黑洞。第三步是牵引虫洞。一艘具有高度先进技术的宇宙飞船将虫洞的入口互相分离开。如果两个埠都放置在空间中合适的地方,那么时间差将保持恒定状态。假设这一差值是10年,一名宇航员从一个方向穿越虫洞,他将跳到10年后的未来,反之,宇航员若是从另一方向穿越虫洞,他将跳到10年前的过去。这听起来像科幻,但已是一个美国宇航局拟资助的真实的研究项目。
甚至还有物理学界权威认为,在我们这个世界里虫洞就可能以普朗克长度(约10-33公分)这种极微的尺度下自然存在。虽然这只有原子核的11020那么小,但在理论上,这么小的虫洞,只需要一束能量脉冲便可将之稳住,接着便可将它膨胀到可资使用的大小。因此,如果已经有某个超文明可以驾驭它的话,那么甚至完全可以在地球表面某一特定区域建造。1979年, 美国和法国科学家利用仪器,在百慕大魔鬼三角附近海底发现了金字塔。其由特殊材质所造,塔底边长约300米,高约200米,塔尖离海面仅100米,比埃及金字塔大得多。塔下部有二个巨大的洞穴,海水以惊人的速度从洞底流过这里。也就是说,迄今为止人类在地球上所发现的最大的金字塔位于同处于北纬30度的百慕大三角,这就足以证明百慕大魔鬼三角与埃及金字塔之间存在着让人意想不到的密切联系。从另一方面来考虑,如果未来文明出现了由人工制造的时间隧道,那么必然从远古至未来在外层空间甚至地球表面某一特定区域存在着时间通道的入口。由百慕大三角区域所发生的大量飞机与轮船神秘失踪事件,并且恰好又有UFO以及USO频繁出没,因此完全有理由将此作为(时间通道入口的)最大嫌疑对象。
(事实上,此处也的确发生过多起时空扭曲事件:1966年1月6日从阿鲁巴岛出发的“尤里西斯”号双桅帆船在百慕大三角神秘失踪,却于1990年突然出现在委内瑞拉加拉加斯市郊的海滩上,船上的三个水手的年龄和生理状况跟24年前并无差异;1955年一架飞越百慕大三角海区时失踪的飞机于1990年完整无损地飞回原定目的地机场,其中一名飞行员的出生证表明他现在已有77岁,但他看起来只有40出头;1954年由洛根和诺顿所乘坐的热气球在魔鬼三角地带神秘失踪,经多方查找,仍无下落。1990年春在古巴的春季热气球比赛中,那只失踪36年的热气球在消失处又突然出现……)
假如技术上的诸多难题都被克服了,时间机器的生产将会打开充满悖论的潘多拉盒子。关于跨时间旅行最后还有一个悖论至今没有人可以解决。举个例子来说,如果一个人真的“返回过去”,并且在其母亲怀他之前就杀死了自己的外祖母,那么这个跨时间旅行者本人还会不会存在呢?对于“外祖母谬论”,现今最受物理学界所推崇的解决方案是“多重宇宙”理论——世界不是只有一个,而是有许多平行的世界。1957 年物理学家 Hugh Everett 根据量子力学提出“多重世界理论”,认为宇宙从“大爆炸”开始的演化过程上,如分叉路般不断地分裂为二,歧异点是某件关键事件引起的量子转移,而分出的世界便产生差异,成为多重“平行世界”或“等次元宇宙”。(迄今为止,在理论上又可分为三类:量子力学多宇宙体系、广义相对论多宇宙体系、涡流增压多宇宙体系。)并且,近年来物理学家Stephen Hawking 又指出:无数个宇宙通过“虫洞”相互连结。你回到过去,但那不是你自己的世界,而是和你的历史相似的等次元宇宙。这样,即便你打死了自己的外祖母,她在那个世界也的确死了,但当你回到未来时,她依然活得好好的。但是,如果真是这样的话,那么大量的有关时间倒流的事实证据也就无从解释了。要解决此矛盾,需要创造一个全新的假设——“照镜原理”。打个比方:我们单凭自己的肉眼就能直接看到自己身体表面的大部分部位,但是不通过镜子是永远也无法看到作为产生(自己)视觉感观的物质基础的(自身的)头部,之所以无法看到自身头部是由于视线受到了空间上的限制。同样道理,所谓的“镜子”代表了与历史相似的“等次元空间”;而“头部”即代表了历史中自己的祖先以及过去的自己(作为构建了“现在的自己”存在因素的物质基础)。也就是说,通过“时间倒流”,时间旅行者的确能够回到真的历史中,但由于受到了时空上的限制,时间旅行者是永远也无法与历史中自己的祖先以及过去的自己发生直接的接触与联系的。谋杀自己的外祖母只能在“等次元空间”中存在。因此:由于过去的物质,现在的物质,将来的物质在某些性状的本质上是有所区别的。时间旅行者一旦即将与历史中自己的祖先以及过去的自己发生接触,那么作为时间旅行者本人在我们这个世界的历史中所存在的因素就将消失,就像百慕大魔鬼三角突然神秘失踪的轮船和飞机那样,而只能存在于“平行宇宙”中。
这样,既解决了“外祖母谬论”,同时又为远古地球的确受到过未来文明影响提供了理论基础。
煤化作用历程是影响煤性质及结构的重要因素之一。苏联学者波格丹诺娃[1]对典型热变煤( 通古斯煤田煤) 与深成变质煤( 顿巴斯煤田煤) 所作对比研究表明: 热变煤具有 H/C低、碳含量低、发热量低、粘结性较差等特点。我国晚古生代煤田区域热变质作用广泛发育,豫西煤田可作为典型代表。笔者选取煤田中部济源、焦作、新密、临汝及平顶山五个矿区不同变质程度的热变煤作了工业分析与元素分析,傅立叶变换红外光谱、顺磁共振、热解色谱、有机差热及 X-衍射分析,经与四川中梁山的典型深成变质煤对比研究,探讨了区域热变质作用对煤性质及结构的影响特征。
一、煤变质作用背景
豫西煤田石炭二叠纪含煤地层为一套海陆交替相含煤建造,其煤变质分带是以围绕济源、焦作及永城无烟煤为中心,呈北西西向椭圆形环带状分布( 图 1) ,其形成是在深成变质的基础上迭加了区域热变质作用的结果。根据区域地质特征,煤变质史可明显分为两个阶段: 深成变质作用阶段与热变质作用阶段。前者从煤层形成始,延续到侏罗纪早期,盆地沉积中心在焦作济源一带,山西组二1煤达瘦煤阶段,新密达焦煤阶段,朝川达气煤阶段( 表1) 。整个燕山期属热变期,据煤 系地层中热液石英脉均一法包体测温,在异常古地热流影响下,济源矿区古地温曾高达 350℃,新密 260℃,朝川 190℃,平顶山十二矿 160℃,这种古地温场是造成目前煤变质分布的原因。
四川中梁山龙潭组K1煤层属典型深成变质煤,所受最高古地温从未超过140℃[2],根据卡委尔图解推算(现在地温梯度25℃/100m,年平均气温20℃),R°max为158%,与实测镜质组反射率(R°max为164%)相近。聚煤环境为潟湖-海湾[3],与豫西煤田山西组二1煤相同。
图1 豫西地区山西组二1煤煤变质分带
表1 豫西煤田煤变质特征(二1煤为例)
二、实验样品
区内研究样品取自煤田中部的济源、焦作、新密、临汝及平顶山五个矿区,包括山西组二1煤,太原组一1煤及下石盒子组五3煤。镜质组最大反射率R°max从089%到680%。为排除煤岩成分及无机矿物对分析结果的影响,样品均为手选镜煤,除工业分析、元素分析样品外,其他分析样品破碎到050mm。用浓度为10%的盐酸处理6小时。经镜检,均质镜质体含量均超过93%,矿物含量不到20%。样品特征详见表2。
表2 样品特征
三、实验结果与讨论
从煤的元素分析与工业分析结果(表3)来看,等变质程度(以R°max%为准)的热变煤与深成变质煤相比(5#、6#),Vr低,Ht低,H/C低;而元素组成相近的热变煤与深成变质煤相比(3#、5#),具有Vr高,R°max%低的特征。
表3 镜煤的工业分析与元素分析
(一)热变煤的FTIR光谱特征
随煤化程度的增高,区内热变煤FTIR光谱体现了有规律的变化(图2,图3)。
图2 热变煤的FTIR光谱图
图3 热变煤的P1、P2与R°max关系图
第一,反映芳香烃结构的3020cm-1与890~700cm-1吸收峰,呈有规律的增强,到中变质无烟煤阶段(11#)除870cm-1峰有微弱显示外,其他均消失。
第二,代表脂肪烃的吸收峰2920、1460、1375cm-1随煤级的变化是复杂的:2920cm-1逐渐减弱,而1460、1375cm-1在焦煤(3#)中最强,到无烟煤阶段(11#)消失。一般认为,P1代表芳香烃与脂肪烃的相对比例[5]、[6],P2是芳香缩合程度的指标[4]。这两个参数随煤级的增高而增加。
第三,出现在1100~1330cm-1宽频带区域的含氧基团振动峰在肥煤阶段还相当明显,到焦煤中已很弱,与煤中芳香烃含量的变化正好相反。有人认为,煤的热变质作用最初化学反应是芳烃取代苯环上的含氧基团。
第四,在1710cm-1附近的频带,代表煤中C==O伸缩振动,在贫煤中还存在,可能是煤中残存的醛酮结构,在1650cm-1处有一个不断增加的叠加峰,可能是螯形结构的醌基[7]。
高变质无烟煤的红外光谱是一条平滑倾斜的曲线,这并不代表煤中不再存在芳香烃结构,而是由于煤分子结构高度芳香化,烃类结构不能显示原有性质所致。
