2战海战问题

2战海战问题,第1张

纳粹德国海军“俾斯麦”号战列舰的一生

研制背景

1918年11月11日,德国政府代表埃尔茨贝格同协约国联军总司令福煦在法国东北部贡比涅森林的雷东德火车站签署停战协定,德国战败投降,《贡比涅森林停战协定》在6个小时后正式生效,第一次世界大战至此宣告结束。战后根据1919年6月28日德国同战胜国在巴黎签署的《凡尔赛和约》的规定,德国海军仅被允许保留8艘1906年以前建造的旧式战列舰用于训练及海岸防御之用。此外,所有旧舰的舰龄必须满20年才可开工建造新舰用以替换,并还限制德国建造任何最大排水量大于10160吨,主炮口径超过280毫米的军舰。同时还规定德国海军的人员编制规模不得超过15万人,其中军官不得超过1500人,海军军官必须服役满25年,以及禁止德国海军建造、拥有潜艇和海军航空兵等诸多抑制德国海军舰队重新崛起的条款。企图通过对德国海军战后的人员编制、舰队规模、装备更新和军舰性能等限制,而使其无法再与其他海军列强抗衡,将德国海军压制成为一支能力有限的区域性海上力量。

战后,为了替换一战后所遗留下来的那些旧式的无畏型战列舰,在经过一番激烈的争论后,德国魏玛共和国的国会最终还是以微弱的优势表决通过了海军要求建造新舰的提案,允许德国海军建造5艘袖珍型战列舰。其首制舰“德意志”号于1929年2月5日在德国基尔的德意志船厂开工,1931年5月19日下水,1933年4月1日建成服役。

至20世纪30年代初,法国和苏联海军都相继提出了规模庞大的造舰计划。面对这一威胁,当时的德国海军建造局一方面密切注视着世界各主要海军强国的战舰研制情况,定期对各国海军所建造的各种舰型作出评估,另一方面德国海军也开始考虑建造比条约所允许建造的袖珍战列舰更大的战舰。

1933年希特勒上台之初,尚对于《凡尔赛和约》的限制还有所顾虑,不愿公开建造超过条约规定标准的大型战列舰,以避免造成对英国海权的挑战。但当时的德国海军的实力现况与各海军强国的海军相比实在显得太过微不足道了,最终他还是决定要为德国海军补充一些新鲜的血液。但他也曾向当时的德国海军总司令雷德尔表明过自己的海军政策,他并不想追随一次大战前提尔皮茨时期公海舰队的海军政策,不愿去建立一支足以挑战英国制海权的强大舰队,但是必须要能够对抗法国正在进行的造舰计划。当时的苏联海军仍然很弱小,尽管有迹象表明其正在执行一项庞大的造舰计划,但却并未引起德国方面的注意。

为了能够突破《凡尔赛和约》对德国海军军备的限制,公开扩充海军军备,1935年6月希特勒主动向英国表示愿意将德国海军水面舰艇和潜艇部队的总吨位分别限制在英国海军的35%和45%,使英国海军在制海权方面对德国海军保持3:1的优势,以表示德国海军的军备扩充不是在针对英国。

1935年6月18日,《英德海军协定》的正式签订,为德国合法地解除了战后《凡尔赛和约》对德国海军的种种限制,为日后德国海军的自由发展奠定了基础。1936年《华盛顿海军协定》到期结束,各国都不打算继续在《伦敦海军协定》上续约,先是日本在1933年入侵中国东北三省后退出了国际联盟和《伦敦海军协定》,法国和意大利也随即于1935年拒绝在条约上签字。各国见况纷纷开始重整军备,战争阴云日益迫近。

当时德国虽然已经建造了德意志级袖珍战列舰,并已有了设计建造沙恩霍斯特级战列巡洋舰的计划,但是这两级战舰均无法同各海军强国将来所建造的新式战列舰相匹敌。于是德国人便有了建造更大、更强的新式战列舰的计划,这一计划便成为了日后设计、建造俾斯麦级战列舰的雏形。

设计

俾斯麦级战列舰的工作开始于1935年,但在1932年,德国海军就已经开始了对建造标准排水量35000吨级的战列舰进行理论性研究和可行性论证工作。早在1934年《英德海军协定》签订以前,德国人就已经开始对安装在“俾斯麦”号上的SK-C/34型381毫米(15英寸)主炮的设计和试验工作。德国海军在最初的主炮口径选择上考虑过两种方案,一是采用406毫米(16英寸)主炮的方案,二是采用381毫米的主炮设计。虽然选择406毫米主炮的设计方案,无论在弹丸重量、火炮射程和威力上都将远胜于381毫米主炮。但有鉴于当时德国从来没有制造过如此大口径的主炮,缺乏在经验和技术上的支持,存在着一定的风险。况且,如果真的采用了406毫米主炮的方案进行设计,不仅需要对原有设计方案进行重大修改和调整,更会影响到整舰的建造与服役时间,建造所需的费用也将大大超出原有预算。此外,更大的主炮口径就需要有更大的炮塔座圈,而过大的炮塔座圈又将会造成战舰的体积和排水量过大,使其无法达到原设计所规定的装甲防护水平和航速等设计性能。

在动力系统方面也存在着多种选择,当时德国在柴油机技术和高温、高压蒸汽锅炉的发展上均有优势。德意志级袖珍战列舰当时就已经采用了柴油机为推进装置的动力系统,并使其获得了强大的远洋续航力,但由于受柴油机的单机功率所限,战舰的最高航速难以提高,如德意志级袖珍战列舰的最大航速也只有28节。况且使用柴油机为动力的战舰的主轴过长,会影响到舰体内的布置,占用过大的空间。相比之下,虽然蒸汽轮机较之柴油机在热效率上要低,且存在高温、高压锅炉爆炸而可能使全舰瘫痪的隐患,降低了蒸汽轮机的可靠性,如德国的Z-3号驱逐舰就曾经因为高温、高压锅炉蒸汽受阻爆炸而在挪威沿海执行任务时丧失动力,险些漂入德军布有水雷的海区。但蒸汽轮机的单机功率较大,且蒸汽轮机允许有一定的主机过热率,可使战舰在短时间内通过主机过热来实现航速的提高,达到极速状态。此外,采用蒸汽轮机的战舰主轴相对较短,同时蒸汽轮机所使用的重油也比柴油机所使用的轻柴油更不易引起燃烧和爆炸。鉴于当时各国正在设计建造的新式战列舰的最大航速均已达到或超过30节,并考虑到德国海军在数量上的劣势,在海战中如果没有高航速的话,是无法逃脱敌海上优势兵力的围歼。加上缺乏在如此庞大的战列舰上采用柴油机为动力的先例和经验,在权衡了两者的优缺利弊后,最终德国人还是决定以传统的常规蒸汽锅炉作为俾斯麦级战列舰的动力系统。

在装甲防护的设计上,德国海军并没有像其他海军强国那样采用“重点防护”的装甲设计概念,而是沿袭了德国海军传统的“全面防护”的装甲设计概念。德国在二战爆发之前所建造的战列舰与重巡洋舰均采取了这一装甲布置理念,这一装甲布置理念除了在传统的水线、炮塔、指挥塔等关键要害部位布置主装甲带以外,还对战舰有可能被命中的其他非关键区域,也加装有一定厚度的装甲予以防护。虽然这种采用“全面防护”理念建造的战舰在关键要害部位的主装甲厚度往往较同一时期其他海军强国采用“重点防护”理念建造的战舰要低,但全面的装甲防护却可以避免战舰因非关键部位的受损而丧失战斗力,因为海战中的德国海军除了在数量上处于劣势外,还经常要以单舰突入大西洋作战,在面对敌海上优势兵力的围歼时,采用全面装甲防护的设计更有助于提高战舰在战斗中的耐久度。

此外,俾斯麦级战列舰在设计之时还广泛吸取了之前德意志级袖珍战列舰和沙恩霍斯特级战列巡洋舰的建造使用经验,采用了诸如大西洋型舰艏和外张干舷的成功设计,从而提高了战舰在恶劣海况中的适航性能。德国人从德意志级的建造开始,便广泛采用的焊接技术,在俾斯麦级的制造工艺上,舰体结构的的焊接量更是达到了95%,这样用焊接工艺制造的舰艇比同类采用铆接工艺制造的舰艇在舰体的结构重量上要轻15%,而且焊接工艺还有利于采用高强度钢材,提高整舰的装甲防护强度。

俾斯麦级战列舰的首舰“俾斯麦”号的设计工作于1935年11月16日正式完成,同级的二号舰“提尔皮茨”号的设计和改进工作也于1936年6月14日正式完成。有鉴于“提尔皮茨”号的设计图纸较先前“俾斯麦”号的设计图纸相比已有所改动,故“俾斯麦”号的设计图纸其后也相应作出了修改,在德国海军正式决定建造两艘俾斯麦级战列舰后,两舰被分别定以“G”和“F”的代号。

武器系统

主炮

俾斯麦级战列舰装备有4座SK-C/34型47倍口径381毫米双联装主炮,该炮由德国克虏伯公司于1934年设计,1939年研制成功并定型生产。每座主炮塔重约1100吨,单门火炮全重110700千克,总长度1963米。俾斯麦级的身管制造采用了与希佩尔海军上将级重巡洋舰相同的三节套管结构工艺,以保证火炮的制造精度,但成本过于高昂,且制造工艺复杂,不便与身管的大批量生产。身管内刻有90条深45毫米,宽776毫米的膛线,膛线长度为15982毫米,身管长1786米,膛室容积为319升,发射药为212千克,最大发射膛压为3200千克/平方厘米,身管寿命约为180~210发。可发射重800千克的被冒穿甲弹和高爆弹,穿甲弹和高爆弹的长度均为1672米,最大射速为23~3发/分,最大射程为36520米/30度,炮口初速为820米/秒,在射程为35000米的距离上可击穿170毫米的德制水平表面硬化装甲。主炮俯仰角度为-55~+30度,炮塔水平旋转速率为5度/秒,高低俯仰速率为6度/秒,射击时的火炮后座距离为105米。装填角度为+25度,装填机构采用的是半自动装填方式装填,全舰备弹840发,最多为960发。

俾斯麦级装备的4座主炮依从前至后的顺序,分别被命名为安东(Anton)、布鲁诺(Bruno)、恺撒(Cacsar)和多拉(Dora),其中A、B与C、D分别布置于前、后甲板区的中轴线上。

副炮

俾斯麦级装备有6座SK-C/28型55倍口径150毫米双联装副炮,该炮于1928年设计,1934年研制成功并定型生产。单门火炮全重9080千克,身管内刻有44条深175毫米,宽614毫米的膛线,膛线长度为6588毫米,身管长为3000千克/平方厘米,同样可发射穿甲弹和高爆弹,其中穿甲弹弹重453千克,长度为679厘米,高爆弹重41千克,长度为655厘米,最大射速6~8发/分,最大有效射程23000米/40度,炮口初速为875米/秒。副炮俯仰角度为-10~+40度,炮塔水平旋转速率为8度/秒,高低俯仰速率为9度/秒,射击时的火炮后座距离为37厘米,装填角度为+25度,全舰备弹18000发,每座炮塔各300发。

6座150毫米双联装副炮均布置在上层甲板的同一平面上,每舷各3座,其中布置在前部和中部各两座副炮的射界为150度,布置在后部的副炮射界为135度,6座副炮均可直接向其正前方射击。6座炮塔的重量不一,其中布置在前部的两座炮塔各重1316吨,中部的两座炮塔因各安装有一座光学测距仪而各重1503吨,后部的两座炮塔最轻,各重977吨。该炮并不兼具防空能力,主要用以对付诸如驱逐舰这类装甲防护较弱的中、轻型水面舰艇。

高炮

“俾斯麦”号战列舰装备有SK-C/33型和SK-C/37型65倍口径105毫米双联装高炮各4座,每舷各4座。SK-C/33型与SK-C/37型高炮均由德国莱茵金属公司生产,其中SK-C/33型于1933年设计,1935年研制成功并定型生产,每座炮塔重26425吨,单门火炮全重为4560千克,总长度684米,身管内刻有36条长5531毫米的膛线,身管长6825米。膛室容积为731升,发射药为605千克,最大发射膛压为2850千克/平方厘米,可发射重151千克,长1164厘米的专用防空高爆炮弹,最大射速为16~18发/分,最大有效射高为17700米/45度,最大仰角时射高为12500米/85度,炮口初速为900米/秒。火炮俯仰角度为-8~+85度,炮塔水平旋转速率为8度/秒,高低俯仰速率为10度/秒,4座SK-C/33型高炮均装备有各自独立的炮瞄设备。而SK-C/37型则于1937年设计,1939年研制成功并定型生产,其主要参数与SK-C/33型基本相同,只是每座炮塔比SK-C/33型要略轻一些,炮塔水平旋转速率提高为85度/秒,高低俯仰速率为12度/秒。射击时需由舰上的4座专用光学测距仪提供目标参数,全舰备弹6720发,每座炮塔840发。

有鉴于SK-C/33型及SK-C/37型105毫米高炮的身管制造也均采用了复杂的双节套管结构工艺,延误了原定的出厂交付日期,致使“俾斯麦”号战列舰在刚服役时只安装了上层建筑第一层甲板上前部的4座SK-C/33型高炮。海上训练结束后,“俾斯麦”号返回码头时又安装了4座更新型的SK-C/37型高炮于上层建筑第一层甲板的后部原本计划等另外4座SK-C/37型高炮到货后,再替换下先前已安装于前部的4座SK-C/33型高炮,但出海后才发现SK-C/33型与SK-C/37型专用的火控系统互不匹配,致使在其后的“莱茵演习”行动中,无法对来袭的英机形成有效的中、近程对空火力。

在近程防空火力上,“俾斯麦”号主要由大量的37毫米及20毫米高炮构成。其中SK-C/30型83倍口径37毫米双联装高炮于1930年设计,1934年研制成功并定型生产,每座炮塔重3670千克,单门火炮全重243千克,总长度82米,身管内刻有16条长2554毫米的膛线,身管长3071米。膛室容积为05升,发射药为0365千克,最大发射膛压为2950千克/平方厘米。射弹重0745千克,长度为1620毫米,最大射速为80发/分,最大有效射高8500米/45度,最大仰角时射程为6750米/80度,炮口初速为1000米/秒。俯仰角度为-10~+80度,炮塔水平旋转速率为4度/秒,高低俯仰速率为3度/秒,全舰共备弹32000发,8座SK-C/30型37毫米高炮均装备有各自独立的射击炮瞄设备。

20毫米高炮分为两座MG-C/38型20毫米四联装和12座MG-C/30型20毫米单管装两种,其中MG-C/30型于1930年设计,1934年研制成功并定型生产,每座炮全重420千克,单门炮重64千克,总长度22525米,身管内刻有8条长720毫米的膛线,身管长为13米(即65倍口径),膛室容积为0048升,发射药为012千克,最大发射膛压为2800千克/平方厘米,射弹重0132千克,长785厘米,最大射速为200~280发/分,最大有效射高为4900米/45度,最大仰角时射高为3700米/85度,炮口初速为900米/秒。火炮高低俯仰角为-11~+85度,火炮的水平及俯仰方向的旋转均由人工手动操作完成。MG-C/38型与MG-C/30型相比,将单管装改为了四联装,致使火炮增重至2150千克,射速提高到480发/分,俯仰角度改为-10~49度,其它技术参数均与MG-C/30型基本相同。