表4的结果表明,即使朝川煤的煤级明显比中梁山煤低,但其P1,P2值均大得多,这说明在热变煤分子结构单元中,氢原子多集中在芳环上,且具较大芳香度。在900~650cm-1代表芳香烃面外弯曲振动的吸收峰,朝川煤也强得多,但出现在1100~1350cm-1范围内含氧基团的吸收峰则刚好相反(图4),中梁山煤出现了1335、1264、1164、1087cm-1几个明显峰,而朝川煤仅有1327、1204、1115cm-1三个弱峰,这与其元素分析中含氧量低相吻合。一般醇C==O伸缩振动吸收峰出现在1200~1000cm-1之间,而酚出现在1300~1200cm-1范围内[8];在焦煤阶段,含氧官能团主要以OH形式存在[9]。结合这两方面理解,可以认为中梁山煤以醇形式存在的OH基占有一定比例,而朝川煤主要以酚的形式存在。
由于FTIR光谱的高度精确性,据Peter[10]的研究,在2917与1600cm-1附近两峰的位置与温度作用有关,随煤受温的增加,均向低波数移动。区内热变煤受温较高,这二峰均处于较低波数(表4)。
综上所述,可得出初步结论:热变质煤与深成变质煤在结构上具有明显的区别。在热变煤中,碳以较大比例存在于芳环中,氢多集中在芳环上,含氧官能团少,主要以稳定的OH(酚)形式存在;在深成变质煤中,还有COOH、CHO基团。区域热变质作用促使C、H向芳香稠环移动,并逐步取代芳香环上的含氧基团。
表4 朝川煤与中梁山煤FTIR光谱定量解释结果
注:3号样品:P1=I3054/I2917=028,P2=I1604/I1439=150,
5号样品:P1=I3054/I2923=016,P2=I1605/I1442=113。
图4 朝川煤与中梁山煤FTIR光谱图
(二)热变煤的ESR特征
应用ESR研究煤可取得三个有益的参数:自由基度浓度(Ng)、共振峰宽(ω)及自由基信号的位置(g因子)。前者反映煤中自由基的绝对数量,后两者反映自由基所处的化学环境。将本区热变煤ESR结果与美国煤田煤[11]对比,发现两点有趣的的规律(图5,表5):
图5 热变煤与美国煤Cr-Ng对比图
表5 ESR分析结果
第一,本区煤的自由基浓度比美国煤高05~10个数量级,最大值出现在Cr920%左右,体现了明显超前(美国煤在Cr94%左右)。
第二,美国煤的g值在20027以上,而本区煤多在20027以下,明显偏小,且共振峰线宽度也明显的窄。
煤变质程度相近的本区煤与中梁山煤相比,亦体现自由基浓度大,g因子与线宽小的特征(表5)。
上述现象的出现与本区煤的热变质作用是分不开的。对煤中自由基的来源,A马尔香[12]作过精辟的论述,他认为是煤分子在热解过程中,小分子脱落而在母体上留下的“疤痕”。中梁山K1煤所受古地温从未超过140℃,而区内与其变质程度相近的热变煤受温在190℃以上。在较高温下的热变质作用增强了分子缩聚反应,促使小分子脱落成自由基,它们以更大程度集中在芳香环上,稳定性大,这必将导致煤中自由基浓度大。同样,热变煤中杂原子少,自由基与H、O关系小,而多集中在芳香环上,因而线宽、g值低。
随煤级增进,煤中稳定自由基迅速增加,当达到一定数量级时(1020个/克),其间距太小,则导致热变煤中上述“超前”衰减现象[12]。也有人认为,自由基浓度降低是在变无烟煤中形成自由电子的缘故[12]。
(三)热变煤的热解色谱特征
热解色谱是评价油源岩的简单可靠而有效的方法,最近用来研究煤的结构与性质也很有成效。热解色谱可获得四个参数[13]:
S1:代表煤中300℃前低温解析烃的含量,受外因条件影响大,意义有限。
S2:主要是450℃前煤受热解的析烃含量,也包括少量沥青质裂解产物。
S3:代表煤中含氧基团热解成CO2的含量。
Tmax:是S2对应的最高裂解温度。
表6是实验结果。本区热变煤与中梁山煤相比,Tmax大,S1、S2、S3均低。这与FTIR、ESR结果相一致。Tmax是煤级与有机质类型的综合反应,对于同类型有机质,它与温度呈正相关。因此,热变煤的Tmax较大。
表6 镜煤的热解色谱特征
S2受煤级、煤岩成分及还原程度的影响。据MTeichmüller(1983)[13]的研究,S2在R°max080%左右达最大值,随煤级进一步增加而明显减小。中梁山煤S2明显偏大的反常现象只能用变质条件不同解释。由于热变质作用,镜质组过早失去脂肪结构,而稳定性大的芳烃多,使煤象受过一次低温“热处理”,必然导致S2减少。
S3与煤中含氧量及存在形式有关,因在深成变质煤中,含氧量多,存在形式多样,故其S3明显偏大。
图6 朝川煤与中梁山煤有机差热分析图
(四)有机差热分析
中梁山煤与朝川煤有机差热曲线极为相似(图
6),选取三个参数作定量讨论:(1)两放热峰T1、T2的温度;
(2)第一峰高比第二峰高B1/B2;
(3)两放热峰对应的热失重比Q1/Q2。
从失重率与放热峰所对应温度来着,两者基本相同,但朝川煤B1/B2、Q1/Q2值比中梁山煤低得多(表7)。根据罗伯特等人实验结果[12],煤或干酪根在热解过程中,400℃前主要生成CO2、CH4、H2、N2等气体,有些则聚合成稳定性较大的芳烃,因此其第一峰较深成变质煤弱得多。
表7 有机差热分析结果
从图7中可见,朝川煤在400℃才开始失重,比中梁山煤高30℃,其在540℃前失重率比中梁山煤小。这表明,虽朝川煤Vr高,但其中有相当一部分在较高温下才能逸出,这与热变煤上述一系列特征是分不开的。
图7 朝川煤(3#)与中梁山煤
(五)热变煤的X-衍射特征
区内热变煤的X-衍射特征随煤级增高作有规律的变化(图8,表8)。
图8 镜煤的X-衍射图
表8 镜煤的X-衍射分析结果
注:La—层片直径;Lc—层片堆积高度;d1—面网间距(002);d2—面网间距(001)。
(1)(002)衍射峰不断变尖变窄,峰的位置向大衍射角方向移动,(001)衍射峰虽不强,但有明显显示,并向小衍射角方向移动。
(2)La迅速增大,Lc在中变质无烟煤阶段出现波状转折,d1值不断减小,d2值不断增大。
这些规律早在20世纪50年代Hirsh、Brown[9]就作过详细描述。值得注意的是等变质程度的热变煤与深成变质煤相比(表8),具有La大,d2大,Lc小,d1大的特征,特别明显的是La/Lc偏大。根据人工碳化实验[14]与室内模拟实验研究[15],温度的作用有利于La的增长,而Lc、d1则与压力关系密切,强大压力作用有利于煤晶核堆砌高度的增加,而减小芳香层片间的间距。中梁山煤的Lc、d1值相当于新登矿煤(9#),而d2、La值比朝川煤还小得多。这表明煤结构指标间的不协调性受煤变质因素的控制、热变煤与深成变质煤相比,其煤晶核呈较薄的方形。
四、结语
煤变质地质条件的可变性是导致煤光学性质、化学工艺性质及结构指标之间不协调发展的主要原因。在深成变质条件下形成的煤,那些与静压力密切相关的性质得到充分发展;而热变煤中,那些与温度相关密切的指标得到“优先”演化。与等变质程度的深成变质煤相比,热变煤所受古地温较高,加快了煤分子缩聚反应,致使其H/C低,Vr小,自由基浓度大;热解Tmax大,S2较小;差热失重温度较高;在煤晶核结构上,具有La大、d1大的特征。
煤的变质作用类型是影响煤性质及结构的重要因素之一。以往的工作对成煤植物、成煤环境及其他地质条件对煤质及其结构的影响研究得比较深入,而忽视了泥炭在转变成煤的漫长地质历史中煤化作用的条件对煤质的制约。我国晚古生代煤田煤变质类型多种多样,大多数在燕山期受到异常古地热流的影响,在深成变质的基础上叠加了第二次区域热变质作用,对中、高变质程度煤的形成起了主要作用。因此,加强这方面的研究,具有深远的理论意义与现实意义。
本课题得到我室实验室主任毛鹤龄工程师的大力支持;在采样工作中,得到河南省有关矿务局的大力协助;承蒙北京煤化所煤质室完成煤的工业分析与元素分析,北京石油规划院实验中心完成FTIR、热解色谱及有机差热分析,中国科学院生物物理所完成ESR分析,河南省地矿局物测中心完成X-衍射分析,核工业部第三研究所完成包体测温,在此一并致谢。
参 考 文 献
[1] Г А Иванов Метаморфизм углей иэ литогенез вмещающих пород,М Недра,1975
[2] 四川省区域地层表编写组 西南地区区域地层表( 四川省分册) 北京: 地质出版社,1979
[3] 韩德馨、杨起 中国煤田地质学( 下册) 北京: 煤炭工业出版社,1980
[4] P Paiter et al Concerning the 1600cm- 1Region in the i r Spectorum of Coal Fuel,1983,( 6)
[5] M Sobkawiak et al Determination of Aromatic and Aliphatic CH Groups in Coal by FTIR,1,The Studies of coal Ex- tracts Fuel,1984,( 9)
[6] B Riesser et al Determination of Aromatic and Aliphtic CH Groups in Coal by FTIR,2 Studies of coals and Vitrinite concertraction Fuel,1984,( 9)
[7]陶著煤化学北京:冶金工业出版社,1984
[8]天津大学有机化学教研室有机化学北京:人民教育出版社1978
[9]VBousˇkaGeochemistryofCoal,1981
[10]MPeteretalAStudyoftheEffectofIgneousIntrusionontheStructureofanAustrilianHighVolatileBituminous CoalORGGeochem,1985,8(5)
[11]LGMartinCoalScience1982
[12]杜朗干酪根(中译本)1981
[13]MTeichmüllerFluorescenceMicroscopicalRankStudiesonLiptinitesandVitrinitesinPeatandCoalsandComparsion withResultsoftheRock-EvalPyrolysisIntJCoalGeol,1982,(2)
[14]HMarchTheEffectofanIgneousIntrusionuponthePropertiesofaDurhamcoalFuel,1971,(3)
[15]曲星武、王金城煤的结构与变质因素的关系煤田地质与勘探1980,(3)
[16]武汉地质学院煤田教研室煤田地质学(下册)北京:地质出版社,1981
(本文由肖贤明、任德贻合著,原载《煤田地质与勘探》,1988年第3期)
平行世界[又称平行宇宙(Multiverse、Parallel universes),或者称多重宇宙论]
指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。平行宇宙这个名词是由美国哲学家与心理学家威廉·詹姆士在1895年所发明的。
平行宇宙层次
对“宇宙”的如此定义,人们也许会认为这只是种形而上学的方式罢了。然则物理学和形而上学的区别在于该理论是否能通过实验来测试,而不是它看起来是否怪异或者包含难以察觉的东西。多年来,物理学前沿不断扩张,吸收融合了许多抽象的(甚至一度是形而上学的)概念,比如球形的地球、看不见的电磁场、时间在高速下流动减慢、量子重叠、空间弯曲、黑洞等等。近几年来“多重宇宙”的概念也加入了上面的名单,与先前一些经过检验的理论,如相对论和量子力学配合起来,并且至少达到了一个经验主义科学理论的基本标准:作出预言。当然作出的论断也可能是错误的。科学家们迄今讨论过多达4种类型独立的平行宇宙。现在关键的已不是多重宇宙是否存在的问题了,而是它们到底有多少个层次。
编辑本段第一层次:视界之外
所有的平行宇宙组成第一层多重宇宙。--这是争论最少的一层。所有人都接受这样一个事实:虽然我们此时此刻看不见另一个自己,但换一个地方或者简单地在原地等上足够长的时间以后就能观察到了。就像观察海平面以外驶来的船只--观察视界之外物体的情形与此类似。随着光的飞行,可观察的宇宙半径每年都扩大半光年,因此只需要坐在那里等着瞧。当然,你多半等不到另一个宇宙的另一个你发出的光线传到这里那天,但从理论上讲,如果宇宙扩张的理论站得住脚的话,你的后代就有可能用超级望远镜看到它们。
怎么样,第一层多重宇宙的概念听起来平平无奇?空间不都是无限的么?谁能想象某处插着块牌子,上书“空间到此结束,当心下面的沟”?如果是这样,每个人都会本能的置疑:尽头的“外面”是什么?实际上,爱因斯坦的重力场理论偏偏把我们的直觉变成了问题。空间有可能不是无限,只要它具有某种程度的弯曲或者并非我们直觉中的拓扑结构(即具有相互联络的结构)。
一个球形、炸面圈形或者圆号形的宇宙都可能大小有限,却无边界。对宇宙微波背景辐射的观测可以用来测定这些假设。见另一篇文章《宇宙是有限的吗?》by Jean-Pierre Luminet, Glenn D Starkman and Jeffrey R Weeks; Scientific American, April 1999然而,迄今为止的观察结果似乎背逆了它们。无尽宇宙的模型才和观测数据符合,外带强烈的限制条件。
另一种可能是:空间本身无限,但所有物质被限制在我们周围一个有限区域内--曾经流行的“岛状宇宙”模型。该模型不同之处在于,在大尺度下物质分布会呈现分形图案,而且会不断耗散殆尽。这种情形下,第一层多重宇宙里的几乎每个宇宙最终都将变得空空如也,陷入死寂。但是近期关于三维银河分布与微波背景的观测指出物质的组织方式在大尺度上呈现出某种模糊的均匀,在大于10^24米的尺度上便观测不到清晰的细节了。假定这种模式延伸下去,我们可观测宇宙以外的空间也将充满行星、恒星和星系。
有资料支持空间延伸于可观测宇宙之外的理论。WMAP卫星最近测量了微波背景辐射的波动(左图)。最强烈的振幅超过了05开,暗示着空间非常之大,甚至可能无穷(中图)。另外,WMAP和2dF星系红移探测器发现在非常大的尺度下,空间均匀分布着物质
生活在第一层多重宇宙不同平行宇宙中的观察者们将察觉到与我们相同的物理定律,但初始条件有所不同。根据当前理论,大爆炸早期的一瞬间物质按一定的随机度被抛出,此过程包含了物质分布的一切可能性,每种可能性都不为0。宇宙学家们假定我们所在的当初有着近似均匀物质分布和初始波动状态(100,000可能性中的一种)的宇宙,是一个相当典型的(至少在所有产生了观察者的平行宇宙中很典型)个体。那么距你最近的和你一模一样那个人将远在10^(10^28)米之外;而在10^(10^92)米外才会有一个半径100光年的区域,它里面的一切与我们居住的空间丝毫不差,也就是说未来100年内我们世界所发生的每件事都会在该区域完全再现;而至少10^(10^118)米之外该区域才会增大到哈勃体积那么大,换句话说才会有一个和我们一模一样的宇宙。
上面的估计还算极端保守的,它仅仅穷举了一个温度在10^8开以下、大小为一个哈勃体积的空间的所有量子状态。其中一个计算步骤是这样:在那温度下一个哈勃体积的空间最多能容纳多少质子?答案是10^118个。每个质子可能存在,也可能不存在,也就是总共2^(10^118)个可能的状态。现在只需要一个能装下2^(10^118)个哈勃空间的盒子便用光所有可能性。如果盒子更大些--比如边长10^(10^118)米的盒子--根据抽屉原理,质子的排列方式必然会重复。当然,宇宙不只有质子,也不止两种量子状态,但可用与此类似的方法估算出宇宙所能容纳的信息总量。
与我们宇宙一模一样的另一个宇宙的平均距离,距你最近那个“分身”没准并不象理论计算的那么远,也许要近得多。因为物质的组织方式还要受其他物理规律制约。给定一些诸如行星的形成过程、化学方程式等规律,天文学家们怀疑仅在我们的哈勃体积内就存在至少10^20个有人类居住的行星;其中一些可能和地球十分相像。
第一层多重宇宙的框架通常被用来评估现代宇宙学的理论,虽然该过程很少被清晰地表达。举例来说,考察我们的宇宙学家如何通过微波背景来试图得出“球形空间”的宇宙几何图。随着空间曲率半径的不同,那些“热区域”和“冷区域”在宇宙微波背景图上的大小会呈现某种特征;而观测到的区域表明曲率太小不足以形成球形的封闭空间。然而,保持统计学上的严格是非常重要的事。每个哈勃空间的这些区域的平均大小完全是随机的。因此有可能是宇宙在愚弄我们--并非空间曲率不足以形成封闭球形使得观测到的区域偏小,而恰巧因为我们宇宙的平均区域天生就比别的来的小。所以当宇宙学家们信誓旦旦保证他们的球状空间模型有999%可信度的时候,他们的真正意思是我们那个宇宙是如此地不合群,以至1000个哈勃体积之中才会出一个象那样的。
这堂课的重点是:即使我们没法观测其他宇宙,多重宇宙理论依然可以被实践验证。关键在于预言第一层多重宇宙中各个平行宇宙的共性并指出其概率分布--也就是数学家所谓的“度量”。我们的宇宙应当是那些“出现可能性最大的宇宙”中的一个。否则--我们很不幸地生活在一个不大可能的宇宙中--那么先前假设的理论就有大麻烦了。如我们接下来要讨论的那样,如何解决这度量上的问题将会变得相当有挑战性。