由于20毫米高炮大多为单管装,仅有两座为四联装,且两型高炮均采用的是弹夹式供弹,在实际的使用过程中MG-C/30型与MG-C38型的射速仅分别为120发/分和220发/分,射击时还必须由专人在炮位左侧用手持式小型光学测距仪为炮手提供目标参数,炮手用常规准星瞄具对目标瞄准,实战中难以形成足够密度的近程对空火力。

火控系统

“俾斯麦”号战列舰在上层建筑的前部和后部各布置有一座混装有FUMO 23型雷达和一部基线长105米的光学测距仪的火控塔,另有一座布置在舰桥桅塔顶端的火控塔混装的是一座FUMO 23型雷达和一部基线长7米的光学测距仪。其FUMO 23型雷达设有一具长为4米,宽为2米的矩形网状雷达天线,工作频率为368兆赫,脉冲频率为500赫兹,波长为815厘米,功率9千瓦,有效探测距离为25千米(即135海里)。鉴于20世纪40年代初的舰载雷达技术刚刚出现不久,其工作效能并不高,甚至工作时的稳定性也十分欠佳,在海战中的对舰炮战仍然主要依靠使用光学测距仪来提供目标参数,舰载雷达一般仅用于对海上目标的搜索和夜间炮战为主炮指示射击目标之用。

此外,除A号主炮塔上的光学测距仪在1941年初被拆除以外,其它各主炮均装有一座基线长105米的光学测距仪,以备在舰桥上的火控塔战时受损后,各主炮依然能够独立进行炮瞄射击,中部两舷的两座150毫米副炮也各自装备有一具基线长65米的光学策测距仪。布置在上层建筑第一层甲板的4座SK-C/37型105毫米高炮也由4座基线长4米的SL-8光学测距仪提供目标参数,并由半球形的装甲防护罩保护,另外在C号主炮塔的后方还布置有一座基线长5米的光学测距仪。

虽然德国人在精密光学仪器上的优长使得其所使用的光学测距仪能够获得非常高的测距精度,但在实战中战舰往往需要先以校射模式进行半齐射,再依照数次齐射的弹着点及目标的相对航速、航向和相对距离来及时校正主炮的炮射参数,所以其主炮的首次齐射或半齐射的命中概率极低,即使是在射击过程中不断依照上次弹着点校正主炮的炮射参数,但其是否能命中目标,更多的情况下还是在凭借着运气。

装甲防护

“俾斯麦”号战列舰的设计装甲总重量达17256吨,占的全舰总重量的比例达40%。其舰体的水平防护由两层水平装甲板组成,即覆盖全舰的50毫米厚上甲板和80~120毫米厚的第三层甲板,其中第三层甲板的主甲板,从舰艏的A号主炮塔的前部一直延伸至D号主炮塔的后部,总长度达170米,主要用以保护各主、副炮塔下的弹药舱及轮机舱等核心部位免受打击。

主炮塔的外形呈一个多面体,炮塔装甲的正面厚度为360毫米,侧面厚度为220毫米,后部厚度为320毫米,顶部厚度为130毫米,其甲板上的B、C号主炮塔座圈的装甲厚度为340毫米,其余两座主炮塔甲板下的炮塔座圈的装甲厚度均为220毫米。副炮的装甲防护水平很弱,其装甲的正面厚度为100毫米,炮塔座圈厚度为80毫米,侧面厚度为80毫米,顶部厚度为80毫米,甲板下炮塔座圈的厚度为20毫米,其中布置在前部和后部的副炮塔后部的装甲厚度为140毫米,中部副炮塔的后部装甲厚度为80毫米。

舷侧的装甲防护以主炮塔的弹药舱和舯部的轮机舱的装甲最厚,达320毫米,形成长度达170米的主装甲带的装甲厚度越靠近舰体的艏、艉处,厚度就越薄,其舰艏与舰艉区域的装甲厚度仅分60毫米和80毫米。此外,舷侧主装甲带的下方还设有由两层防雷壁与一层装甲壁组成的防雷击系统,足可抵御250千克装药量的鱼雷或磁性水雷的攻击。其中最内层装甲壁的厚度为45毫米,与水平方向主装甲垂直相接,形成一个盒形装甲区域,外部的两层防雷壁各厚170毫米,其间的隔舱内填充有燃油或水以作为该舰被鱼雷击中后的爆炸缓冲区之用。

舰上指挥塔顶部的装甲厚度为220毫米,周边部分装甲厚度为350毫米,其下方包含在上层建筑之内的垂直通道由70毫米的装甲予以保护。此外,在各主、副炮的测距仪及雷达火控塔等指挥部件均有一定厚度的装甲进行保护,甚至就连舰上烟囱两侧的探照灯他、都有专门的半球形装甲防护罩。

动力系统

俾斯麦级战列舰在设计之初便要求其推进装置的功率必须要尽可能的大,以便使战舰能够获得30节左右的高航速。为此,在位于俾斯麦级舰体舯部的6个锅炉舱内共布置了12台瓦格纳高温、高压锅炉,其工作压力为35千克/平方厘米,工作温度为475℃,每个锅炉舱内各安装有两台,并以一前一后纵向布置于主机舱的前面,6个锅炉舱以每3个舱并列成一排,前后共分为两排,其间有隔舱相分隔。12台高温、高压锅炉由4条主烟道集中从舰体舯部的大型独立烟囱排出废烟。

共有3个呈倒品字形布置的主机舱,位于锅炉舱的后方,前面两个并排布置的主机舱同后面单独布置于中轴线上的主机舱之间有隔舱分隔。每个主机舱各装备有一台布隆•富斯蒸汽轮机其主机的最大单机输出功率为45400马力,3台主机的总输出功率达136200马力。3台主机均配备有独立的减速齿轮组,每台蒸汽轮机各驱动一根传动主轴,每根主轴上各有一具直径47米的螺旋桨,3轴推进,其后为两具大小为1163平方米,平行相距242米的方向舵。

电力系统由14台发电机所组成,为全舰的各系统提供电力,总发电量为7910千瓦,电流为220伏的交流电。其中8台500千瓦柴油发电机布置在后主机舱两侧的2个机舱内,每个机舱各安装有4台,分成两排,每排两台。另有5台690千瓦的涡轮发电机和一台460千瓦的涡轮发电机分别布置在前排锅炉舱的前面两侧的2个机舱内,其中一个为混装有两台690千瓦和一台460千瓦的涡轮发电机,每个机舱平行布置着3台涡轮发电机,两个机舱之间也有隔舱相隔开。

舰载机

在“俾斯麦”号主桅下方的1号机库及烟囱两才侧的2、3号机库内分别存放有4加阿拉道(Arado)Ar-196型水上飞机,降落在水上,再由舰体舯部甲板两舷上的大型起重机吊起回收,再将Ar-196的机翼折叠后,便存入机库之中。其中1号机库存放有2架,2、3号机库各一架。

Ar-196型水上飞机主要是用于取代老式的He-160型水上飞机,广泛配属于德国海军的大型战舰之上,于1938年首飞,1939年8月定型服役,全重2990千克,最大起飞重量3730千克,机身长为11米,翼展124米,机身高44米,装备有一台最大输出功率为960马力的宝马(BMW)星型空冷发动机,最大飞行时速310千米/小时(4000米高度),最大升限为7020米,最大航程为1070千米。装备有2门MG-FF型20毫米航空机炮,一挺MG-17型792毫米机枪,2挺MG-15型15毫米机枪,并可在翼下挂载两枚50公斤重航空炸弹,机组乘员2人。该机主要用以侦察、校正和联络之用。

辅助设备

扫雷具

为了对付来自于水雷封锁的威胁,“俾斯麦”号在两舷共装备了6具扫雷具,这些扫雷具,从外形上看就如同一架小飞机一样,使用时扫雷具吊放入水中,在展开其水翼后,钢缆将拖曳其前行,一遇锚雷便利用扫雷具上的割刀将系留锚雷的钢索割断,待锚雷浮出水面以后,再用舰上的小口径火炮将其击爆。

探照灯

全舰共装备有8座探照灯,其中7座的直径为15米,7座探照灯分别布置在指挥塔中部、烟囱前部和后部的两侧以及主桅后方的平台之上。其探照灯除平时用于导航、信号联络外,还可用来在夜战中为火炮指示目标。

起重机

布置在舰体的舯部第一层甲板之上的两部12吨级大型起重机,除可用来回收降落在水上的Ar-196县水上飞机之外,还可在该舰进行补给作业时,吊装诸如弹药、食品等物资之用。

锚、链

为了能够便于该舰的泊驻作业,在“俾斯麦”号上共布置了4个重达9500千克的铁锚,用直径72毫米的铁链环连接,其中3个铁锚布置在舰首的前方和左右两舷,另一个布置于舰艉的左舷一侧。

小艇

“俾斯麦”号建成之时,舰上共配备有各种交通艇、联络艇、工作艇及舢板共记18艘。

建造

1935年11月16日,德国政府同“俾斯麦”号的承建商布隆•沃斯造船公司在汉堡签属了建造合同,建造编号BV509。1936年7月1日,在位于汉堡的布隆•沃斯造船厂的9号船台上开始铺设首根龙骨,“俾斯麦”号的建造工作正式开始。舰体的建造工作于1938年9月以前完成,并开始将已建成的舰体移至下水滑道上,准备下水的相关事宜。

1939年2月14日星期二(情人节),在阿道夫•希特勒及上千名群众、军政要员和船厂工人的出席下举行了隆重而盛大的下水典礼,并由特意邀请而来的主礼嘉宾——德国前首相奥托•冯•俾斯麦的孙女将她祖父的名字命名给这艘新建成的战舰,在片刻之后的13:30分,“俾斯麦”号缓缓滑入水中,顺利下水。成为德国海军历史上第四艘以俾斯麦之名命名的战舰,也是“俾斯麦”号的承建商布隆•沃斯造船厂所建成的最后一艘战列舰。虽然新型的H级战列舰已于1939年7月15日开工建造,但最终却并未建成,而是于1941年8月29日停工后被解体。

下水之后的“俾斯麦”号停泊在船厂的舾装码头上进行诸如锅炉、舰桥和主装甲带的舾装工作,与此同时,德国人还将建造中的“俾斯麦”号的舰艏替换成了更适合于北海和北大西洋恶劣海况的大西洋型舰艏。1939年9月1日,德军侵入波兰境内,英、法对德宣战,但二战的爆发和随后而来的寒冷冬季却丝毫未影响到“俾斯麦”号的预定建造速度。

1940年4月,“俾斯麦”号迎来了首批舰员的登舰,虽然此时的“俾斯麦”号仍未完成,但这些首批登舰的舰员们已经在该舰的首任也是唯一一任舰长厄恩斯特•林德曼的指挥下开始了其第一阶段的训练任务,以便能够更早的熟悉诸如锅炉、涡轮机机组、舰桥等舰上已经安装好的设备。6月23日,“俾斯麦”号开始进入V-6号浮式干船坞,以便进行3个推进用螺旋桨和电磁防水雷系统的安装,全舰也相应的被重新忧戚了一番。7月14日,“俾斯麦”号离开浮式干船坞后,便一直停泊在船厂的舾装码头上,直到几天后的7月21日,“俾斯麦”号开始了其首次的测试工作,而此时的舰员人数已经增加至1962人,其中军官103人。在经过了18个月的舾装工作后,“俾斯麦”号终于在1940年8月24日星期六,这个多云的日子里,在舰长林德曼上校的主持下举行了该舰的入役典礼,在德国的国歌声中,纳粹德国的国旗在后甲板的尾旗杆上缓缓升起,标志着“俾斯麦”号战列舰正式加入德国海军的现役编制之中。

训练、海试

在“俾斯麦”号服役之后,舰上的舰员们被分为12个分队,其中1~4分队负责主副炮,5、6分队负责高炮,7分队负责后勤,8分队负责军械、缆帆作业,9分队负责通信,10~12分队为轮机人员,进一步的训练也随即展开,这包括了战舰的导航、防空、损管和作战等训练。1940年9月15日,“俾斯麦”号首次离开汉堡前往波罗的海沿岸的戈腾哈芬(今波兰格丁尼亚),准备进行海试。由于波罗的海沿岸的东普鲁士地区位于英国皇家空军轰炸机的航程以外,加上德军在通往波罗的海的航路上均布置有水雷,使得波罗的海成为了德国海军在二战期间最主要的海上训练和海试基地。

9月16日,“俾斯麦”号在拖轮的协助下驶入连通北海和波罗的海的基尔运河,在9月28“俾斯麦”号离开基尔并在13艘扫雷舰的护航下前往吕根岛,此后便单独驶往目的地戈腾哈芬。

在驶抵戈腾哈芬后两个月的时间里,“俾斯麦”号在但泽海域进行了多次航海测试工作,在10月23日的全速测试中测得了主机最大输出功率150170马力和3012节的最高航速。12月5日,“俾斯麦”号经由波罗的海返回汉堡,停泊在布隆•沃斯造船厂的舾装码头上进行最后的设备调整。在此期间,由于担心战舰在高速航行时舰艏的上浪会对“A”主炮塔的105米基线测距仪的使用造成影响而被拆除。为了提

首先我想说突击步枪后坐力都不小,然后全球pvp的主流武器是冲锋枪。切入正题,退魔16的各项性能都比较适中,打法就是中近距离左右移动射击,袁距离瞄准,最好也小幅度移动瞄准。改造的话不要红外线,消音器也可以不要,枪托用增重,瞄准镜看个人爱好,枪管弹夹就不说了。然后我更推荐95或者03,但是就我个人来讲金币步枪不比点券的差,一般情况下用金币的就可以了,比如ak,m4,最多用点券挂件改一下同样犀利。

新手的话首推UMP045冲锋枪,这玩意的威力是可改装的金币冲锋枪里最高的(初始威力30点),加载钼铬枪管之后伤害直接上32点,点射精准度可以压制狙击手,扫射稳定性又可以让你在中距离对枪时不吃亏,惟一能克制它的只有P90(移动射击稳定性逆天)以及AKS47U(威力在冲锋枪里是最高的,改造后达到33点),UMP045惟一的问题就是弹匣容量只有25发,不过问题不大。

UMP0,45改造方案:

最佳改法(全点券改造):

枪口:复合消音器(不影响射程和威力,精度+2,点射流可以选小孔消音器,射程-1精度+3)

枪管:钼铬枪管(射程+2威力+2,必备)

弹匣:+10弹匣(必备)

上导轨:近战扫射流用红点镜,远程点杀流用ACOG镜。

下导轨:无

左导轨:无

右导轨:无,有瞄准镜的话,你就根本不需要会暴露自己位置的激光指示器了。

枪托:轻质枪托(稳定+3,当然如果有闲钱也可以配均衡枪托,均托稳定+4)

金币改法:

枪口:无(阻性消音器会降低1点威力,不能用)

枪管:镀铬枪管(射程+4,射程是增加远距离精准度的,可以用)

弹匣:+5弹匣(必备)

上导轨:无

下导轨:无

左导轨:无

右导轨:无(对自己的枪法没信心的话可以加红外镭射,精度+1并且瞄准界面变成一个红点)

枪托:增重枪托(稳定+2,有总比没有好)

其次是SCAR-L,也就是系统建号就送的那个突击步枪,别看这家伙不能改造,但实际上这玩意的性能还是不错的,如同它的描述一样:“性能数据皆在突击步枪的基准线之上”。