编辑本段第二层次:膨胀后留下的气泡
如果第一层多重宇宙的概念不太好消化,那么试着想象下一个拥有无穷组第一层多重宇宙的结构:组与组之间相互独立,甚至有着互不相同的时空维度和物理常量。这些组构成了第二层多重宇宙--被称为“无序的持续膨胀”的现代理论预言了它们。
“膨胀”作为大爆炸理论的必然延伸,与该理论的许多其他推论联系紧密。比如我们的宇宙为何如此之大而又如此的规整,光滑和平坦?答案是“空间经历了一个快速的拉伸过程”,它不仅能解释上面的问题,还能阐释宇宙的许多其他属性。见《膨胀的宇宙》 by Alan H Guth and Paul J Steinhard; Scientific American, May 1984; 《自我繁殖的膨胀宇宙》 by Andrei Linde, November 1994 “膨胀”理论不仅为基本粒子的许多理论所语言,而且被许多观测证实。“无序的持续”指的是在最大尺度上的行为。作为一个整体的空间正在被拉伸并将永远持续下去。然而某些特定区域却停止拉伸,由此产生了独立的“气泡”,好像膨胀的烤面包内部的气泡一样。这种气泡有无数个。它们每个都是第一层多重宇宙:在尺寸上无限而且充满因能量场涨落而析出的物质。
对地球来说,另一个气泡在无限遥远之外,远到即使你以光速前进也永远无法到达。因为地球和“另一个气泡”之间的那片空间拉伸的速度远比你行进的速度快。如果另一个气泡中存在另一个你,即便你的后代也永远别想观察到他。基于同样的原因,即空间在加速扩张,观察结果令人沮丧的指出:即便是第一层多重空间中的另一个自己也将看不到了。
第二层多重宇宙与第一层的区别非常之大。各个气泡之间不仅初始条件不同,在表观面貌上也有天壤之别。当今物理学主流观点认为诸如时空的维度、基本粒子的特性还有许许多多所谓的物理常量并非基本物理规律的一部分,而仅是一种被称作“对称性破坏”过程的结果而已。举例言之,理论物理学家认为我们的宇宙曾一度由9个相互平等的维度组成。在宇宙早期历史中,只有其中3个维度参与空间拉神,形成我们现在观察到的三维宇宙。其余6个维度现在观察不到了,因为它们被卷曲在非常微小的尺度中,而且所有的物质都分布在这三个充分拉伸过的维度“表面”上(对9维来说,三维就是一个面而已,或者叫一层“膜”)。
我们生活在3+1维时空之中,对此我们并不特别意外。当描述自然的偏微分方程是椭圆或者超双曲线方程时,也就是空间或者时间其中之一是0维或同时多维,对观测者来说,宇宙不可能预测(紫色和绿色部分)。其余情况下(双曲线方程),若n>3,原子无法稳定存在,n<3,复杂度太低以至于无法产生自我意识的观测者(没有引力,拓扑结构也成问题)。
由此,我们称空间的对称性被破坏了。量子波的不确定性会导致不同的气泡在膨胀过程中以不同的方式破坏平衡。而结果将会千奇百怪。其中一些可能伸展成4维空间;另一些可能只形成两代夸克而不是我们熟知的三代;还有些它们的宇宙基本物理常数可能比我们的宇宙大。
产生第二层多重宇宙的另一条路是经历宇宙从创生到毁灭的完整周期。科学史上,该理论由一位叫Richard C的物理学家于二十世纪30年代提出,最近普林斯顿大学的Paul J Steinhardt和剑桥大学的Neil Turok两位科学家对此作了详尽阐述。Steinhardt和Turok 提出了一个“次级三维膜”的模型,它与我们的空间相当接近,只是在更高维度上有一些平移。see ‘Been There, Done That,‘ by George Musser; News Scan, Scientific American, March 2002该平行宇宙并非真正意义上的独立宇宙,但宇宙作为一个整体--过去、现在和未来--却形成了多重宇宙,并且可以证明它包含的多样性恰似无序膨胀宇宙所包含的。此外,沃特卢的物理学家Lee Smolin还提出了另一种与第二层多重宇宙有着相似多样性的理论,该理论中宇宙通过黑洞创生和变异而非通过膜物理学。
尽管我们没法与其他第二层多重宇宙之中的事物相互作用,宇宙学家仍能间接地指出它们的存在。因为他们的存在可以用来很好地解释我们宇宙的偶然性。做一个类比:设想你走进一座旅馆,发现了一个房间门牌号码是1967,正是你出生那年。多么巧合呀,在那瞬间你惊叹到。不过你随即反应过来,这完全不算什么巧合。整个旅馆有成百上千的房间,其中有一个和你生日相同很正常。然而你若看见的是另一个与你毫无干系的数字,便不会引发上面的思考。这说明什么问题呢?即便对旅馆一无所知,你也可以用上面的方法来解释很多偶然现象。
让我们举个更切题的例子:考察太阳的质量。太阳的质量决定它的光度(即辐射的总量)。通过基本物理运算我们可知只有当太阳的质量在16X10^30~24X10^30千克这么个狭窄范围内,地球才可能适合生命居住。否则地球将比金星还热,或者比火星还冷。而太阳的质量正好是20X10^30千克。乍看之下,太阳质量是种惊人的幸运与巧合。绝大多数恒星的质量随机分布于10^29~10^32千克的巨大范围内,因此若太阳出生时也随机决定质量的话,落在合适范围的机会将微乎其微。然而有了旅馆的经验,我们便明白这种表面的偶然实为大系统中(在这个例子里是许多太阳系)的必然选择结果(因为我们在这里,所以太阳的质量不得不如此)。这种与观测者密切相关的选择称为“人择原理”。虽然可想而知它引发过多么大的争论,物理学家们还是广泛接收了这一事实:验证基础理论的时候无法忽略这种选择效应。
适用于旅馆房间的原理同样适用于平行宇宙。有趣的是:我们的宇宙在对称性被打破的时候,所有的(至少绝大部分)属性都被“调整”得恰到好处,如果对这些属性作哪怕极其微小的改变,整个宇宙就会面目全非--没有任何生物可以存在于其中。如果质子的质量增加02%,它们立即衰变成中子,原子也就无法稳定的存在。如果电磁力减小4%,便不会有氢,也就不会有恒星。如果弱相互作用再弱一些,氢同样无法形成;相反如果它们更强些,那些超新星将无法向星际散播重元素离子。如果宇宙的常数更大一些,它将在形成星系之前就把自己炸得四分五裂。
虽然“宇宙到底被调节得多好”尚无定论,但上面举的每一个例子都暗示着存在许许多多包含每一种可能的调节状态的平行宇宙。see ‘Exploring Our Universe and Others,‘ by Martin Rees; Scientific American, December 1999第二层多重宇宙预示着物理学家们不可能测定那些常数的理论值。他们只能计算出期望值的概率分布,在选择效应纳入考虑之后。
编辑本段第三层次:量子平行世界
第一层和第二层多重宇宙预示的平行世界相隔如此之遥远,超出了天文学家企及的范围。但下一层多重宇宙却就在你我身边。它直接源于著名的、备受争议的量子力学解释--任何随机量子过程都导致宇宙分裂成多个,每种可能性一个。
量子平行宇宙。当你掷骰子,它看起会随机得到一个特定的结果。然而量子力学指出,那一瞬间你实际上掷出了每一个状态,骰子在不同的宇宙中停在不同的点数。其中一个宇宙里,你掷出了1,另一个宇宙里你掷出了2……。然而我们仅能看到全部真实的一小部分--其中一个宇宙。
20世纪早些年,量子力学理论在解释原子层面现象方面的成功掀起了物理学革命。在原子领域下,物质运动不再遵守经典的牛顿力学规律。在量子理论解释它们取得瞩目成功的同时却引发了爆炸性激烈的争论。它到底意味着什么?量子理论指出宇宙并不像经典理论描述的那样,决定宇宙状态的是所有粒子的位置和速度,而是一种叫作波函数的数学对象。根据薛定鄂方程,该状态按照数学家称之为“统一性”的方式随时间演化,意味着波函数在一个被称为“希尔伯特空间”的无穷维度空间中演化。尽管多数时候量子力学被描述成随机和不确定,波函数本身的演化方式却是完全确定,没有丝毫随机性可言的。
GIA证书上各项参数的意义:
首先我们从左边开始,从上到下依次是:
一、证书标题部分:
1Gemological Institute America:GIA实验室的LOGO;
2GIA DIAMOND DOSSIER:证书名称;
3March 7 2005:开证书的日期。这个日期也代表了当时的检测水平和美金价格。但是现在我们都是按购买日的美金结算,所以就不去追究这个日期了;
4Laser Inscription Registry:GIA Report: 对印于每颗钻石的不同号码,就像人的身份证。