改造方法:不可改造(8个部位全锁死)。

在次一点就是AK47,新手用不习惯因为这玩意的后坐力太大,扫射弹道很惊悚,但这玩意点射很逆天,无论是单发点射还是三发点射,AK47都能做到把子弹全部砸在对手身上,当然,改造是必不可少的,这玩意虽然不能上镜,但这货本身就是用来近距离扫射的,当然,如果枪法够好,AK47在远距离也可以慢慢点死人。

改造方法:

最佳改法(全点券改造):

枪口:远程点杀流用小孔消音器(射程-1精度+3),近战扫射流用增强刺刀(增加肉搏伤害)

枪管:钼铬枪管(射程+2威力+2,必备)

弹匣:+5弹匣(这个随意,近战扫射流必备)

上导轨:锁死

下导轨:锁死

左导轨:锁死

右导轨:锁死

枪托:轻质枪托(稳定+3,点射流追求极致稳定的话可以加均托,均托稳定+4)

金币改造:

不推荐金币改造,AK47用金币挂件改造的话只能改枪管然后装普通刺刀,没啥用。

狙击步枪的话,喜欢闪身瞬狙的用AWP,喜欢连续射击和补射的用SVD,这个没话说,改造方法都是一样的:

最佳改法(全点券改造):

枪口:复合消音器(精度+2,狙击步枪精度本来就高,加不加实际上无所谓)

枪管:钼铬枪管(射程+2威力+2,必备)

弹匣:无

上导轨:AWP自带6×28瞄准镜所以不需要装瞄准镜,SVD则需要在上导轨加载6×28瞄准镜。

下导轨:锁死

左导轨:锁死

右导轨:锁死

枪托:均衡枪托(AWP是栓动式狙击步枪所以不需要,SVD可以连续射击所以这个必备)

最后是轻机枪,金币轻机枪只有一把M249,但性能实际上很不错,34点威力并不小,100发大容量和较高的稳定性也使得它在PVP和PVE里都占有一席之地。

最佳改法(全点券改造):

枪口:无

枪管:钼铬枪管(射程+2威力+2,VIP可用碳钢枪管,碳钢是射程+4威力+4,必备)

弹匣:+20弹鼓,VIP可以用+50弹鼓

上导轨:红点镜,是VIP并且喜欢远距离点射的话就加载ACOG

下导轨:钢制脚架(精度+3稳定+3,必备)

左导轨:无

右导轨:无

枪托:增重枪托(貌似只有这个枪托,稳定+2)

主炮早在1934年《英德海军协定》签订以前,德国人就已经开始对安装在“俾斯麦”号上的SK-C/34型380毫米主炮的设计和试验工作。德国海军在最初的主炮口径选择上考虑过两种方案,一是采用406毫米主炮的方案,二是采用380毫米的主炮设计。虽然选择406毫米主炮的设计方案,无论在弹丸重量、火炮射程和威力上都将远胜于380毫米主炮。但有鉴于当时德国从来没有制造过如此大口径的主炮,缺乏在经验和技术上的支持,存在着一定的风险。况且,如果真的采用了406毫米主炮的方案进行设计,不仅需要对原有设计方案进行重大修改和调整,更会影响到整舰的建造与服役时间,建造所需的费用也将大大超出原有预算。经过一番考虑后,德国决定“俾斯麦”级战列舰采用380毫米的主炮。“俾斯麦”级战列舰的4座主炮塔,在前甲板和后甲板分别各布置两座,从前向后依次命名为安东(Anton)、布鲁诺(Bruno)、凯撒(Caesar)和多拉(Dora),四座主炮塔的编号分别用各自命名的第一个字母编为A、B、C、D。“俾斯麦”级战列舰装备的主炮为8门SK-C/34型47倍口径(1786米)380毫米炮,该炮由德国克虏伯公司于1934年设计,1939年研制成功并定型生产。每座主炮塔重约1100吨,单门火炮全重110700千克,总长度1963米。“俾斯麦”级的身管制造采用了与“希佩尔海军上将”级重巡洋舰相同的三节套管结构工艺,以保证火炮的制造精度,但成本过于高昂,且制造工艺复杂,不便与身管的大批量生产。身管内刻有90条深45毫米,宽776毫米的膛线,膛线长度为15982毫米,身管长1786米,膛室容积为319升,发射药为212千克,最大发射膛压为3200千克/平方厘米,身管寿命约为180~210发。可发射重800千克的被冒穿甲弹和高爆弹,穿甲弹和高爆弹的长度均为1672米,最大射速为23~3发/分,最大射程为36520米/30度,炮口初速为820米/秒,在射程为35000米的距离上可击穿170毫米的德制水平表面硬化装甲。主炮俯仰角度为-55~+30度,炮塔水平旋转速率为5度/秒,高低俯仰速率为6度/秒,射击时的火炮后座距离为105米。装填角度为+25度,装填机构采用的是半自动装填方式装填。“俾斯麦”级战列舰的主炮设计非常成功,性能非常优秀,不仅威力大,射速高,而且火力覆盖面积大,使用范围非常广,除了用作常规的平射射击外,还可以以高仰角对空射击。“提尔皮茨”号在挪威抵抗英机轰炸时就这样使用过主炮。SK-C/34型52倍口径(1786米)381毫米炮发射800千克穿甲弹的设计性能参数(部分)火炮发射仰角/度 22 49 81 121 168 224 291 30射程/米 5000、10000、15000、20000、25000、30000、35000、36520炮弹飞行速度/米·秒-1 727、641、568、511、473、457、462 暂缺侵入目标入射角/度 24 58 104 164 238 319 403 暂缺SK-C/34型47倍口径(1786米)381毫米炮发射800千克穿甲弹威力参数(部分)射击距离/米 0 4572、10000、18000、20000、21000、22000、25000、27000穿甲厚度/毫米 742、616、510、419、364、350、333、308、304美国人用标准装甲经验公式值对自己装甲的推算。射击距离/米10000、20000、21000、25000炮弹飞行速度/米·秒-1 641、511、496、476侵入目标入射角/度 58、164、176、238穿甲厚度/毫米 510、364、350、308克虏伯公司用SK C/34 381毫米炮对KCn/A实测。副炮“俾斯麦”级装备有6座SK-C/28型55倍口径150毫米双联装副炮,该炮于1928年设计,1934年研制成功并定型生产。单门火炮全重9080千克,身管内刻有44条深175毫米,宽614毫米的膛线,膛线长度为6588毫米,身管长为3000千克/平方厘米,同样可发射穿甲弹和高爆弹,其中穿甲弹弹重453千克,长度为679厘米,高爆弹重41千克,长度为655厘米,最大射速6~8发/分,最大有效射程23000米/40度,炮口初速为875米/秒。副炮俯仰角度为-10~+40度,炮塔水平旋转速率为8度/秒,高低俯仰速率为9度/秒,射击时的火炮后座距离为37厘米,装填角度为+25度,全舰备弹18000发,每座炮塔各300发。6座150毫米双联装副炮均布置在上层甲板的同一平面上,每舷各3座,其中布置在前部和中部各两座副炮的射界为150度,布置在后部的副炮射界为135度,6座副炮均可直接向其正前方射击。6座炮塔的重量不一,其中布置在前部的两座炮塔各重1316吨,中部的两座炮塔因各安装有一座光学测距仪而各重1503吨,后部的两座炮塔最轻,各重977吨。该炮并不兼具防空能力,主要用以对付诸如驱逐舰这类装甲防护较弱的中、轻型水面舰艇。高射炮“俾斯麦”级战列舰装备有8座105毫米高射炮、8座37毫米高射炮和20门20毫米高射炮。“俾斯麦”级战列舰装备有SK-C/33型和SK-C/37型65倍口径105毫米双联装高炮各4座,每舷各4座。SK-C/33型与SK-C/37型高炮均由德国莱茵金属公司生产,其中SK-C/33型于1933年设计,1935年研制成功并定型生产,每座炮塔重26425吨,单门火炮全重为4560千克,总长度684米,身管内刻有36条长5531毫米的膛线,身管长6825米。膛室容积为731升,发射药为605千克,最大发射膛压为2850千克/平方厘米,可发射重151千克,长1164厘米的专用防空高爆炮弹,最大射速为16~18发/分,最大有效射高为17700米/45度,最大仰角时射高为12500米/85度,炮口初速为900米/秒。火炮俯仰角度为-8~+85度,炮塔水平旋转速率为8度/秒,高低俯仰速率为10度/秒,4座SK-C/33型高炮均装备有各自独立的炮瞄设备。而SK-C/37型则于1937年设计,1939年研制成功并定型生产,其主要参数与SK-C/33型基本相同,只是每座炮塔比SK-C/33型要略轻一些,炮塔水平旋转速率提高为85度/秒,高低俯仰速率为12度/秒。射击时需由舰上的4座专用光学测距仪提供目标参数,全舰备弹6720发,每座炮塔840发。有鉴于SK-C/33型及SK-C/37型105毫米高炮的身管制造也均采用了复杂的双节套管结构工艺,延误了原定的出厂交付日期,致使“俾斯麦”号战列舰在刚服役时只安装了上层建筑第一层甲板上前部的4座SK-C/33型高炮。海上训练结束后,“俾斯麦”号返回码头时又安装了4座更新型的SK-C/37型高炮于上层建筑第一层甲板的后部原本计划等另外4座SK-C/37型高炮到货后,再替换下先前已安装于前部的4座SK-C/33型高炮,但出海后才发现SK-C/33型与SK-C/37型专用的火控系统互不匹配,致使在其后的“莱茵演习”行动中,无法对来袭的英机形成有效的中、近程对空火力。在近程防空火力上,“俾斯麦”号主要由大量的37毫米及20毫米高炮构成。其中SK-C/30型83倍口径37毫米双联装高炮于1930年设计,1934年研制成功并定型生产,每座炮塔重3670千克,单门火炮全重243千克,总长度82米,身管内刻有16条长2554毫米的膛线,身管长3071米。膛室容积为05升,发射药为0365千克,最大发射膛压为2950千克/平方厘米。射弹重0745千克,长度为1620毫米,最大射速为80发/分,最大有效射高8500米/45度,最大仰角时射程为6750米/80度,炮口初速为1000米/秒。俯仰角度为-10~+80度,炮塔水平旋转速率为4度/秒,高低俯仰速率为3度/秒,全舰共备弹32000发,8座SK-C/30型37毫米高炮均装备有各自独立的射击炮瞄设备。实际上,德国的37毫米高射炮根本不可能达到最大射速80发/分,因为装填方式的问题,37毫米高炮是二战最差的高射炮之一。20毫米高炮分为两座MG-C/38型20毫米四联装和12座MG-C/30型20毫米单管装两种,其中MG-C/30型于1930年设计,1934年研制成功并定型生产,每座炮全重420千克,单门炮重64千克,总长度22525米,身管内刻有8条长720毫米的膛线,身管长为13米(即65倍口径),膛室容积为0048升,发射药为012千克,最大发射膛压为2800千克/平方厘米,射弹重0132千克,长785厘米,最大射速为200~280发/分,最大有效射高为4900米/45度,最大仰角时射高为3700米/85度,炮口初速为900米/秒。火炮高低俯仰角为-11~+85度,火炮的水平及俯仰方向的旋转均由人工手动操作完成。MG-C/38型与MG-C/30型相比,将单管装改为了四联装,致使火炮增重至2150千克,射速提高到480发/分,俯仰角度改为-10~49度,其它技术参数均与MG-C/30型基本相同。由于20毫米高炮大多为单管装,仅有两座为四联装,且两型高炮均采用的是弹夹式供弹,在实际的使用过程中MG-C/30型与MG-C38型的射速仅分别为120发/分和220发/分,射击时还必须由专人在炮位左侧用手持式小型光学测距仪为炮手提供目标参数,炮手用常规准星瞄具对目标瞄准,实战中难以形成足够密度的近程对空火力。

纳粹德国海军“俾斯麦”号战列舰的一生

研制背景

1918年11月11日,德国政府代表埃尔茨贝格同协约国联军总司令福煦在法国东北部贡比涅森林的雷东德火车站签署停战协定,德国战败投降,《贡比涅森林停战协定》在6个小时后正式生效,第一次世界大战至此宣告结束。战后根据1919年6月28日德国同战胜国在巴黎签署的《凡尔赛和约》的规定,德国海军仅被允许保留8艘1906年以前建造的旧式战列舰用于训练及海岸防御之用。此外,所有旧舰的舰龄必须满20年才可开工建造新舰用以替换,并还限制德国建造任何最大排水量大于10160吨,主炮口径超过280毫米的军舰。同时还规定德国海军的人员编制规模不得超过15万人,其中军官不得超过1500人,海军军官必须服役满25年,以及禁止德国海军建造、拥有潜艇和海军航空兵等诸多抑制德国海军舰队重新崛起的条款。企图通过对德国海军战后的人员编制、舰队规模、装备更新和军舰性能等限制,而使其无法再与其他海军列强抗衡,将德国海军压制成为一支能力有限的区域性海上力量。

战后,为了替换一战后所遗留下来的那些旧式的无畏型战列舰,在经过一番激烈的争论后,德国魏玛共和国的国会最终还是以微弱的优势表决通过了海军要求建造新舰的提案,允许德国海军建造5艘袖珍型战列舰。其首制舰“德意志”号于1929年2月5日在德国基尔的德意志船厂开工,1931年5月19日下水,1933年4月1日建成服役。

至20世纪30年代初,法国和苏联海军都相继提出了规模庞大的造舰计划。面对这一威胁,当时的德国海军建造局一方面密切注视着世界各主要海军强国的战舰研制情况,定期对各国海军所建造的各种舰型作出评估,另一方面德国海军也开始考虑建造比条约所允许建造的袖珍战列舰更大的战舰。

1933年希特勒上台之初,尚对于《凡尔赛和约》的限制还有所顾虑,不愿公开建造超过条约规定标准的大型战列舰,以避免造成对英国海权的挑战。但当时的德国海军的实力现况与各海军强国的海军相比实在显得太过微不足道了,最终他还是决定要为德国海军补充一些新鲜的血液。但他也曾向当时的德国海军总司令雷德尔表明过自己的海军政策,他并不想追随一次大战前提尔皮茨时期公海舰队的海军政策,不愿去建立一支足以挑战英国制海权的强大舰队,但是必须要能够对抗法国正在进行的造舰计划。当时的苏联海军仍然很弱小,尽管有迹象表明其正在执行一项庞大的造舰计划,但却并未引起德国方面的注意。

为了能够突破《凡尔赛和约》对德国海军军备的限制,公开扩充海军军备,1935年6月希特勒主动向英国表示愿意将德国海军水面舰艇和潜艇部队的总吨位分别限制在英国海军的35%和45%,使英国海军在制海权方面对德国海军保持3:1的优势,以表示德国海军的军备扩充不是在针对英国。

1935年6月18日,《英德海军协定》的正式签订,为德国合法地解除了战后《凡尔赛和约》对德国海军的种种限制,为日后德国海军的自由发展奠定了基础。1936年《华盛顿海军协定》到期结束,各国都不打算继续在《伦敦海军协定》上续约,先是日本在1933年入侵中国东北三省后退出了国际联盟和《伦敦海军协定》,法国和意大利也随即于1935年拒绝在条约上签字。各国见况纷纷开始重整军备,战争阴云日益迫近。

当时德国虽然已经建造了德意志级袖珍战列舰,并已有了设计建造沙恩霍斯特级战列巡洋舰的计划,但是这两级战舰均无法同各海军强国将来所建造的新式战列舰相匹敌。于是德国人便有了建造更大、更强的新式战列舰的计划,这一计划便成为了日后设计、建造俾斯麦级战列舰的雏形。