5Shape and Cutting Style:Shape: 钻石形状,比较常见的有圆形(Round Brilliant),橄榄形(Marquise),梨形(Pear),心形(Heart),椭圆形(Oval),祖母绿形(Emerald),公主方形(Princess)
6Measurements:钻石的实际尺寸。
中间那一档是4C,也就是重量 切工 颜色和净度
Polish: 钻石抛光
Symmetry: 钻石对称度
Fluorescence: 钻石荧光
Comments: 鉴定机构对于钻石的评价,关于钻石瑕疵的成分及形状。
望对你有所帮助
平行宇宙论,或者叫多重宇宙论,指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其
多重宇宙-模型图
指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。平行宇宙这个名词是由美国哲学家与心理学家威廉·詹姆士在1895年所发明的。
平行宇宙论
平行宇宙经常被用以说明:一个事件不同的过程或一个不同的决定的后续发展是存在于不同的平行宇宙中的;这个理论也常被用于解释其他的一些诡论,像关于时间旅行的一些诡论,像“一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道”,解决此诡论
除了假设时间旅行是不可能的以外,另外也可以以平行宇宙做解释,根据平行宇宙理论的解释:这颗球撞上自己和没有撞上自己是两个不同的平行宇宙。
在近代这个理论已经激起了大量科学、哲学和神学的问题,而科幻小说亦喜欢将平行宇宙的概念用于其中。
平行宇宙平行宇宙经常被用以说明:一个事件不同的过程或一个不同的决定的后续发展是存在于不同的平行宇宙中的;这个理论也常被用于解释其他的一些诡论,像关于时间旅行的一些诡论,像「一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道」,解决此诡论除了假设时间旅行是不可能的以外,另外也可以以平行宇宙做解释,根据平行宇宙理论的解释:这颗球撞上自己和没有撞上自己是两个不同的平行宇宙,如此云云等 在近代这个理论已经激起了大量科学、哲学和神学的问题,而科幻小说亦喜欢将平行宇宙的概念用于其中。
编辑本段平行宇宙层次
平行宇宙论
对“宇宙”的如此定义,人们也许会认为这只是种形而上学的方式罢了。然则物理学和形而上学的区别在于该理论是否能通过实验来测试,而不是它看起来是否怪异或者包含难以察觉的东西。多年来,物理学前沿不断扩张,吸收融合了许多抽象的(甚至一度是形而上学的)概念,比如球形的地球、看不见的电磁场、时间在高速下流动减慢、量子重叠、空间弯曲、黑洞等等。近几年来“多重宇宙”的概念也加入了上面的名单,与先前一些经过检验的理论,如相对论和量子力学配合起来,并且至少达到了一个经验主义科学理论的基本标准:作出预言。当然作出的论断也可能是错误的。科学家们迄今讨论过多达4种类型独立的平行宇宙。现在关键的已不是多重宇宙是否存在的问题了,而是它们到底有多少个层次。
第一层次:视界之外所有的平行宇宙组成第一层多重宇宙。--这是争论最少的一层。所有人都接受这样一个事实:虽然我们此时此刻看不见另一个自己,但换一个地方或者简单地在原地等上足够长的时间以后就能观察到了。就像观察海平面以外驶来的船只--观察视界之外物体的情形与此类似。随着光的飞行,可观察的宇宙半径每年都扩大半光年,因此只需要坐在那里等着瞧。当然,你多半等不到另一个宇宙的另一个你发出的光线传到这里那天,但从理论上讲,如果宇宙扩张的理论站得住脚的话,你的后代就有可能用超级望远镜看到它们。
怎么样,第一层多重宇宙的概念听起来平平无奇?空间不都是无限的么?谁能想象某处插着块牌子,上书“空间到此结束,当心下面的沟”?如果是这样,每个人都会本能的置疑:尽头的“外面”是什么?实际上,爱因斯坦的重力场理论偏偏把我们的直觉变成了问题。空间有可能不是无限,只要它具有某种程度的弯曲或者并非我们直觉中的拓扑结构(即具有相互联络的结构)。
一个球形、炸面圈形或者圆号形的宇宙都可能大小有限,却无边界。对宇宙微波背景辐射的观测可以用来测定这些假设。见另一篇文章《宇宙是有限的吗?》by Jean-Pierre Luminet,Glenn D Starkman and Jeffrey R Weeks; Scientific American,April 1999然而,迄今为止的观察结果似乎背逆了它们。无尽宇宙的模型才和观测数据符合,外带强烈的限制条件。
另一种可能是:空间本身无限,但所有物质被限制在我们周围一个有限区域内--曾经流行的“岛状宇宙”模型。该模型不同之处在于,在大尺度下物质分布会呈现分形图案,而且会不断耗散殆尽。这种情形下,第一层多重宇宙里的几乎每个宇宙最终都将变得空空如也,陷入死寂。但是近期关于三维银河分布与微波背景的观测指出物质的组织方式在大尺度上呈现出某种模糊的均匀,在大于10^24米的尺度上便观测不到清晰的细节了。假定这种模式延伸下去,我们可观测宇宙以外的空间也将充满行星、恒星和星系。
有资料支持空间延伸于可观测宇宙之外的理论。WMAP卫星最近测量了微波背景辐射的波动(左图)。最强烈的振幅超过了05开,暗示着空间非常之大,甚至可能无穷(中图)。另外,WMAP和2dF星系红移探测器发现在非常大的尺度下,空间均匀分布着物质
生活在第一层多重宇宙不同平行宇宙中的观察者们将察觉到与我们相同的物理定律,但初始条件有所不同。根据当前理论,大爆炸早期的一瞬间物质按一定的随机度被抛出,此过程包含了物质分布的一切可能性,每种可能性都不为0。宇宙学家们假定我们所在的当初有着近似均匀物质分布和初始波动状态(100,000可能性中的一种)的宇宙,是一个相当典型的(至少在所有产生了观察者的平行宇宙中很典型)个体。那么距你最近的和你一模一样那个人将远在10^(10^28)米之外;而在10^(10^92)米外才会有一个半径100光年的区域,它里面的一切与我们居住的空间丝毫不差,也就是说未来100年内我们世界所发生的每件事都会在该区域完全再现;而至少10^(10^118)米之外该区域才会增大到哈勃体积那么大,换句话说才会有一个和我们一模一样的宇宙。
上面的估计还算极端保守的,它仅仅穷举了一个温度在10^8开以下、大小为一个哈勃体积的空间的所有量子状态。其中一个计算步骤是这样:在那温度下一个哈勃体积的空间最多能容纳多少质子?答案是10^118个。每个质子可能存在,也可能不存在,也就是总共2^(10^118)个可能的状态。现在只需要一个能装下2^(10^118)个哈勃空间的盒子便用光所有可能性。如果盒子更大些--比如边长10^(10^118)米的盒子--根据抽屉原理,质子的排列方式必然会重复。当然,宇宙不只有质子,也不止两种量子状态,但可用与此类似的方法估算出宇宙所能容纳的信息总量。
与我们宇宙一模一样的另一个宇宙的平均距离,距你最近那个“分身”没准并不象理论计算的那么远,也许要近得多。因为物质的组织方式还要受其他物理规律制约。给定一些诸如行星的形成过程、化学方程式等规律,天文学家们怀疑仅在我们的哈勃体积内就存在至少10^20个有人类居住的行星;其中一些可能和地球十分相像。
第一层多重宇宙的框架通常被用来评估现代宇宙学的理论,虽然该过程很少被清晰地表达。举例来说,考察我们的宇宙学家如何通过微波背景来试图得出“球形空间”的宇宙几何图。随着空间曲率半径的不同,那些“热区域”和“冷区域”在宇宙微波背景图上的大小会呈现某种特征;而观测到的区域表明曲率太小不足以形成球形的封闭空间。然而,保持统计学上的严格是非常重要的事。每个哈勃空间的这些区域的平均大小完全是随机的。因此有可能是宇宙在愚弄我们--并非空间曲率不足以形成封闭球形使得观测到的区域偏小,而恰巧因为我们宇宙的平均区域天生就比别的来的小。所以当宇宙学家们信誓旦旦保证他们的球状空间模型有999%可信度的时候,他们的真正意思是我们那个宇宙是如此地不合群,以至1000个哈勃体积之中才会出一个象那样的。
这堂课的重点是:即使我们没法观测其他宇宙,多重宇宙理论依然可以被实践验证。关键在于预言第一层多重宇宙中各个平行宇宙的共性并指出其概率分布--也就是数学家所谓的“度量”。我们的宇宙应当是那些“出现可能性最大的宇宙”中的一个。否则--我们很不幸地生活在一个不大可能的宇宙中--那么先前假设的理论就有大麻烦了。如我们接下来要讨论的那样,如何解决这度量上的问题将会变得相当有挑战性。
第二层次:膨胀后留下的气泡如果第一层多重宇宙的概念不太好消化,那么试着想象下一个拥有无穷组第一层多重宇宙的结构:组与组之间相互独立,甚至有着互不相同的时空维度和物理常量。这些组构成了第二层多重宇宙--被称为“无序的持续膨胀”的现代理论预言了它们。