设计

俾斯麦级战列舰的工作开始于1935年,但在1932年,德国海军就已经开始了对建造标准排水量35000吨级的战列舰进行理论性研究和可行性论证工作。早在1934年《英德海军协定》签订以前,德国人就已经开始对安装在“俾斯麦”号上的SK-C/34型381毫米(15英寸)主炮的设计和试验工作。德国海军在最初的主炮口径选择上考虑过两种方案,一是采用406毫米(16英寸)主炮的方案,二是采用381毫米的主炮设计。虽然选择406毫米主炮的设计方案,无论在弹丸重量、火炮射程和威力上都将远胜于381毫米主炮。但有鉴于当时德国从来没有制造过如此大口径的主炮,缺乏在经验和技术上的支持,存在着一定的风险。况且,如果真的采用了406毫米主炮的方案进行设计,不仅需要对原有设计方案进行重大修改和调整,更会影响到整舰的建造与服役时间,建造所需的费用也将大大超出原有预算。此外,更大的主炮口径就需要有更大的炮塔座圈,而过大的炮塔座圈又将会造成战舰的体积和排水量过大,使其无法达到原设计所规定的装甲防护水平和航速等设计性能。

在动力系统方面也存在着多种选择,当时德国在柴油机技术和高温、高压蒸汽锅炉的发展上均有优势。德意志级袖珍战列舰当时就已经采用了柴油机为推进装置的动力系统,并使其获得了强大的远洋续航力,但由于受柴油机的单机功率所限,战舰的最高航速难以提高,如德意志级袖珍战列舰的最大航速也只有28节。况且使用柴油机为动力的战舰的主轴过长,会影响到舰体内的布置,占用过大的空间。相比之下,虽然蒸汽轮机较之柴油机在热效率上要低,且存在高温、高压锅炉爆炸而可能使全舰瘫痪的隐患,降低了蒸汽轮机的可靠性,如德国的Z-3号驱逐舰就曾经因为高温、高压锅炉蒸汽受阻爆炸而在挪威沿海执行任务时丧失动力,险些漂入德军布有水雷的海区。但蒸汽轮机的单机功率较大,且蒸汽轮机允许有一定的主机过热率,可使战舰在短时间内通过主机过热来实现航速的提高,达到极速状态。此外,采用蒸汽轮机的战舰主轴相对较短,同时蒸汽轮机所使用的重油也比柴油机所使用的轻柴油更不易引起燃烧和爆炸。鉴于当时各国正在设计建造的新式战列舰的最大航速均已达到或超过30节,并考虑到德国海军在数量上的劣势,在海战中如果没有高航速的话,是无法逃脱敌海上优势兵力的围歼。加上缺乏在如此庞大的战列舰上采用柴油机为动力的先例和经验,在权衡了两者的优缺利弊后,最终德国人还是决定以传统的常规蒸汽锅炉作为俾斯麦级战列舰的动力系统。

在装甲防护的设计上,德国海军并没有像其他海军强国那样采用“重点防护”的装甲设计概念,而是沿袭了德国海军传统的“全面防护”的装甲设计概念。德国在二战爆发之前所建造的战列舰与重巡洋舰均采取了这一装甲布置理念,这一装甲布置理念除了在传统的水线、炮塔、指挥塔等关键要害部位布置主装甲带以外,还对战舰有可能被命中的其他非关键区域,也加装有一定厚度的装甲予以防护。虽然这种采用“全面防护”理念建造的战舰在关键要害部位的主装甲厚度往往较同一时期其他海军强国采用“重点防护”理念建造的战舰要低,但全面的装甲防护却可以避免战舰因非关键部位的受损而丧失战斗力,因为海战中的德国海军除了在数量上处于劣势外,还经常要以单舰突入大西洋作战,在面对敌海上优势兵力的围歼时,采用全面装甲防护的设计更有助于提高战舰在战斗中的耐久度。

此外,俾斯麦级战列舰在设计之时还广泛吸取了之前德意志级袖珍战列舰和沙恩霍斯特级战列巡洋舰的建造使用经验,采用了诸如大西洋型舰艏和外张干舷的成功设计,从而提高了战舰在恶劣海况中的适航性能。德国人从德意志级的建造开始,便广泛采用的焊接技术,在俾斯麦级的制造工艺上,舰体结构的的焊接量更是达到了95%,这样用焊接工艺制造的舰艇比同类采用铆接工艺制造的舰艇在舰体的结构重量上要轻15%,而且焊接工艺还有利于采用高强度钢材,提高整舰的装甲防护强度。

俾斯麦级战列舰的首舰“俾斯麦”号的设计工作于1935年11月16日正式完成,同级的二号舰“提尔皮茨”号的设计和改进工作也于1936年6月14日正式完成。有鉴于“提尔皮茨”号的设计图纸较先前“俾斯麦”号的设计图纸相比已有所改动,故“俾斯麦”号的设计图纸其后也相应作出了修改,在德国海军正式决定建造两艘俾斯麦级战列舰后,两舰被分别定以“G”和“F”的代号。

武器系统

主炮

俾斯麦级战列舰装备有4座SK-C/34型47倍口径381毫米双联装主炮,该炮由德国克虏伯公司于1934年设计,1939年研制成功并定型生产。每座主炮塔重约1100吨,单门火炮全重110700千克,总长度1963米。俾斯麦级的身管制造采用了与希佩尔海军上将级重巡洋舰相同的三节套管结构工艺,以保证火炮的制造精度,但成本过于高昂,且制造工艺复杂,不便与身管的大批量生产。身管内刻有90条深45毫米,宽776毫米的膛线,膛线长度为15982毫米,身管长1786米,膛室容积为319升,发射药为212千克,最大发射膛压为3200千克/平方厘米,身管寿命约为180~210发。可发射重800千克的被冒穿甲弹和高爆弹,穿甲弹和高爆弹的长度均为1672米,最大射速为23~3发/分,最大射程为36520米/30度,炮口初速为820米/秒,在射程为35000米的距离上可击穿170毫米的德制水平表面硬化装甲。主炮俯仰角度为-55~+30度,炮塔水平旋转速率为5度/秒,高低俯仰速率为6度/秒,射击时的火炮后座距离为105米。装填角度为+25度,装填机构采用的是半自动装填方式装填,全舰备弹840发,最多为960发。

俾斯麦级装备的4座主炮依从前至后的顺序,分别被命名为安东(Anton)、布鲁诺(Bruno)、恺撒(Cacsar)和多拉(Dora),其中A、B与C、D分别布置于前、后甲板区的中轴线上。

副炮

俾斯麦级装备有6座SK-C/28型55倍口径150毫米双联装副炮,该炮于1928年设计,1934年研制成功并定型生产。单门火炮全重9080千克,身管内刻有44条深175毫米,宽614毫米的膛线,膛线长度为6588毫米,身管长为3000千克/平方厘米,同样可发射穿甲弹和高爆弹,其中穿甲弹弹重453千克,长度为679厘米,高爆弹重41千克,长度为655厘米,最大射速6~8发/分,最大有效射程23000米/40度,炮口初速为875米/秒。副炮俯仰角度为-10~+40度,炮塔水平旋转速率为8度/秒,高低俯仰速率为9度/秒,射击时的火炮后座距离为37厘米,装填角度为+25度,全舰备弹18000发,每座炮塔各300发。

6座150毫米双联装副炮均布置在上层甲板的同一平面上,每舷各3座,其中布置在前部和中部各两座副炮的射界为150度,布置在后部的副炮射界为135度,6座副炮均可直接向其正前方射击。6座炮塔的重量不一,其中布置在前部的两座炮塔各重1316吨,中部的两座炮塔因各安装有一座光学测距仪而各重1503吨,后部的两座炮塔最轻,各重977吨。该炮并不兼具防空能力,主要用以对付诸如驱逐舰这类装甲防护较弱的中、轻型水面舰艇。

高炮

“俾斯麦”号战列舰装备有SK-C/33型和SK-C/37型65倍口径105毫米双联装高炮各4座,每舷各4座。SK-C/33型与SK-C/37型高炮均由德国莱茵金属公司生产,其中SK-C/33型于1933年设计,1935年研制成功并定型生产,每座炮塔重26425吨,单门火炮全重为4560千克,总长度684米,身管内刻有36条长5531毫米的膛线,身管长6825米。膛室容积为731升,发射药为605千克,最大发射膛压为2850千克/平方厘米,可发射重151千克,长1164厘米的专用防空高爆炮弹,最大射速为16~18发/分,最大有效射高为17700米/45度,最大仰角时射高为12500米/85度,炮口初速为900米/秒。火炮俯仰角度为-8~+85度,炮塔水平旋转速率为8度/秒,高低俯仰速率为10度/秒,4座SK-C/33型高炮均装备有各自独立的炮瞄设备。而SK-C/37型则于1937年设计,1939年研制成功并定型生产,其主要参数与SK-C/33型基本相同,只是每座炮塔比SK-C/33型要略轻一些,炮塔水平旋转速率提高为85度/秒,高低俯仰速率为12度/秒。射击时需由舰上的4座专用光学测距仪提供目标参数,全舰备弹6720发,每座炮塔840发。

有鉴于SK-C/33型及SK-C/37型105毫米高炮的身管制造也均采用了复杂的双节套管结构工艺,延误了原定的出厂交付日期,致使“俾斯麦”号战列舰在刚服役时只安装了上层建筑第一层甲板上前部的4座SK-C/33型高炮。海上训练结束后,“俾斯麦”号返回码头时又安装了4座更新型的SK-C/37型高炮于上层建筑第一层甲板的后部原本计划等另外4座SK-C/37型高炮到货后,再替换下先前已安装于前部的4座SK-C/33型高炮,但出海后才发现SK-C/33型与SK-C/37型专用的火控系统互不匹配,致使在其后的“莱茵演习”行动中,无法对来袭的英机形成有效的中、近程对空火力。

在近程防空火力上,“俾斯麦”号主要由大量的37毫米及20毫米高炮构成。其中SK-C/30型83倍口径37毫米双联装高炮于1930年设计,1934年研制成功并定型生产,每座炮塔重3670千克,单门火炮全重243千克,总长度82米,身管内刻有16条长2554毫米的膛线,身管长3071米。膛室容积为05升,发射药为0365千克,最大发射膛压为2950千克/平方厘米。射弹重0745千克,长度为1620毫米,最大射速为80发/分,最大有效射高8500米/45度,最大仰角时射程为6750米/80度,炮口初速为1000米/秒。俯仰角度为-10~+80度,炮塔水平旋转速率为4度/秒,高低俯仰速率为3度/秒,全舰共备弹32000发,8座SK-C/30型37毫米高炮均装备有各自独立的射击炮瞄设备。

20毫米高炮分为两座MG-C/38型20毫米四联装和12座MG-C/30型20毫米单管装两种,其中MG-C/30型于1930年设计,1934年研制成功并定型生产,每座炮全重420千克,单门炮重64千克,总长度22525米,身管内刻有8条长720毫米的膛线,身管长为13米(即65倍口径),膛室容积为0048升,发射药为012千克,最大发射膛压为2800千克/平方厘米,射弹重0132千克,长785厘米,最大射速为200~280发/分,最大有效射高为4900米/45度,最大仰角时射高为3700米/85度,炮口初速为900米/秒。火炮高低俯仰角为-11~+85度,火炮的水平及俯仰方向的旋转均由人工手动操作完成。MG-C/38型与MG-C/30型相比,将单管装改为了四联装,致使火炮增重至2150千克,射速提高到480发/分,俯仰角度改为-10~49度,其它技术参数均与MG-C/30型基本相同。

由于20毫米高炮大多为单管装,仅有两座为四联装,且两型高炮均采用的是弹夹式供弹,在实际的使用过程中MG-C/30型与MG-C38型的射速仅分别为120发/分和220发/分,射击时还必须由专人在炮位左侧用手持式小型光学测距仪为炮手提供目标参数,炮手用常规准星瞄具对目标瞄准,实战中难以形成足够密度的近程对空火力。

火控系统

“俾斯麦”号战列舰在上层建筑的前部和后部各布置有一座混装有FUMO 23型雷达和一部基线长105米的光学测距仪的火控塔,另有一座布置在舰桥桅塔顶端的火控塔混装的是一座FUMO 23型雷达和一部基线长7米的光学测距仪。其FUMO 23型雷达设有一具长为4米,宽为2米的矩形网状雷达天线,工作频率为368兆赫,脉冲频率为500赫兹,波长为815厘米,功率9千瓦,有效探测距离为25千米(即135海里)。鉴于20世纪40年代初的舰载雷达技术刚刚出现不久,其工作效能并不高,甚至工作时的稳定性也十分欠佳,在海战中的对舰炮战仍然主要依靠使用光学测距仪来提供目标参数,舰载雷达一般仅用于对海上目标的搜索和夜间炮战为主炮指示射击目标之用。

此外,除A号主炮塔上的光学测距仪在1941年初被拆除以外,其它各主炮均装有一座基线长105米的光学测距仪,以备在舰桥上的火控塔战时受损后,各主炮依然能够独立进行炮瞄射击,中部两舷的两座150毫米副炮也各自装备有一具基线长65米的光学策测距仪。布置在上层建筑第一层甲板的4座SK-C/37型105毫米高炮也由4座基线长4米的SL-8光学测距仪提供目标参数,并由半球形的装甲防护罩保护,另外在C号主炮塔的后方还布置有一座基线长5米的光学测距仪。

虽然德国人在精密光学仪器上的优长使得其所使用的光学测距仪能够获得非常高的测距精度,但在实战中战舰往往需要先以校射模式进行半齐射,再依照数次齐射的弹着点及目标的相对航速、航向和相对距离来及时校正主炮的炮射参数,所以其主炮的首次齐射或半齐射的命中概率极低,即使是在射击过程中不断依照上次弹着点校正主炮的炮射参数,但其是否能命中目标,更多的情况下还是在凭借着运气。

装甲防护

“俾斯麦”号战列舰的设计装甲总重量达17256吨,占的全舰总重量的比例达40%。其舰体的水平防护由两层水平装甲板组成,即覆盖全舰的50毫米厚上甲板和80~120毫米厚的第三层甲板,其中第三层甲板的主甲板,从舰艏的A号主炮塔的前部一直延伸至D号主炮塔的后部,总长度达170米,主要用以保护各主、副炮塔下的弹药舱及轮机舱等核心部位免受打击。

主炮塔的外形呈一个多面体,炮塔装甲的正面厚度为360毫米,侧面厚度为220毫米,后部厚度为320毫米,顶部厚度为130毫米,其甲板上的B、C号主炮塔座圈的装甲厚度为340毫米,其余两座主炮塔甲板下的炮塔座圈的装甲厚度均为220毫米。副炮的装甲防护水平很弱,其装甲的正面厚度为100毫米,炮塔座圈厚度为80毫米,侧面厚度为80毫米,顶部厚度为80毫米,甲板下炮塔座圈的厚度为20毫米,其中布置在前部和后部的副炮塔后部的装甲厚度为140毫米,中部副炮塔的后部装甲厚度为80毫米。

舷侧的装甲防护以主炮塔的弹药舱和舯部的轮机舱的装甲最厚,达320毫米,形成长度达170米的主装甲带的装甲厚度越靠近舰体的艏、艉处,厚度就越薄,其舰艏与舰艉区域的装甲厚度仅分60毫米和80毫米。此外,舷侧主装甲带的下方还设有由两层防雷壁与一层装甲壁组成的防雷击系统,足可抵御250千克装药量的鱼雷或磁性水雷的攻击。其中最内层装甲壁的厚度为45毫米,与水平方向主装甲垂直相接,形成一个盒形装甲区域,外部的两层防雷壁各厚170毫米,其间的隔舱内填充有燃油或水以作为该舰被鱼雷击中后的爆炸缓冲区之用。

舰上指挥塔顶部的装甲厚度为220毫米,周边部分装甲厚度为350毫米,其下方包含在上层建筑之内的垂直通道由70毫米的装甲予以保护。此外,在各主、副炮的测距仪及雷达火控塔等指挥部件均有一定厚度的装甲进行保护,甚至就连舰上烟囱两侧的探照灯他、都有专门的半球形装甲防护罩。

动力系统

俾斯麦级战列舰在设计之初便要求其推进装置的功率必须要尽可能的大,以便使战舰能够获得30节左右的高航速。为此,在位于俾斯麦级舰体舯部的6个锅炉舱内共布置了12台瓦格纳高温、高压锅炉,其工作压力为35千克/平方厘米,工作温度为475℃,每个锅炉舱内各安装有两台,并以一前一后纵向布置于主机舱的前面,6个锅炉舱以每3个舱并列成一排,前后共分为两排,其间有隔舱相分隔。12台高温、高压锅炉由4条主烟道集中从舰体舯部的大型独立烟囱排出废烟。

共有3个呈倒品字形布置的主机舱,位于锅炉舱的后方,前面两个并排布置的主机舱同后面单独布置于中轴线上的主机舱之间有隔舱分隔。每个主机舱各装备有一台布隆•富斯蒸汽轮机其主机的最大单机输出功率为45400马力,3台主机的总输出功率达136200马力。3台主机均配备有独立的减速齿轮组,每台蒸汽轮机各驱动一根传动主轴,每根主轴上各有一具直径47米的螺旋桨,3轴推进,其后为两具大小为1163平方米,平行相距242米的方向舵。

电力系统由14台发电机所组成,为全舰的各系统提供电力,总发电量为7910千瓦,电流为220伏的交流电。其中8台500千瓦柴油发电机布置在后主机舱两侧的2个机舱内,每个机舱各安装有4台,分成两排,每排两台。另有5台690千瓦的涡轮发电机和一台460千瓦的涡轮发电机分别布置在前排锅炉舱的前面两侧的2个机舱内,其中一个为混装有两台690千瓦和一台460千瓦的涡轮发电机,每个机舱平行布置着3台涡轮发电机,两个机舱之间也有隔舱相隔开。

舰载机

在“俾斯麦”号主桅下方的1号机库及烟囱两才侧的2、3号机库内分别存放有4加阿拉道(Arado)Ar-196型水上飞机,降落在水上,再由舰体舯部甲板两舷上的大型起重机吊起回收,再将Ar-196的机翼折叠后,便存入机库之中。其中1号机库存放有2架,2、3号机库各一架。

Ar-196型水上飞机主要是用于取代老式的He-160型水上飞机,广泛配属于德国海军的大型战舰之上,于1938年首飞,1939年8月定型服役,全重2990千克,最大起飞重量3730千克,机身长为11米,翼展124米,机身高44米,装备有一台最大输出功率为960马力的宝马(BMW)星型空冷发动机,最大飞行时速310千米/小时(4000米高度),最大升限为7020米,最大航程为1070千米。装备有2门MG-FF型20毫米航空机炮,一挺MG-17型792毫米机枪,2挺MG-15型15毫米机枪,并可在翼下挂载两枚50公斤重航空炸弹,机组乘员2人。该机主要用以侦察、校正和联络之用。

辅助设备

扫雷具

为了对付来自于水雷封锁的威胁,“俾斯麦”号在两舷共装备了6具扫雷具,这些扫雷具,从外形上看就如同一架小飞机一样,使用时扫雷具吊放入水中,在展开其水翼后,钢缆将拖曳其前行,一遇锚雷便利用扫雷具上的割刀将系留锚雷的钢索割断,待锚雷浮出水面以后,再用舰上的小口径火炮将其击爆。

探照灯

全舰共装备有8座探照灯,其中7座的直径为15米,7座探照灯分别布置在指挥塔中部、烟囱前部和后部的两侧以及主桅后方的平台之上。其探照灯除平时用于导航、信号联络外,还可用来在夜战中为火炮指示目标。

起重机

布置在舰体的舯部第一层甲板之上的两部12吨级大型起重机,除可用来回收降落在水上的Ar-196县水上飞机之外,还可在该舰进行补给作业时,吊装诸如弹药、食品等物资之用。

锚、链

为了能够便于该舰的泊驻作业,在“俾斯麦”号上共布置了4个重达9500千克的铁锚,用直径72毫米的铁链环连接,其中3个铁锚布置在舰首的前方和左右两舷,另一个布置于舰艉的左舷一侧。

小艇

“俾斯麦”号建成之时,舰上共配备有各种交通艇、联络艇、工作艇及舢板共记18艘。

建造

1935年11月16日,德国政府同“俾斯麦”号的承建商布隆•沃斯造船公司在汉堡签属了建造合同,建造编号BV509。1936年7月1日,在位于汉堡的布隆•沃斯造船厂的9号船台上开始铺设首根龙骨,“俾斯麦”号的建造工作正式开始。舰体的建造工作于1938年9月以前完成,并开始将已建成的舰体移至下水滑道上,准备下水的相关事宜。

1939年2月14日星期二(情人节),在阿道夫•希特勒及上千名群众、军政要员和船厂工人的出席下举行了隆重而盛大的下水典礼,并由特意邀请而来的主礼嘉宾——德国前首相奥托•冯•俾斯麦的孙女将她祖父的名字命名给这艘新建成的战舰,在片刻之后的13:30分,“俾斯麦”号缓缓滑入水中,顺利下水。成为德国海军历史上第四艘以俾斯麦之名命名的战舰,也是“俾斯麦”号的承建商布隆•沃斯造船厂所建成的最后一艘战列舰。虽然新型的H级战列舰已于1939年7月15日开工建造,但最终却并未建成,而是于1941年8月29日停工后被解体。

下水之后的“俾斯麦”号停泊在船厂的舾装码头上进行诸如锅炉、舰桥和主装甲带的舾装工作,与此同时,德国人还将建造中的“俾斯麦”号的舰艏替换成了更适合于北海和北大西洋恶劣海况的大西洋型舰艏。1939年9月1日,德军侵入波兰境内,英、法对德宣战,但二战的爆发和随后而来的寒冷冬季却丝毫未影响到“俾斯麦”号的预定建造速度。

1940年4月,“俾斯麦”号迎来了首批舰员的登舰,虽然此时的“俾斯麦”号仍未完成,但这些首批登舰的舰员们已经在该舰的首任也是唯一一任舰长厄恩斯特•林德曼的指挥下开始了其第一阶段的训练任务,以便能够更早的熟悉诸如锅炉、涡轮机机组、舰桥等舰上已经安装好的设备。6月23日,“俾斯麦”号开始进入V-6号浮式干船坞,以便进行3个推进用螺旋桨和电磁防水雷系统的安装,全舰也相应的被重新忧戚了一番。7月14日,“俾斯麦”号离开浮式干船坞后,便一直停泊在船厂的舾装码头上,直到几天后的7月21日,“俾斯麦”号开始了其首次的测试工作,而此时的舰员人数已经增加至1962人,其中军官103人。在经过了18个月的舾装工作后,“俾斯麦”号终于在1940年8月24日星期六,这个多云的日子里,在舰长林德曼上校的主持下举行了该舰的入役典礼,在德国的国歌声中,纳粹德国的国旗在后甲板的尾旗杆上缓缓升起,标志着“俾斯麦”号战列舰正式加入德国海军的现役编制之中。

训练、海试

在“俾斯麦”号服役之后,舰上的舰员们被分为12个分队,其中1~4分队负责主副炮,5、6分队负责高炮,7分队负责后勤,8分队负责军械、缆帆作业,9分队负责通信,10~12分队为轮机人员,进一步的训练也随即展开,这包括了战舰的导航、防空、损管和作战等训练。1940年9月15日,“俾斯麦”号首次离开汉堡前往波罗的海沿岸的戈腾哈芬(今波兰格丁尼亚),准备进行海试。由于波罗的海沿岸的东普鲁士地区位于英国皇家空军轰炸机的航程以外,加上德军在通往波罗的海的航路上均布置有水雷,使得波罗的海成为了德国海军在二战期间最主要的海上训练和海试基地。

9月16日,“俾斯麦”号在拖轮的协助下驶入连通北海和波罗的海的基尔运河,在9月28“俾斯麦”号离开基尔并在13艘扫雷舰的护航下前往吕根岛,此后便单独驶往目的地戈腾哈芬。

在驶抵戈腾哈芬后两个月的时间里,“俾斯麦”号在但泽海域进行了多次航海测试工作,在10月23日的全速测试中测得了主机最大输出功率150170马力和3012节的最高航速。12月5日,“俾斯麦”号经由波罗的海返回汉堡,停泊在布隆•沃斯造船厂的舾装码头上进行最后的设备调整。在此期间,由于担心战舰在高速航行时舰艏的上浪会对“A”主炮塔的105米基线测距仪的使用造成影响而被拆除。为了提

“俾斯麦”级战列舰的各个性能数据基本上和设计计划差不多,只是排水量大了很多。舰长2505米,水线长2415米,舰宽36米,最大吃水999米,标准排水量为:“俾斯麦”号41700吨,“提尔皮茨”号42900吨。满载排水量为:“俾斯麦”号49400吨,“提尔皮茨”号52900吨。最高航速:“俾斯麦”号3012节,“提尔皮茨”号308节。最大续航力:“俾斯麦”号8500海里,“提尔皮茨”号9125海里。 “俾斯麦”级战列舰吸取了“沙恩霍斯特”级战列巡洋舰的经验,特别是制造工艺上,船体结构的焊接量有很大的增加,达到了95%。“沙恩霍斯特”级战列巡洋舰适航性差的问题在“俾斯麦”级上完全消除,并且有了很多改进,如非常适合在大西洋恶劣海况使用的大西洋舰艏和至今一直非常广泛使用的外张干舷等。

主炮

早在1934年《英德海军协定》签订以前,德国人就已经开始对安装在“俾斯麦”号上的SK-C/34型380毫米主炮的设计和试验工作。德国海军在最初的主炮口径选择上考虑过两种方案,一是采用406毫米主炮的方案,二是采用380毫米的主炮设计。虽然选择406毫米主炮的设计方案,无论在弹丸重量、火炮射程和威力上都将远胜于380毫米主炮。

但有鉴于当时德国从来没有制造过如此大口径的主炮,缺乏在经验和技术上的支持,存在着一定的风险。况且,如果真的采用了406毫米主炮的方案进行设计,不仅需要对原有设计方案进行重大修改和调整,更会影响到整舰的建造与服役时间,建造所需的费用也将大大超出原有预算。经过一番考虑后,德国决定“俾斯麦”级战列舰采用380毫米的主炮。 “俾斯麦”级战列舰的4座主炮塔,在前甲板和后甲板分别各布置两座,从前向后依次命名为安东(Anton)、布鲁诺(Bruno)、凯撒(Caesar)和多拉(Dora),四座主炮塔的编号分别用各自命名的第一个字母编为A、B、C、D。

“俾斯麦”级战列舰装备的主炮为8门SK-C/34型52倍口径(按照英国标准为47倍口径)380毫米炮,该炮由德国克虏伯公司于1934年设计,1939年研制成功并定型生产。每座主炮塔重约1100吨,单门火炮全重110700千克,总长度1963米。“俾斯麦”级的身管制造采用了与“希佩尔海军上将”级重巡洋舰相同的三节套管结构工艺,以保证火炮的制造精度,但成本过于高昂,且制造工艺复杂,不便与身管的大批量生产。

身管内刻有90条深45毫米,宽776毫米的膛线,膛线长度为15982毫米,身管长1786米,膛室容积为319升,发射药为212千克,最大发射膛压为3200千克/平方厘米,身管寿命约为180~210发。可发射重800千克的被冒穿甲弹和高爆弹,穿甲弹和高爆弹的长度均为1672米,最大射速为23~3发/分,最大射程为36520米/30度,炮口初速为820米/秒,在射程为35000米的距离上可击穿170毫米的德制水平表面硬化装甲。主炮俯仰角度为-55~+30度,炮塔水平旋转速率为5度/秒,高低俯仰速率为6度/秒,射击时的火炮后座距离为105米。装填角度为+25度,装填机构采用的是半自动装填方式装填。

“俾斯麦”级战列舰的主炮设计非常成功,性能非常优秀,不仅威力大,射速高,而且火力覆盖面积大,使用范围非常广,除了用作常规的平射射击外,还可以以高仰角对空射击。“提尔皮茨”号在挪威抵抗英机轰炸时就这样使用过主炮。

SK-C/34型52倍口径(按照英国标准为47倍口径)380毫米炮发射800千克穿甲弹的设计性能参数(部分)

火炮发射仰角/度 22 49 81 121 168 224 291 30

射程/米 5000、10000、15000、20000、25000、30000、35000、36520

炮弹飞行速度/米·秒-1 727、641、568、511、473、457、462 暂缺

侵入目标入射角/度 24 58 104 164 238 319 403 暂缺

SK-C/34型47倍口径(1786米)381毫米炮发射800千克穿甲弹威力参数(部分)

射击距离/米 0 4572、10000、18000、20000、21000、22000、25000、27000

穿甲厚度/毫米 742、616、510、419、364、350、333、308、304美国人用标准装甲经验公式值对自己装甲的推算。

射击距离/米10000、20000、21000、25000

炮弹飞行速度/米·秒-1 641、511、496、476

侵入目标入射角/度 58、164、176、238

穿甲厚度/毫米 510、364、350、308克虏伯公司用SK C/34 381毫米炮对KCn/A实测。

副炮

“俾斯麦”级装备有6座SK-C/28型55倍口径150毫米双联装副炮,该炮于1928年设计,1934年研制成功并定型生产。单门火炮全重9080千克,身管内刻有44条深175毫米,宽614毫米的膛线,膛线长度为6588毫米,身管长为3000千克/平方厘米,同样可发射穿甲弹和高爆弹,其中穿甲弹弹重453千克,长度为679厘米,高爆弹重41千克,长度为655厘米,最大射速6~8发/分,最大有效射程23000米/40度,炮口初速为875米/秒。副炮俯仰角度为-10~+40度,炮塔水平旋转速率为8度/秒,高低俯仰速率为9度/秒,射击时的火炮后座距离为37厘米,装填角度为+25度,全舰备弹18000发,每座炮塔各300发。

6座150毫米双联装副炮均布置在上层甲板的同一平面上,每舷各3座,其中布置在前部和中部各两座副炮的射界为150度,布置在后部的副炮射界为135度,6座副炮均可直接向其正前方射击。6座炮塔的重量不一,其中布置在前部的两座炮塔各重1316吨,中部的两座炮塔因各安装有一座光学测距仪而各重1503吨,后部的两座炮塔最轻,各重977吨。该炮并不兼具防空能力,主要用以对付诸如驱逐舰这类装甲防护较弱的中、轻型水面舰艇。