“膨胀”作为大爆炸理论的必然延伸,与该理论的许多其他推论联系紧密。比如我们的宇宙为何如此之大而又如此的规整,光滑和平坦?答案是“空间经历了一个快速的拉伸过程”,它不仅能解释上面的问题,还能阐释宇宙的许多其他属性。见《膨胀的宇宙》 by Alan H Guth and Paul J Steinhard; Scientific American,May 1984; 《自我繁殖的膨胀宇宙》 by Andrei Linde,November 1994 “膨胀”理论不仅为基本粒子的许多理论所语言,而且被许多观测证实。“无序的持续”指的是在最大尺度上的行为。作为一个整体的空间正在被拉伸并将永远持续下去。然而某些特定区域却停止拉伸,由此产生了独立的“气泡”,好像膨胀的烤面包内部的气泡一样。这种气泡有无数个。它们每个都是第一层多重宇宙:在尺寸上无限而且充满因能量场涨落而析出的物质。
对地球来说,另一个气泡在无限遥远之外,远到即使你以光速前进也永远无法到达。因为地球和“另一个气泡”之间的那片空间拉伸的速度远比你行进的速度快。如果另一个气泡中存在另一个你,即便你的后代也永远别想观察到他。基于同样的原因,即空间在加速扩张,观察结果令人沮丧的指出:即便是第一层多重空间中的另一个自己也将看不到了。
第二层多重宇宙与第一层的区别非常之大。各个气泡之间不仅初始条件不同,在表观面貌上也有天壤之别。当今物理学主流观点认为诸如时空的维度、基本粒子的特性还有许许多多所谓的物理常量并非基本物理规律的一部分,而仅是一种被称作“对称性破坏”过程的结果而已。举例言之,理论物理学家认为我们的宇宙曾一度由9个相互平等的维度组成。在宇宙早期历史中,只有其中3个维度参与空间拉神,形成我们现在观察到的三维宇宙。其余6个维度现在观察不到了,因为它们被卷曲在非常微小的尺度中,而且所有的物质都分布在这三个充分拉伸过的维度“表面”上(对9维来说,三维就是一个面而已,或者叫一层“膜”)。
我们生活在3+1维时空之中,对此我们并不特别意外。当描述自然的偏微分方程是椭圆或者超双曲线方程时,也就是空间或者时间其中之一是0维或同时多维,对观测者来说,宇宙不可能预测(紫色和绿色部分)。其余情况下(双曲线方程),若n>3,原子无法稳定存在,n<3,复杂度太低以至于无法产生自我意识的观测者(没有引力,拓扑结构也成问题)。
由此,我们称空间的对称性被破坏了。量子波的不确定性会导致不同的气泡在膨胀过程中以不同的方式破坏平衡。而结果将会千奇百怪。其中一些可能伸展成4维空间;另一些可能只形成两代夸克而不是我们熟知的三代;还有些它们的宇宙基本物理常数可能比我们的宇宙大。
产生第二层多重宇宙的另一条路是经历宇宙从创生到毁灭的完整周期。科学史上,该理论由一位叫Richard C的物理学家于二十世纪30年代提出,最近普林斯顿大学的Paul J Steinhardt和剑桥大学的Neil Turok两位科学家对此作了详尽阐述。Steinhardt和Turok 提出了一个“次级三维膜”的模型,它与我们的空间相当接近,只是在更高维度上有一些平移。see ‘Been There,Done That,‘ by George Musser; News Scan,Scientific American,March 2002该平行宇宙并非真正意义上的独立宇宙,但宇宙作为一个整体--过去、现在和未来--却形成了多重宇宙,并且可以证明它包含的多样性恰似无序膨胀宇宙所包含的。此外,沃特卢的物理学家Lee Smolin还提出了另一种与第二层多重宇宙有着相似多样性的理论,该理论中宇宙通过黑洞创生和变异而非通过膜物理学。
尽管我们没法与其他第二层多重宇宙之中的事物相互作用,宇宙学家仍能间接地指出它们的存在。因为他们的存在可以用来很好地解释我们宇宙的偶然性。做一个类比:设想你走进一座旅馆,发现了一个房间门牌号码是1967,正是你出生那年。多么巧合呀,在那瞬间你惊叹到。不过你随即反应过来,这完全不算什么巧合。整个旅馆有成百上千的房间,其中有一个和你生日相同很正常。然而你若看见的是另一个与你毫无干系的数字,便不会引发上面的思考。这说明什么问题呢?即便对旅馆一无所知,你也可以用上面的方法来解释很多偶然现象。
让我们举个更切题的例子:考察太阳的质量。太阳的质量决定它的光度(即辐射的总量)。通过基本物理运算我们可知只有当太阳的质量在16X10^30~24X10^30千克这么个狭窄范围内,地球才可能适合生命居住。否则地球将比金星还热,或者比火星还冷。而太阳的质量正好是20X10^30千克。乍看之下,太阳质量是种惊人的幸运与巧合。绝大多数恒星的质量随机分布于10^29~10^32千克的巨大范围内,因此若太阳出生时也随机决定质量的话,落在合适范围的机会将微乎其微。然而有了旅馆的经验,我们便明白这种表面的偶然实为大系统中(在这个例子里是许多太阳系)的必然选择结果(因为我们在这里,所以太阳的质量不得不如此)。这种与观测者密切相关的选择称为“人择原理”。虽然可想而知它引发过多么大的争论,物理学家们还是广泛接收了这一事实:验证基础理论的时候无法忽略这种选择效应。
适用于旅馆房间的原理同样适用于平行宇宙。有趣的是:我们的宇宙在对称性被打破的时候,所有的(至少绝大部分)属性都被“调整”得恰到好处,如果对这些属性作哪怕极其微小的改变,整个宇宙就会面目全非--没有任何生物可以存在于其中。如果质子的质量增加02%,它们立即衰变成中子,原子也就无法稳定的存在。如果电磁力减小4%,便不会有氢,也就不会有恒星。如果弱相互作用再弱一些,氢同样无法形成;相反如果它们更强些,那些超新星将无法向星际散播重元素离子。如果宇宙的常数更大一些,它将在形成星系之前就把自己炸得四分五裂。
虽然“宇宙到底被调节得多好”尚无定论,但上面举的每一个例子都暗示着存在许许多多包含每一种可能的调节状态的平行宇宙。see ‘Exploring Our Universe and Others,‘ by Martin Rees; Scientific American,December 1999第二层多重宇宙预示着物理学家们不可能测定那些常数的理论值。他们只能计算出期望值的概率分布,在选择效应纳入考虑之后。
第三层次:量子平行世界第一层和第二层多重宇宙预示的平行世界相隔如此之遥远,超出了天文学家企及的范围。但下一层多重宇宙却就在你我身边。它直接源于著名的、备受争议的量子力学解释--任何随机量子过程都导致宇宙分裂成多个,每种可能性一个。
量子平行宇宙。当你掷骰子,它看起会随机得到一个特定的结果。然而量子力学指出,那一瞬间你实际上掷出了每一个状态,骰子在不同的宇宙中停在不同的点数。其中一个宇宙里,你掷出了1,另一个宇宙里你掷出了2……。然而我们仅能看到全部真实的一小部分--其中一个宇宙。
20世纪早些年,量子力学理论在解释原子层面现象方面的成功掀起了物理学革命。在原子领域下,物质运动不再遵守经典的牛顿力学规律。在量子理论解释它们取得瞩目成功的同时却引发了爆炸性激烈的争论。它到底意味着什么?量子理论指出宇宙并不像经典理论描述的那样,决定宇宙状态的是所有粒子的位置和速度,而是一种叫作波函数的数学对象。根据薛定鄂方程,该状态按照数学家称之为“统一性”的方式随时间演化,意味着波函数在一个被称为“希尔伯特空间”的无穷维度空间中演化。尽管多数时候量子力学被描述成随机和不确定,波函数本身的演化方式却是完全确定,没有丝毫随机性可言的。
关键问题是如何将波函数与我们观测到的东西联系起来。许多合理的波函数都导致看似荒谬不合逻辑的状态,比如那只在所谓的量子叠加下同时处于死和活两种状态的猫。为了解释这种怪异情形,在20实际20年代,物理学家们做了一种假设:当有人试图观察时,波函数立即“坍塌”成经典理论中的某种确定状态。这个附加假设能够解决观测发现的问题,然而却把原本优雅和谐统一的理论变得七拼八凑,失去统一性。随机性的本质通常归咎于量子力学本身就是这些不顺眼假设的结果。
许多年过去了,物理学家们逐渐抛弃了这种假设,转而开始接受普林斯顿大学毕业生Hugh Everett在1957年提出的一种观点。他指出“波函数坍塌”的假设完全是多余的。纯粹的量子理论实际上并不产生任何矛盾。它预示着这样一种情形:一个现实状态会逐渐分裂成许多重叠的现实状态,观测者在分裂过程中的主观体验仅仅是经历完成了一个可能性恰好等于以前“波函数坍塌假设结果”的轻微的随机事件。这种重叠的传统世界就是第三层多重宇宙。
四十多年来,物理界为是否接受Everett的平行世界犹豫不决,数度反复。但如果我们将之区分成不同视点分别来看待,就会更容易理解。研究它数学方程的物理学家们站在外部的视点,好像飞在空中的鸟审视地面;而生活在方程所描述世界里的观测者则站在内部的视点,就好比被鸟俯瞰的一只青蛙。
在鸟看来,整个第三层多重宇宙非常简单。只用一个平滑演化的、确定的波函数就能就能描绘它而不引发任何分裂或平行。被这个演化的波函数描绘的抽象量子世界内部却包含了大量平行的经典世界。它们一刻不停的分裂、合并,如同经典理论无法描述的一堆量子现象。在青蛙看来,观察者感知的只有全部真相的一小部分。它们能观测到自己所在那个第一层宇宙,但是一种模仿波函数坍塌效果而又保留统一性、被称为“去相干”的作用却阻碍他们观测到与之平行的其他宇宙。
每当观测者被问及一个问题、做一个决定或是回答一个问题,他大脑里的量子作用就导致复合的结果,诸如“继续读这篇文章”和“放弃阅读本文”。在鸟看来,“作出决定”这个行为导致该人分裂成两个,一个继续读文章而另一个做别的去了。而在青蛙看来,该人的两个分身都没有意识到彼此的存在,它们对刚才分裂的感知仅仅是经历了个轻微的随机事件。他们只知道“自己”做了什么决定,而不知道同时还有一个“他”做了不同的决定。
尽管听起来很奇怪,这种事情同样发生在前面讲过的第一层多重宇宙中。显然,你刚作出了“继续阅读本文”的决定,然而在很远很远的另一个银河系中的另一个你在读过第一段之后就放下了杂志。第一层宇宙和第三层宇宙唯一的区别就是“另一个你”身处何处。第一层宇宙中,他位于距你很远之处--通常维度空间概念上的“远”。第三层宇宙中,你的分身住在另一个量子分支中,被一个维度无限的希尔伯特空间分隔开来。
第三层多重宇宙的存在基于一个至关重要的假设:波函数随时间演化的统一。所幸迄今为止的实验都不曾与统一性假设背离。在过去几十年里我们在各种更大的系统中证实了统一性的存在:包括碳-60布基球和长达数公里的光纤中。理论反面,统一性也被“去相干”作用的发现所支持。see ‘100 Years of Quantum Mysteries,‘ by Max Tegmark and John Archibald Wheeler; Scientific American,February 2001只有一些量子引力方面的理论物理学家对统一性提出置疑,其中一个观点是蒸发中的黑洞有可能破坏统一性,应该是个非统一性过程。但最近一项被叫做“AdS/CFT一致”的弦理论方面的研究成果暗示:量子引力领域也具有统一性,黑洞并不抹消信息,而是把它们传送到了别处。
如果物理学是统一的,那么大爆炸早期量子波动是如何运作的那幅标准图画将不得不改写。它们并非随机产生某个初始条件,而是产生重叠在一起的所有可能的初始条件,同时存在。然后,“去相干”作用保证它们在各自的量子分支里像传统理论那样演化下去。这就是关键之处:一个哈勃体积内不同量子分支(即第三层多重宇宙)演化出的分布结果与不同哈勃体积内同一个量子分支(即第一层多重宇宙)演化出的分布结果是毫无区别的。量子波动的该性质在统计力学中被称为“遍历性”。
同样的原理也可以适用在第二层多重宇宙。破坏对称性的过程并不只产生一个独一无二的结果,而是所有可能结果的叠加。这些结果之后按自己的方向发展。因此如果在第三层多重宇宙的量子分支中物理常数、时空维度等各不相同的话,那些第二层平行宇宙同样也将各不相同。
换句话说,第三层多重宇宙并没有在第一层和第二层上增加任何新东西,只是它们更加难以区分的复制品罢了--同样的老故事在不同量子分支的平行宇宙间一遍遍上演。对Everett理论一度激烈的怀疑便在大家发现它和其他争议较少的理论实质相同之后销声匿迹了。
毫无疑问,这种联系是相当深层次的,物理学家们的研究也才处于刚刚起步阶段。例如,考察那个长久以来的问题:随着时间流逝,宇宙的数目会以指数方式暴涨吗?答案是令人惊讶的“不”。在鸟看来,全部世界就是由单个波函数描述的东西;在青蛙看来,宇宙个数不会超过特定时刻所有可区别状态的总数--也即是包含不同状态的哈勃体积的总数。诸如行星运动到新位置、和某人结婚或是别的什么,这些都是新状态。在10^8开温度以下,这些量子状态的总数大约是10^(10^118)个,即最多这么多个平行宇宙。这是个庞大的数目,却很有限。
从青蛙的视点看,波函数的演化相当于从这10^(10^118)个宇宙中的一个跳到另一个。现在你正处在宇宙A--此时此刻你正在读这句话的宇宙里。现在你跳到宇宙B--你正在阅读另一句话那个宇宙里。宇宙B存在一个与宇宙A一摸一样的观测者,仅多了几秒中额外记忆。全部可能状态存在于每一个瞬间。因此“时间流逝”很可能就是这些状态之间的转换过程--最初在Greg Egan在1994所著的科幻小说[Permutation City]中提出的想法,而后被牛津大学的物理学家David Deutsch和自由物理学家Julian Barbour等人发展开来。
第四层次:其他数学界构虽然在第一、第二和第三层多重宇宙中初始条件、物理常数可能各不相同,但支配自然的基础法则是相同的。为何不让这些基础法则也多样化?来个只遵守经典物理定律,让量子效应见鬼去的宇宙如何?想象一个时间像计算机一样一段一段离散地流逝,而非现在那样连续地流逝?再想象一个简单的空心十二面体宇宙?在第四层多重宇宙里,所有这些形态都存在。
平行宇宙的终极分类,第四层。包含了所有可能的宇宙。宇宙之间的差异不仅在表现物理位置、属性或者量子状态,还可能是基本物理规律。它们在理论上几乎就是不能被观测的,我们能做的只有抽象思考。该模型解决了物理学中的很多基础问题。
为什么说上述的多重宇宙并非无稽之谈?理由之一就是抽象推理和实际观测结果间存在着密不可分的联系。数学方程式,或者更一般地,数字、矢量、几何图形等数学结构能以难以置信的逼真程度描述我们的宇宙。1959年的一次著名讲座上,物理学家Eugene P Wigner阐述了“为何数学对自然科学的帮助大得神乎其神?”反言之,数学对它们(自然科学)有着可怕的真实感。数学结构能成为基于客观事实的主要标准:不管谁学到的都是完全一样的东西。如果一个数学定理成立的话,不管一个人,一台计算机还是一只高智力的海豚都同样认为它成立。即便外星文明也会发现和我们一摸一样的数学界构。从而,数学家们向来认为是他们“发现”了某种数学结构,而不是“发明”了它。
四层多重宇宙的共通特色是最简洁与最优雅的理论自然而然地包含着平行宇宙。要否认它们的存在,你必须复杂化你的理论,增加没有观测结果支持的过程和特殊的假定:无限的空间、波函数坍塌和天性不对称。那么,哪个才是真正的浪费和不雅,许多宇宙还是许多规则?也许我们将逐渐习惯宇宙的奇妙而终将发现这种不可思议的奇妙正是它魅力的一部分。目前都是一种说法,尚未被证实
美容院中常用英语词汇
1洗面奶 cleansing milk
2去黑头洗面奶 biological cleanser
3清洁面霜 clarifying cream
4眼部御妆水 eye make up removing
5按摩霜 massage cream
6按摩油 massage oil
7面膜 mask
8冷膜 freezing mask
9热膜 hotting mask
10海藻面膜 seaweed mask
11颈霜restructuring compound for the neck
12特效营养霜 rich nourishing cream
13眼袋霜 eyelid cream
14眼部嗜喱 eye gel
15日霜 day cream
16晚霜 night cream
17眼霜 eye cream
18精华素 Ampoule
19中性 normal
20油性 oily
21干性 dry
22敏感性 sensitive
23紧肤 refirming
24补水 moisturizing
25补氧 oxygenating
26补充骨胶原 collagen hyalronic
27倒膜 pour mask
28植物 plant
29色素 pigment
30酸性 acidity
31碱性 alkaline
32矿物质 mineral substance
33蛋白质 protein
34活性细胞素 energetic cell
35维生素 vitamin
36化妆品 cosmetic
37氧化剂 oxidant
38胭脂 rouge
39口红 lip stick
40粉饼 powder
41睫毛膏 mascara
42粉底霜 foundation
43眼线笔eye liner pencil
44眉笔eyebrow pencil
45唇线笔lip pencil