高射炮

“俾斯麦”级战列舰装备有8座双联105毫米高射炮、8座双联37毫米高射炮和20门20毫米高射炮。

“俾斯麦”级战列舰装备有SK-C/33型和SK-C/37型65倍口径105毫米双联装高炮各4座,每舷各4座。SK-C/33型与SK-C/37型高炮均由德国莱茵金属公司生产,其中SK-C/33型于1933年设计,1935年研制成功并定型生产,每座炮塔重26425吨,单门火炮全重为4560千克,总长度684米,身管内刻有36条长5531毫米的膛线,身管长6825米。膛室容积为731升,发射药为605千克,最大发射膛压为2850千克/平方厘米,可发射重151千克,长1164厘米的专用防空高爆炮弹,最大射速为16~18发/分,最大有效射高为17700米/45度,最大仰角时射高为12500米/85度,炮口初速为900米/秒。火炮俯仰角度为-8~+85度,炮塔水平旋转速率为8度/秒,高低俯仰速率为10度/秒,4座SK-C/33型高炮均装备有各自独立的炮瞄设备。而SK-C/37型则于1937年设计,1939年研制成功并定型生产,其主要参数与SK-C/33型基本相同,只是每座炮塔比SK-C/33型要略轻一些,炮塔水平旋转速率提高为85度/秒,高低俯仰速率为12度/秒。射击时需由舰上的4座专用光学测距仪提供目标参数,全舰备弹6720发,每座炮塔840发。

有鉴于SK-C/33型及SK-C/37型105毫米高炮的身管制造也均采用了复杂的双节套管结构工艺,延误了原定的出厂交付日期,致使“俾斯麦”号战列舰在刚服役时只安装了上层建筑第一层甲板上前部的4座SK-C/33型高炮。海上训练结束后,“俾斯麦”号返回码头时又安装了4座更新型的SK-C/37型高炮于上层建筑第一层甲板的后部原本计划等另外4座SK-C/37型高炮到货后,再替换下先前已安装于前部的4座SK-C/33型高炮,但出海后才发现SK-C/33型与SK-C/37型专用的火控系统互不匹配,致使在其后的“莱茵演习”行动中,无法对来袭的英机形成有效的中、近程对空火力。

在近程防空火力上,“俾斯麦”号主要由大量的37毫米及20毫米高炮构成。其中SK-C/30型83倍口径37毫米双联装高炮于1930年设计,1934年研制成功并定型生产,每座炮塔重3670千克,单门火炮全重243千克,总长度82米,身管内刻有16条长2554毫米的膛线,身管长3071米。膛室容积为05升,发射药为0365千克,最大发射膛压为2950千克/平方厘米。射弹重0745千克,长度为1620毫米,最大射速为80发/分,最大有效射高8500米/45度,最大仰角时射程为6750米/80度,炮口初速为1000米/秒。俯仰角度为-10~+80度,炮塔水平旋转速率为4度/秒,高低俯仰速率为3度/秒,全舰共备弹32000发,8座SK-C/30型37毫米高炮均装备有各自独立的射击炮瞄设备。实际上,德国的37毫米高射炮根本不可能达到最大射速80发/分,因为采用人工装填方式的问题,37毫米高炮是二战最差的高射炮之一。

20毫米高炮分为两座MG-C/38型20毫米四联装和12座MG-C/30型20毫米单管装两种,其中MG-C/30型于1930年设计,1934年研制成功并定型生产,每座炮全重420千克,单门炮重64千克,总长度22525米,身管内刻有8条长720毫米的膛线,身管长为13米(即65倍口径),膛室容积为0048升,发射药为012千克,最大发射膛压为2800千克/平方厘米,射弹重0132千克,长785厘米,最大射速为200~280发/分,最大有效射高为4900米/45度,最大仰角时射高为3700米/85度,炮口初速为900米/秒。火炮高低俯仰角为-11~+85度,火炮的水平及俯仰方向的旋转均由人工手动操作完成。MG-C/38型与MG-C/30型相比,将单管装改为了四联装,致使火炮增重至2150千克,射速提高到480发/分,俯仰角度改为-10~49度,其它技术参数均与MG-C/30型基本相同。

由于20毫米高炮大多为单管装,仅有两座为四联装,且两型高炮均采用的是弹夹式供弹,在实际的使用过程中MG-C/30型与MG-C38型的射速仅分别为120发/分和220发/分,射击时还必须由专人在炮位左侧用手持式小型光学测距仪为炮手提供目标参数,炮手用常规准星瞄具对目标瞄准,实战中难以形成足够密度的近程对空火力。

装甲防护系统

防护和生存力一直都是德国军舰最显著的性能强项,这与德国海军的设计思想有关,从前无畏时代起,德国军舰一直就是世界上最重视防御的军舰。德国人不仅在技术上强化了军舰的防御,也在设计取舍上加大了军舰防御的优先性:“俾斯麦”级是二战时代建成战列舰中装甲比重最大的战列舰,不含炮塔旋转部分的装甲总重量就达到了标准排水量的4185%;也是二战时代防护尺度最大的战列舰,主装甲堡侧壁覆盖了70%的水线长度和全部的干舷高度。

“俾斯麦”级战列舰主要使用了以下几种钢材建造:

St42(Schiffbaustahl 42)造船钢,于1931年在传统的二号造船钢基础上改进而成,用于建造俾斯麦的上层建筑和非装甲舱段舰体结构。其硬度为140-160HB,抗拉强度为420-510MPa,屈服强度为340-360MPa,弹性形变范围21%,性能不低于其它国家的同类产品。

St52(Schiffbaustahl 52)造船钢,于1935年在著名的三号造船钢基础上改进而成,用于建造俾斯麦的装甲舱段和轻装甲舱段舰体结构。其硬度为160-190HB,抗拉强度为520-640MPa,屈服强度为360-380MPa,弹性形变范围21%,同时具有极佳的韧性和延展性,具有很强的抗断裂和撕裂能力。虽然其较软的材质抵抗动能穿甲弹的能力较弱,但它拥有优秀的构造强度保持能力和优良的鱼雷爆破冲击波抵抗能力。

Ww(Krupp Wotan Weich Homogeneous armour steel)高弹性匀质钢,于1925年在传统的KNC装甲基础上发明,用于建造俾斯麦的主防雷装甲。其硬度为190-220HB,抗拉强度为650-750MPa,屈服强度为380-400MPa,弹性形变范围25%。

Wh(Krupp Wotan Hart Homogeneous armour steel)高强度匀质钢,于1925年在传统的KNC装甲基础上发明,其中的高性能部分(Wotan Starrheit,简称Wsh)被用于建造“俾斯麦”级的所有水平装甲和首尾水线装甲带以及内部纵横向装甲。其硬度高达250-280HB,抗拉强度为850-950MPa,屈服强度为500-550MPa,弹性形变范围20%。

KCn/A(Krupp cementite new type A)表面渗碳硬化钢,于1928年在传统的KC装甲基础上发展而成,用于建造俾斯麦的舷侧、炮座、炮塔立面、指挥塔立面装甲。其表面硬度高达670-700HB,递减渗碳深度为40-50%,基材硬度为230-240HB,基材抗拉强度为750-800MPa,基材屈服强度为550-600MPa。

1、坚固的舰体构造和细密的舱室分割

在纵向俯视图上,“俾斯麦”级的舰体为纺锤形,中间最粗,向首尾两端以抛物线形逐渐变细,这种形态的舰体很容易获得可靠的构造强度。在横向上,由于布置了厚重的上部舷侧装甲和上装甲甲板,该舰在上甲板下方就布置了第一主构造梁,并在第二甲板下方布置了第二主构造梁,使该舰拥有双层舰体上部主构造梁,而不是象其它多数国家战舰那样在主水平装甲下方布置单一的主构造梁,这样做的好处是充分利用了15米高36米宽的全部舰体横截面的尺度布置主承力结构,最大限度的增加了承力结构的几何力矩从而提高了强度。

“俾斯麦”级全舰分为22个主水密隔舱段,从第3到第19舱段为主装甲堡区域,舰体主装甲堡长达171米,最宽处36米,保护了70%的水线长度和85%-90%的浮力以及储备浮力空间,这是任何同时期战舰也无法做到的大手笔。在巨大的舰体主装甲堡内,德国人又在纵向和横向上安装了多重装甲和水密隔板。以锅炉舱段下部舰体为例,除了两舷各拥有宽度为55米的防雷隔离舱外,内部又被分成三个并排布置的水密隔舱,每个隔舱内安放着两台高压重油锅炉,俾斯麦拥有两个这样的舱段,它们中间被一个副炮弹药库舱段隔开。在这样的布置下,一个锅炉舱进水,战舰只会损失六分之一的动力,来自一个舷侧方向的攻击最多只能让战舰的两个锅炉舱进水,损失三分之一的动力。此外,与其它国家的战列舰不同,依托大量的横向、纵向和水平装甲,该舰在主水平装甲以上的上部舰体内也设置了大量的水密隔舱。加上下部舰体,俾斯麦全舰被细分成数千个大小不一的独立水密隔舱,就像锅炉一样,该舰每个重要的子系统都被以尽可能降低风险的原理分隔放置在这些隔舱内。

2、结构简单但工艺优异的防雷结构

“俾斯麦”级的防雷隔离舱在舯部深55米,向舰尾方向逐渐减至5米,向舰首方向逐渐减至45米,由22mmSt52船壳—空气舱—18mmSt52油舱壁—油舱—45mmWw主防雷装甲板—8mmSt52防水背板构成,为两舱四层钢板的布置结构。该结构在动力舱段的主防雷装甲后面没有设置完整的过滤舱,而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还算严密以外,与同时期其它国家战列舰的防雷结构相比较,“俾斯麦”级的结构要简单得多,设计要求也不高,仅仅为抵御250kgTNT的水下爆破。但德国海军在1944年11月12日关于“提尔皮茨”号损失的222-45号技术报告上指出它的TDS(Torpedo defence system)能抵挡300kg德国hexanite烈性炸药的水下爆破,可以认为这是该级战舰防雷系统的实际准确防御水平。

3、全面防护

“俾斯麦”级的主装甲堡长达171米,覆盖了70%的水线长度,装甲堡侧壁从水线以下3米多处一直延伸到上装甲甲板,在整个舷侧立面的常见被弹部分都布置了厚重的装甲,是二战时代装甲覆盖面积比例最大的战列舰。其上部26米高的舷侧装甲带由厚达145mm的KCn/A钢板制成,与50-80mm的Wh上装甲甲板一同保护着整个位于主装甲堡上部舰体内的水兵生活和工作区,可以抵挡重巡洋舰的炮弹和中小型航空炸弹。中部是位于水线上下的320mm厚52米高的KCn/A钢板制成的主舷侧装甲带,可以在正常交战距离以材料质量优势独自抵挡大部分战列舰的炮弹。在吃水98-104米的作战常态重量时,俾斯麦高52米的320mm主舷侧装甲有26-32米被埋在了水下,在320mm主舷侧装甲的下方,还有一道高06米均厚为170mm的主舷侧装甲下沿,使该舰拥有深入水下达32-38米的舷侧装甲,为其提供了良好的水下防弹能力,炮弹必须在水中穿行很长的距离击中更低的位置才能穿过22mm船壳进入防雷吞噬舱和吸收舱,这时后面的45mm主防雷装甲板已经能够独立抵挡。

在舰体主装甲堡内,位于主装甲甲板以下的空间,设置有8道由厚达20-60mm的Wh钢板制成的横向内部装甲墙,它们也被同时作为舰体横向构造的一部分。8道装甲墙和首尾两端320mm厚的横向外装甲墙共同把“俾斯麦”级主装甲堡内的下部空间分为9个重装甲舱段,其中的6道,以30mm的厚度又延伸到上部舰体内,和首尾两端100-220mm厚的横向外装甲墙共同把主装甲堡内的上部空间也分为7个重装甲舱段。即使有战列舰炮弹或穿甲炸弹射入其中爆炸,弹片受到这些内部装甲的阻挡,破坏力也会被控制在较小范围的空间内。

“俾斯麦”级的舰首和舰尾水线部位分别设有60mm和80mmWh钢制成的轻装甲带,它们会在舰体受到攻击的时候尽可能的保持水线外形的整体完整度,防止舰体表面发生大面积破碎。二战时代的大部分新式战列舰都采用了重点防护的方式布置装甲,这是因为它们的装甲比重小,没有多余的装甲去防护非致命部位,保证重点部位不被击穿,是首要的。

4、全面防护中的重点防护——穹甲

二战时代大部分国家的军舰主水平装甲都是布置在主舷侧装甲上方,与主舷侧装甲上方边缘连接,构成一个密闭的装甲盒。德国军舰则不同,它采用了一种叫做装甲堡延展结构的装甲布置方式,其主水平装甲位于主舷侧装甲一半左右位置的腰部,在靠近舷侧的两端以小俯角向下倾斜,延伸到主舷侧装甲的下部位置与之相连,这样的主水平装甲在横截面上看起来是一个穹顶,被称为“穹甲”。穹甲顶部位于水线附近,在军舰处于作战常态排水量的时候则往往位于水线以下,这就使得敌方炮弹在穿过其主装甲带后还必须再穿过这层装甲,才能进入德舰的机舱、锅炉舱、副炮弹药库和主炮弹药库。虽然穹甲布置缩小了舰体核心舱室的空间高度,但这个问题往往在德舰舰体主装甲区的巨大长度上得到弥补,从而保持了德舰核心舱室的空间总量。以俾斯麦战舰为例,其380mm主炮弹药库,锅炉、轮机、150mm副炮弹药库,105mm、37mm和20mm高炮弹药库,锅炉舱到轮机舱的蒸汽输送管道,贯穿全舰的纵向主电缆通道全部布置在了80-120mm穹甲的下方,容纳的设施比大部分其它国家的新式战列舰还多。

5、双层装甲甲板

德国战列舰没有设置两用甲板,它们采用了装甲甲板和水密甲板分离的传统布局。“俾斯麦”级位于机舱和弹药库上方的舰体水平结构有三层,第一层由柚木+50-80mmWh装甲甲板+10mmSt52水密甲板+第一主构造梁构成;第二层由20mmSt52水密甲板+第二主构造梁构成;第三层是该舰上为数不多的创新设计之一,在80-100mmWh水平部分装甲甲板的下方是20mm的St52水密甲板,再往下并没有像其它国家的战列舰一样布置主构造梁而是水平铺设了一层构造加强筋,与装甲甲板一同被作为舰体构造的组成部分,承担和主构造梁相近的作用。此外,构造加强筋由弹性形变范围刚好比Wh钢略大一点的St52钢制成,可以随着Wh装甲板一同发生弹性形变并分担抗拉峰值受力,再随着Wh装甲板一同恢复,以此提高整个水平结构的防御力,加强这道保护动力舱和弹药库的最后防线。

6、火力、火控和指挥系统防护

“俾斯麦”级前后各有两座双联装的380mm主炮塔,其炮座露天部分是厚340mm的KCn/A装甲钢圈,炮座在舰内从80mm上装甲甲板到100mm主装甲甲板之间的部分是厚220mm的KCn/A装甲钢圈,外围侧面受到145mm-320mm的KCn/A舷侧装甲和30mmWh内部纵向装甲的保护,总厚度为395-570mm,防御能力高于炮座露天部分。

“俾斯麦”级主炮塔旋转部分的正面是360mm的KCn/A装甲板,侧面是220mm的KCn/A装甲板,背部是320mm的KCn/A装甲板,顶部由130-180mm的Wh装甲板覆盖。背部厚达320mm的KCn/A装甲是为了对付数量众多的敌舰从左右舷侧方向夹攻而设置的,

“俾斯麦”级的副炮塔拥有100mmKCn/A的旋转部分正面装甲和80mmKCn/A的露天炮座装甲,能抵挡轻巡洋舰级别的炮弹。第一甲板下面是145mmKCn/A的上部舷侧装甲带+30mm的Wh装甲座圈,能抵挡重巡洋舰级别的炮弹。弹药输送通道通过其中一直延伸到穹甲,副炮弹药库位于穹甲下方独立舱段的中央部分内,受到320mm主舷侧装甲和100-120mm穹甲的保护。与主火力系统的防护情况相似,俾斯麦副炮火力系统的防护也是由上至下逐次递增。大部分其它国家的新式战列舰副炮塔都不具有俾斯麦这样厚重的装甲,这也是德舰全面防护的一个体现。

“俾斯麦”级的指挥塔立面装甲为350mmKCn/A,顶部220mmWh,底部70mmWh。同时德国战列舰指挥塔的防护空间大,可以容纳更多的指挥人员和设备。此外该舰在后部舰桥上还拥有一个立面装甲为150mmKCn/A的备用指挥塔,在主桅楼顶端还拥有一个立面装甲为60mmWh的装甲了望塔,是大部分其它国家的新式战列舰所没有的。该舰安置在三个装甲塔上方的三个主要探测和火控系统单元也安装有60-200mm不等的立面装甲,防护极为考究。

动力系统

“俾斯麦”级拥有12个高压瓦格纳锅炉,两两放置在6个水密隔舱内,蒸汽输送管道直接穿过同样位于穹甲下方的副炮弹药库舱段通向3个主机舱,每个主机舱内安放着1台涡轮蒸汽轮主机,每4台锅炉同时向1台涡轮蒸汽轮主机提供动力,主机为3台Blohm&Voss蒸汽轮机,单机最大输出功率为45400马力,3台总功率达136200马力。每一主机驱动一个螺旋桨,直径为47米。

此外在过渡舱内有蒸汽输送转换结构,在必要的情况下可以交叉提供动力。“俾斯麦”级的动力系统设计功率为138000马力,但实际稳定输出功率高达150170马力,极速输出功率更是高达163026马力,使得“俾斯麦”级战列舰拥有稳定很高的航速。

火控系统

“俾斯麦”级的主炮副炮射击指挥所在前后桅楼设有两处。前桅楼顶端安装有FuMO23型雷达和大型光学测距仪,FuMO23 雷达的矩形天线高2 米,宽4 米,工作频率为368兆赫,波长约为81 厘米,最大作用距离约为25 千米。这种雷达性能本来完全能够在天气恶劣的情况下搜索水面,但德国的雷达设计没有采用方位显示器(也就是所说的P型显示器),仅有距离显示器,方位依靠天线底座的同步感应器驱动机械方位显示盘指示,因此这种雷达在对多个目标和曲折的海岸探测时非常繁琐,方位雷达仅能针对单个的目标才具备清晰的目标舷角关系,因此这种雷达只能用作火控目标指示。81 厘米波长测量误差偏大,但能够满足战列舰在25千米距离上的齐射火控性能。德国海军也没有打算把这种雷达用在更复杂的探测场合,只是将天线与105米光学测距仪安装在一起仅仅用于火控。联合基座能够旋转360 度,从战舰最高点环视海面。FuMO23 雷达没有P型方位显示器的原因之一是德国纳粹高官们认为这种装置过于复杂和奢侈,这是“俾斯麦”号设计上的一个重要缺陷,利用P 型显示器至少能够了解更复杂的海面态势。

德国海军采用两个这种FuMO23雷达和105米测距仪转塔来进行两个主要射向的火控。在“俾斯麦”号后舰桥上,同样布置了1 部转塔,通常承担控制后部主副炮对第二个目标的射击指挥,或者在前桅楼雷达测距仪转塔被摧毁时,作为全舰火力的射击指挥备份。前桅楼柱型装甲结构一直向下伸延到装甲甲板下的火控解算舱。后部舰桥正下方的装甲带甲板同样设置了解算舱(所谓的解算舱实际是多炮塔的射击指挥仪舱)。德国的机电式射击指挥仪非常庞大和复杂,能够直接连接主炮塔控制机电气柜控制主炮塔,同时解算结果用机电刻度盘显示在相关指挥舱室。但是其精度和可靠性依旧非常高。除测距仪雷达转塔安装了105 米光学测距仪外,主炮炮塔也安装了独立的105 米测距仪,便于在指挥转塔失效后,继续按炮长电话口令进行测距和火控射击,但此时火控弹着散布要大很多。150 毫米副炮炮塔安装有独立的65 米光学测距仪,对空射击的火控站分别有4 处, 两处在主桅楼两侧,有球型防护罩,另两个沿舰体纵轴线布置在后上层建筑顶部,4 处对空火控站都装有45 米测距仪。按照“俾斯麦”级的防空武器配置,4 处火控站能够指挥对4 个目标的对空火力。105 毫米高炮有随动系统,可以分别与相应的火控站连接进行自动控制,而其他中小口径高炮则只能采用电话和人工操作。150 毫米副炮参与对空射击时由炮塔测距仪或前后雷达测距仪转塔进行火控,在同时发生交战的情况下,主副炮都无法腾出转塔进行对空火控。

火控和射击组织的原则是尽可能用尽量多的火炮齐射和尽可能快的发射速度,并用尽可能几率大的射击方式,而射击指挥仪则要在尽可能远的距离上发现目标和完成测距。首轮齐射组织非常重要,对修正具有决定性作用。在40年代炮瞄雷达出现前,主要依靠对齐射的弹着观察进行诸元修正。一旦确认准确的方位距离,则所有主炮将一同按准确诸元进行齐射。同时航海长也将采用机动,尽力保证这个较为准确的方位距离在至少两轮齐射内近似不变。

质量分配

舰体结构 11691吨

装甲 17450吨

武器装备 5973 吨

航空设备 83 吨

自卫武器 8 吨

普通装备 3694 吨

船员居住设备 86 吨

桅杆和索具 30 吨

弹药 15104 吨

自卫武器的弹药 25 吨

一般消耗品 1554 吨

人员和个人物品 2436 吨

预备物品 1942 吨

饮用水 1392 吨

设备用水 167 吨

锅炉用水 1875 吨

重油 3226 吨

柴油 965 吨

润滑油 80 吨

航空用油 17 吨

俾斯麦号战列舰(英文:KM Bismarck battleship[1] ),是德国在第二次世界大战前由汉斯·布洛姆造船厂建造的,以德国首相俾斯麦的名字命名的一艘王牌战列舰。

该舰始建于1936年7月,1939年2月下水,1940年8月建成服役,是当时吨位最大的战列舰也是第二次世界大战时德国所建造的最强的战舰。

武器装备

主炮

“俾斯麦”级战列舰装备的主炮为8门SK-C/34型52倍口径(按照英国标准为47倍口径)380毫米炮,该炮由德国克虏伯公司于1934年设计,1939年研制成功并定型生产。每座主炮塔重约1100吨,单门火炮全重110700千克,总长度1963米。“俾斯麦”级的身管制造采用了与“希佩尔海军上将”级重巡洋舰相同的三节套管结构工艺,以保证火炮的制造精度,但成本过于高昂,且制造工艺复杂,不便与身管的大批量生产。

身管内刻有90条深45毫米,宽776毫米的膛线,膛线长度为15982毫米,身管长1786米,膛室容积为319升,发射药为212千克,最大发射膛压为3200千克/平方厘米,身管寿命约为180~210发。可发射重800千克的被冒穿甲弹和高爆弹,穿甲弹和高爆弹的长度均为1672米,最大射速为23~3发/分,最大射程为36520米/30度,炮口初速为820米/秒,在射程为35000米的距离上可击穿170毫米的德制水平表面硬化装甲。主炮俯仰角度为-55~+30度,炮塔水平旋转速率为5度/秒,高低俯仰速率为6度/秒,射击时的火炮后座距离为105米。装填角度为+25度,装填机构采用的是半自动装填方式装填。

“俾斯麦”级战列舰的主炮设计非常成功,性能非常优秀,不仅威力大,射速高,而且火力覆盖面积大,使用范围非常广,除了用作常规的平射射击外,还可以以高仰角对空射击。“提尔皮茨”号在挪威抵抗英机轰炸时就这样使用过主炮。

副炮

“俾斯麦”级装备有6座SK-C/28型55倍口径150毫米双联装副炮,该炮于1928年设计,1934年研制成功并定型生产。单门火炮全重9080千克,身管内刻有44条深175毫米,宽614毫米的膛线,膛线长度为6588毫米,身管长为3000千克/平方厘米,同样可发射穿甲弹和高爆弹,其中穿甲弹弹重453千克,长度为679厘米,高爆弹重41千克,长度为655厘米,最大射速6~8发/分,最大有效射程23000米/40度,炮口初速为875米/秒。副炮俯仰角度为-10~+40度,炮塔水平旋转速率为8度/秒,高低俯仰速率为9度/秒,射击时的火炮后座距离为37厘米,装填角度为+25度,全舰备弹18000发,每座炮塔各300发。

6座150毫米双联装副炮均布置在上层甲板的同一平面上,每舷各3座,其中布置在前部和中部各两座副炮的射界为150度,布置在后部的副炮射界为135度,6座副炮均可直接向其正前方射击。6座炮塔的重量不一,其中布置在前部的两座炮塔各重1316吨,中部的两座炮塔因各安装有一座光学测距仪而各重1503吨,后部的两座炮塔最轻,各重977吨。该炮并不兼具防空能力,主要用以对付诸如驱逐舰这类装甲防护较弱的中、轻型水面舰艇。

高射炮

“俾斯麦”级战列舰装备有8座双联105毫米炮、8座双联37毫米高射炮和20门20毫米高射炮。“俾斯麦”级战列舰装备有SK-C/33型和SK-C/37型65倍口径105毫米双联装炮各4座,每舷各4座。SK-C/33型与SK-C/37型高炮均由德国莱茵金属公司生产,其中SK-C/33型于1933年设计,1935年研制成功并定型生产,每座炮塔重26425吨,单门火炮全重为4560千克,总长度684米,身管内刻有36条长5531毫米的膛线,身管长6825米。膛室容积为731升,发射药为605千克,最大发射膛压为2850千克/平方厘米,可发射重151千克,长1164厘米的专用防空高爆炮弹,最大射速为16~18发/分,最大有效射高为17700米/45度,最大仰角时射高为12500米/85度,炮口初速为900米/秒。火炮俯仰角度为-8~+85度,炮塔水平旋转速率为8度/秒,高低俯仰速率为10度/秒,4座SK-C/33型高炮均装备有各自独立的炮瞄设备。而SK-C/37型则于1937年设计,1939年研制成功并定型生产,其主要参数与SK-C/33型基本相同,只是每座炮塔比SK-C/33型要略轻一些,炮塔水平旋转速率提高为85度/秒,高低俯仰速率为12度/秒。射击时需由舰上的4座专用光学测距仪提供目标参数,全舰备弹6720发,每座炮塔840发。

有鉴于SK-C/33型及SK-C/37型105毫米高炮的身管制造也均采用了复杂的双节套管结构工艺,延误了原定的出厂交付日期,致使“俾斯麦”号战列舰在刚服役时只安装了上层建筑第一层甲板上前部的4座SK-C/33型高炮。海上训练结束后,“俾斯麦”号返回码头时又安装了4座更新型的SK-C/37型高炮于上层建筑第一层甲板的后部原本计划等另外4座SK-C/37型高炮到货后,再替换下先前已安装于前部的4座SK-C/33型高炮,但出海后才发现SK-C/33型与SK-C/37型专用的火控系统互不匹配,致使在其后的“莱茵演习”行动中,无法对来袭的英机形成有效的中、近程对空火力。

在近程防空火力上,“俾斯麦”号主要由大量的37毫米及20毫米高炮构成。其中SK-C/30型83倍口径37毫米双联装高炮于1930年设计,1934年研制成功并定型生产,每座炮塔重3670千克,单门火炮全重243千克,总长度82米,身管内刻有16条长2554毫米的膛线,身管长3071米。膛室容积为05升,发射药为0365千克,最大发射膛压为2950千克/平方厘米。射弹重0745千克,长度为1620毫米,最大射速为80发/分,最大有效射高8500米/45度,最大仰角时射程为6750米/80度,炮口初速为1000米/秒。俯仰角度为-10~+80度,炮塔水平旋转速率为4度/秒,高低俯仰速率为3度/秒,全舰共备弹32000发,8座SK-C/30型37毫米高炮均装备有各自独立的射击炮瞄设备。实际上,德国的37毫米高射炮根本不可能达到最大射速80发/分,因为采用人工装填方式的问题,37毫米高炮是二战最差的高射炮之一。

20毫米高炮分为两座MG-C/38型20毫米四联装和12座MG-C/30型20毫米单管装两种,其中MG-C/30型于1930年设计,1934年研制成功并定型生产,每座炮全重420千克,单门炮重64千克,总长度22525米,身管内刻有8条长720毫米的膛线,身管长为13米(即65倍口径),膛室容积为0048升,发射药为012千克,最大发射膛压为2800千克/平方厘米,射弹重0132千克,长785厘米,最大射速为200~280发/分,最大有效射高为4900米/45度,最大仰角时射高为3700米/85度,炮口初速为900米/秒。火炮高低俯仰角为-11~+85度,火炮的水平及俯仰方向的旋转均由人工手动操作完成。MG-C/38型与MG-C/30型相比,将单管装改为了四联装,致使火炮增重至2150千克,射速提高到480发/分,俯仰角度改为-10~49度,其它技术参数均与MG-C/30型基本相同。由于20毫米高炮大多为单管装,仅有两座为四联装,且两型高炮均采用的是弹夹式供弹,在实际的使用过程中MG-C/30型与MG-C38型的射速仅分别为120发/分和220发/分,射击时还必须由专人在炮位左侧用手持式小型光学测距仪为炮手提供目标参数,炮手用常规准星瞄具对目标瞄准,实战中难以形成足够密度的近程对空火力。

防护系统

防护和生存力一直都是德国军舰最显著的性能强项,这与德国海军的设计思想有关,从前无畏时代起,德国军舰一直就是世界上最重视防御的军舰。德国人不仅在技术上强化了军舰的防御,也在设计取舍上加大了军舰防御的优先性:“俾斯麦”级是二战时代建成战列舰中装甲比重最大的战列舰,不含炮塔旋转部分的装甲总重量就达到了标准排水量的4185%;也是二战时代防护尺度最大的战列舰,主装甲堡侧壁覆盖了70%的水线长度和全部的干舷高度。

“俾斯麦”级战列舰主要使用了以下几种钢材建造:St42(Schiffbaustahl 42)造船钢,于1931年在传统的二号造船钢基础上改进而成,用于建造俾斯麦的上层建筑和非装甲舱段舰体结构。其硬度为140-160HB,抗拉强度为420-510MPa,屈服强度为340-360MPa,弹性形变范围21%,性能不低于其它国家的同类产品。

St52(Schiffbaustahl 52)造船钢,于1935年在著名的三号造船钢基础上改进而成,用于建造俾斯麦的装甲舱段和轻装甲舱段舰体结构。其硬度为160-190HB,抗拉强度为520-640MPa,屈服强度为360-380MPa,弹性形变范围21%,同时具有极佳的韧性和延展性,具有很强的抗断裂和撕裂能力。虽然其较软的材质抵抗动能穿甲弹的能力较弱,但它拥有优秀的构造强度保持能力和优良的鱼雷爆破冲击波抵抗能力。