46唇膏lip stick
47润唇膏 lip protector
48颜色 colour
49红色 red
50桔红色(橙色) orange
51玫瑰红 rose
52棕色(咖啡色) brown
53** yellow
54蓝色 blue
55肉色 yellowish pink
56黑色 black
57白色 white
58紫色 purple
59绿色 green
60灰色 gray
61粉红色 pink
62洗甲水 cleaner
63指甲油 nail polish
64擦光剂 polish
65酒精 alcohol
66液体 liquid
67眼 eye
68耳 ear
69口 mouth
70鼻 nose
71手 hand
72脚 foot(feet 复数)
73头部 head
74发 hair
75面 face
76皮肤 skin
77手碗 wrist
78胸部 bust
79唇 lip
80眉 eyebrow
81腹部 abdomen
82大腿 thighs
83小腿 calves
84颈部 neck
85 奥桑蒸气机Ao Sang steam engine
86皮肤测试仪skinanalysis apparatus
87消毒箱 disinfect box
88健胸仪breast strengthening apparatus
89减肥仪 weight reducing apparatus
90高震按摩仪high frequency massage
91 扫斑机fleck removal apparatus
92导电极棒 conduct stick
93电极electrode
94磨砂刷(磨刷帚)ground brush
95文眉机 eyebrow-tattooing apparatus
96美容仪器 beauty apparatus
97电流 electric current
98电压 voltage
99高压 high pressure
100照射 shine
101温度 humidity
102力度 dynamics
103高温 high temperature
104电疗棒 electrotherapy stick
105紫外线 ultraviolet ray
106手柄 hand handler
107握 hold
108摘 pick
109防敏 anti-anaphylaxis
110距离 distance
111洞、孔 hole
112晚宴装 evening make up for party
113文眉 tattoo eyeline
114文睫毛线 upper eyeline
115文唇线xlip
116深层皮肤护理 deep lifting
117胸部护理 bust treatment
118电眼睫毛 electronic eyelash
119修指甲manicure
120剪指甲trimx
121手部护理 hand care
122减肥护理diet care
123腹部减肥 reduce abdomen
124打耳孔 pierce ears
125腿部脱毛remove leg hours
126新娘妆 bridal make up
127晚妆 evening make up
128日妆 day make up
129皮肤护理skin care
130结构 composition
131摇动、抖动 shake
132震荡 frequency
133针 needle
134 金属metal
135增加increase
136可触摸 tangible
137微波 microwave
138液态 liquid
139超声波 ultrasonic wave
140红外线infrared ray
141大 max
142小min
143开 turn on
144关 turn of
145蒸馏 distillation
146冷冻 freeze
147热量的 thermal
148温和的 gentle
149操作 operate
150电磁 electromagnetism
151稳定的 stable
152调节 regulate
153去除 removing,get rid of
154协调 harmonize
155选择 choose
156粗 thick
157细 thin
158简单 easy
159整体 whole
160尖形 point
161椭圆形 ellipse
162抬起 raise
163部位、位置 position
164机器 machine
165冻结 freezing
166减少 reduce
167旋转 revolve
168美容 facial
169美容室Le salon
170美容院 beauty salon
171美容师beautician
172先生sir
172** miss
173脱下take off
174外衣 coat
175手提箱suitcase
176这边儿this way
177各种各样kinds of
178服务 service
179项链 necklace
180耳环earring
181穿上put on
182价钱 price
183收费 charge
184费用cost
185欢迎welcome
186几点 what time
187多少How much
188适合 fit
189不适合 unfit
190可以使can make
191请进 come in
192请坐sit down
193关门 close the door
194加 add
195一会moment
196明天tomorrow
197希望 hope
198小心 Look out
199左 left
200右 right
201感觉feeling
202决不no means
203满意satisfaction
204星期一Monday
205星期二Tuesday
206星期三Wednesday
207星期四Thursday
208星期五Friday
209星期六Saturday
210星期日Sunday
211一月January
212二月February
213三月March
214四月April
215五月May
216六月June
217七月July
218八月August
219九月September
220十月October
221十一月November
222十二月December
223周末week
224早安good morning
225下午好good afternoom
226晚上好good night
227祝你好运good luck
228当然of course
229正是Exactly
230正正如此Quite so
231的确surely
232很好 very good
233真妙Excellent
234十分乐意with pleasure
235啊我明白了 oh ,I see
236是真的 That's true
237或许不是Perhaps
238从来没有Never
239不要紧Don't worry
240不行that won't do
241行了 that will do
242再来一次once more
243再试一次try again
244请原谅Excuse me
245停止Stop that
246为什么?what for
247怎么会的How can
248为什么不 Why not
249一点也不 Not at all
250是这样吗?Is it so
251什么时候when
252哪一样 Which
253怎么样 How
254描眉卡brow template
255纸巾facial tissue
256吸油纸 oil-Absorbing Sheets
257化装棉cotton pads
258口红刷lip brush
259胭脂扫 blush brush
260转笔刀pencil sharpener
261电动剃毛器 electric shaver-for women
262电动睫毛卷electric lash curler
263粉扑 powder puffs
264海绵扑 sponge puffs
265眉刷brow brush
266睫毛夹 lash curler
267染发 hair color
268冷烫水 perm/perming formula
269卷发器 rollers/perm rollers
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)