Ww(Krupp Wotan Weich Homogeneous armour steel)高弹性匀质钢,于1925年在传统的KNC装甲基础上发明,用于建造俾斯麦的主防雷装甲。其硬度为190-220HB,抗拉强度为650-750MPa,屈服强度为380-400MPa,弹性形变范围25%。

Wh(Krupp Wotan Hart Homogeneous armour steel)高强度匀质钢,于1925年在传统的KNC装甲基础上发明,其中的高性能部分(Wotan Starrheit,简称Wsh)被用于建造“俾斯麦”级的所有水平装甲和首尾水线装甲带以及内部纵横向装甲。其硬度高达250-280HB,抗拉强度为850-950MPa,屈服强度为500-550MPa,弹性形变范围20%。

KCn/A(Krupp cementite new type A)表面渗碳硬化钢,于1928年在传统的KC装甲基础上发展而成,用于建造俾斯麦的舷侧、炮座、炮塔立面、指挥塔立面装甲。其表面硬度高达670-700HB,递减渗碳深度为40-50%,基材硬度为230-240HB,基材抗拉强度为750-800MPa,基材屈服强度为550-600MPa。

1、坚固的舰体构造和细密的舱室分割

在纵向俯视图上,“俾斯麦”级的舰体为纺锤形,中间最粗,向首尾两端以抛物线形逐渐变细,这种形态的舰体很容易获得可靠的构造强度。在横向上,由于布置了厚重的上部舷侧装甲和上装甲甲板,该舰在上甲板下方就布置了第一主构造梁,并在第二甲板下方布置了第二主构造梁,使该舰拥有双层舰体上部主构造梁,而不是象其它多数国家战舰那样在主水平装甲下方布置单一的主构造梁,这样做的好处是充分利用了15米高36米宽的全部舰体横截面的尺度布置主承力结构,最大限度的增加了承力结构的几何力矩从而提高了强度。

“俾斯麦”级全舰分为22个主水密隔舱段,从第3到第19舱段为主装甲堡区域,舰体主装甲堡长达171米,最宽处36米,保护了70%的水线长度和85%-90%的浮力以及储备浮力空间,这是任何同时期战舰也无法做到的大手笔。在巨大的舰体主装甲堡内,德国人又在纵向和横向上安装了多重装甲和水密隔板。以锅炉舱段下部舰体为例,除了两舷各拥有宽度为55米的防雷隔离舱外,内部又被分成三个并排布置的水密隔舱,每个隔舱内安放着两台高压重油锅炉,俾斯麦拥有两个这样的舱段,它们中间被一个副炮弹药库舱段隔开。在这样的布置下,一个锅炉舱进水,战舰只会损失六分之一的动力,来自一个舷侧方向的攻击最多只能让战舰的两个锅炉舱进水,损失三分之一的动力。此外,与其它国家的战列舰不同,依托大量的横向、纵向和水平装甲,该舰在主水平装甲以上的上部舰体内也设置了大量的水密隔舱。加上下部舰体,俾斯麦全舰被细分成数千个大小不一的独立水密隔舱,就像锅炉一样,该舰每个重要的子系统都被以尽可能降低风险的原理分隔放置在这些隔舱内。

2、结构简单但工艺优异的防雷结构

“俾斯麦”级的防雷隔离舱在舯部深55米,向舰尾方向逐渐减至5米,向舰首方向逐渐减至45米,由22mmSt52船壳—空气舱—18mmSt52油舱壁—油舱—45mmWw主防雷装甲板—8mmSt52防水背板构成,为两舱四层钢板的布置结构。该结构在动力舱段的主防雷装甲后面没有设置完整的过滤舱,而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还算严密以外,与同时期其它国家战列舰的防雷结构相比较,“俾斯麦”级的结构要简单得多,设计要求也不高,仅仅为抵御250kgTNT的水下爆破。但德国海军在1944年11月12日关于“提尔皮茨”号损失的222-45号技术报告上指出它的TDS(Torpedo defence system)能抵挡300kg德国hexanite烈性炸药的水下爆破,可以认为这是该级战舰防雷系统的实际准确防御水平。

3、全面防护

“俾斯麦”级的主装甲堡长达171米,覆盖了70%的水线长度,装甲堡侧壁从水线以下3米多处一直延伸到上装甲甲板,在整个舷侧立面的常见被弹部分都布置了厚重的装甲,是二战时代装甲覆盖面积比例最大的战列舰。其上部26米高的舷侧装甲带由厚达145mm的KCn/A钢板制成,与50-80mm的Wh上装甲甲板一同保护着整个位于主装甲堡上部舰体内的水兵生活和工作区,可以抵挡重巡洋舰的炮弹和中小型航空炸弹。中部是位于水线上下的320mm厚52米高的KCn/A钢板制成的主舷侧装甲带,可以在正常交战距离以材料质量优势独自抵挡大部分战列舰的炮弹。在吃水98-104米的作战常态重量时,俾斯麦高52米的320mm主舷侧装甲有26-32米被埋在了水下,在320mm主舷侧装甲的下方,还有一道高06米均厚为170mm的主舷侧装甲下沿,使该舰拥有深入水下达32-38米的舷侧装甲,为其提供了良好的水下防弹能力,炮弹必须在水中穿行很长的距离击中更低的位置才能穿过22mm船壳进入防雷吞噬舱和吸收舱,这时后面的45mm主防雷装甲板已经能够独立抵挡。

在舰体主装甲堡内,位于主装甲甲板以下的空间,设置有8道由厚达20-60mm的Wh钢板制成的横向内部装甲墙,它们也被同时作为舰体横向构造的一部分。8道装甲墙和首尾两端320mm厚的横向外装甲墙共同把“俾斯麦”级主装甲堡内的下部空间分为9个重装甲舱段,其中的6道,以30mm的厚度又延伸到上部舰体内,和首尾两端100-220mm厚的横向外装甲墙共同把主装甲堡内的上部空间也分为7个重装甲舱段。即使有战列舰炮弹或穿甲炸弹射入其中爆炸,弹片受到这些内部装甲的阻挡,破坏力也会被控制在较小范围的空间内。

“俾斯麦”级的舰首和舰尾水线部位分别设有60mm和80mmWh钢制成的轻装甲带,它们会在舰体受到攻击的时候尽可能的保持水线外形的整体完整度,防止舰体表面发生大面积破碎。二战时代的大部分新式战列舰都采用了重点防护的方式布置装甲,这是因为它们的装甲比重小,没有多余的装甲去防护非致命部位,保证重点部位不被击穿,是首要的。

4、全面防护中的重点防护——穹甲

二战时代大部分国家的军舰主水平装甲都是布置在主舷侧装甲上方,与主舷侧装甲上方边缘连接,构成一个密闭的装甲盒。德国军舰则不同,它采用了一种叫做装甲堡延展结构的装甲布置方式,其主水平装甲位于主舷侧装甲一半左右位置的腰部,在靠近舷侧的两端以小俯角向下倾斜,延伸到主舷侧装甲的下部位置与之相连,这样的主水平装甲在横截面上看起来是一个穹顶,被称为“穹甲”。穹甲顶部位于水线附近,在军舰处于作战常态排水量的时候则往往位于水线以下,这就使得敌方炮弹在穿过其主装甲带后还必须再穿过这层装甲,才能进入德舰的机舱、锅炉舱、副炮弹药库和主炮弹药库。虽然穹甲布置缩小了舰体核心舱室的空间高度,但这个问题往往在德舰舰体主装甲区的巨大长度上得到弥补,从而保持了德舰核心舱室的空间总量。以俾斯麦战舰为例,其380mm主炮弹药库,锅炉、轮机、150mm副炮弹药库,105mm、37mm和20mm高炮弹药库,锅炉舱到轮机舱的蒸汽输送管道,贯穿全舰的纵向主电缆通道全部布置在了80-120mm穹甲的下方,容纳的设施比大部分其它国家的新式战列舰还多。

5、双层装甲甲板

德国战列舰没有设置两用甲板,它们采用了装甲甲板和水密甲板分离的传统布局。“俾斯麦”级位于机舱和弹药库上方的舰体水平结构有三层,第一层由柚木+50-80mmWh装甲甲板+10mmSt52水密甲板+第一主构造梁构成;第二层由20mmSt52水密甲板+第二主构造梁构成;第三层是该舰上为数不多的创新设计之一,在80-100mmWh水平部分装甲甲板的下方是20mm的St52水密甲板,再往下并没有像其它国家的战列舰一样布置主构造梁而是水平铺设了一层构造加强筋,与装甲甲板一同被作为舰体构造的组成部分,承担和主构造梁相近的作用。此外,构造加强筋由弹性形变范围刚好比Wh钢略大一点的St52钢制成,可以随着Wh装甲板一同发生弹性形变并分担抗拉峰值受力,再随着Wh装甲板一同恢复,以此提高整个水平结构的防御力,加强这道保护动力舱和弹药库的最后防线。

6、火力、火控和指挥系统防护

“俾斯麦”级前后各有两座双联装的380mm主炮塔,其炮座露天部分是厚340mm的KCn/A装甲钢圈,炮座在舰内从80mm上装甲甲板到100mm主装甲甲板之间的部分是厚220mm的KCn/A装甲钢圈,外围侧面受到145mm-320mm的KCn/A舷侧装甲和30mmWh内部纵向装甲的保护,总厚度为395-570mm,防御能力高于炮座露天部分。

“俾斯麦”级主炮塔旋转部分的正面是360mm的KCn/A装甲板,侧面是220mm的KCn/A装甲板,背部是320mm的KCn/A装甲板,顶部由130-180mm的Wh装甲板覆盖。背部厚达320mm的KCn/A装甲是为了对付数量众多的敌舰从左右舷侧方向夹攻而设置的,

“俾斯麦”级的副炮塔拥有100mmKCn/A的旋转部分正面装甲和80mmKCn/A的露天炮座装甲,能抵挡轻巡洋舰级别的炮弹。第一甲板下面是145mmKCn/A的上部舷侧装甲带+30mm的Wh装甲座圈,能抵挡重巡洋舰级别的炮弹。弹药输送通道通过其中一直延伸到穹甲,副炮弹药库位于穹甲下方独立舱段的中央部分内,受到320mm主舷侧装甲和100-120mm穹甲的保护。与主火力系统的防护情况相似,俾斯麦副炮火力系统的防护也是由上至下逐次递增。大部分其它国家的新式战列舰副炮塔都不具有俾斯麦这样厚重的装甲,这也是德舰全面防护的一个体现。

“俾斯麦”级的指挥塔立面装甲为350mmKCn/A,顶部220mmWh,底部70mmWh。同时德国战列舰指挥塔的防护空间大,可以容纳更多的指挥人员和设备。此外该舰在后部舰桥上还拥有一个立面装甲为150mmKCn/A的备用指挥塔,在主桅楼顶端还拥有一个立面装甲为60mmWh的装甲了望塔,是大部分其它国家的新式战列舰所没有的。该舰安置在三个装甲塔上方的三个主要探测和火控系统单元也安装有60-200mm不等的立面装甲,防护极为考究。

动力系统

“俾斯麦”级拥有12个高压瓦格纳锅炉,两两放置在6个水密

“俾斯麦”级战列舰防御剖面图

隔舱内,蒸汽输送管道直接穿过同样位于穹甲下方的副炮弹药

库舱段通向3个主机舱,每个主机舱内安放着1台涡轮蒸汽轮主机,每4台锅炉同时向1台涡轮蒸汽轮主机提供动力,主机为3台Blohm&Voss蒸汽轮机,单机最大输出功率为45400马力,3台总功率达136200马力。每一主机驱动一个螺旋桨,直径为47米。

此外在过渡舱内有蒸汽输送转换结构,在必要的情况下可以交叉提供动力。“俾斯麦”级的动力系统设计功率为138000马力,但实际稳定输出功率高达150170马力,极速输出功率更是高达163026马力,使得“俾斯麦”级战列舰拥有稳定很高的航速。

火控系统

“俾斯麦”级的主炮副炮射击指挥所在前后桅楼设有两处。前桅楼顶端安装有FuMO23型雷达和大型光学测距仪,FuMO23 雷达的矩形天线高2 米,宽4 米,工作频率为368兆赫,波长约为81 厘米,最大作用距离约为25 千米。这种雷达性能本来完全能够在天气恶劣的情况下搜索水面,但德国的雷达设计没有采用方位显示器(也就是所说的P型显示器),仅有距离显示器,方位依靠天线底座的同步感应器驱动机械方位显示盘指示,因此这种雷达在对多个目标和曲折的海岸探测时非常繁琐,方位雷达仅能针对单个的目标才具备清晰的目标舷角关系,因此这种雷达只能用作火控目标指示。81 厘米波长测量误差偏大,但能够满足战列舰在25千米距离上的齐射火控性能。德国海军也没有打算把这种雷达用在更复杂的探测场合,只是将天线与105米光学测距仪安装在一起仅仅用于火控。联合基座能够旋转360 度,从战舰最高点环视海面。FuMO23 雷达没有P型方位显示器的原因之一是德国纳粹高官们认为这种装置过于复杂和奢侈,这是“俾斯麦”号设计上的一个重要缺陷,利用P 型显示器至少能够了解更复杂的海面态势。

德国海军采用两个这种FuMO23雷达和105米测距仪转塔来进行两个主要射向的火控。在“俾斯麦”号后舰桥上,同样布置了1 部转塔,通常承担控制后部主副炮对第二个目标的射击指挥,或者在前桅楼雷达测距仪转塔被摧毁时,作为全舰火力的射击指挥备份。前桅楼柱型装甲结构一直向下伸延到装甲甲板下的火控解算舱。后部舰桥正下方的装甲带甲板同样设置了解算舱(所谓的解算舱实际是多炮塔的射击指挥仪舱)。德国的机电式射击指挥仪非常庞大和复杂,能够直接连接主炮塔控制机电气柜控制主炮塔,同时解算结果用机电刻度盘显示在相关指挥舱室。但是其精度和可靠性依旧非常高。除测距仪雷达转塔安装了105 米光学测距仪外,主炮炮塔也安装了独立的105 米测距仪,便于在指挥转塔失效后,继续按炮长电话口令进行测距和火控射击,但此时火控弹着散布要大很多。150 毫米副炮炮塔安装有独立的65 米光学测距仪,对空射击的火控站分别有4 处, 两处在主桅楼两侧,有球型防护罩,另两个沿舰体纵轴线布置在后上层建筑顶部,4 处对空火控站都装有45 米测距仪。按照“俾斯麦”级的防空武器配置,4 处火控站能够指挥对4 个目标的对空火力。105 毫米高炮有随动系统,可以分别与相应的火控站连接进行自动控制,而其他中小口径高炮则只能采用电话和人工操作。150 毫米副炮参与对空射击时由炮塔测距仪或前后雷达测距仪转塔进行火控,在同时发生交战的情况下,主副炮都无法腾出转塔进行对空火控。

火控和射击组织的原则是尽可能用尽量多的火炮齐射和尽可能快的发射速度,并用尽可能几率大的射击方式,而射击指挥仪则要在尽可能远的距离上发现目标和完成测距。首轮齐射组织非常重要,对修正具有决定性作用。在40年代炮瞄雷达出现前,主要依靠对齐射的弹着观察进行诸元修正。一旦确认准确的方位距离,则所有主炮将一同按准确诸元进行齐射。同时航海长也将采用机动,尽力保证这个较为准确的方位距离在至少两轮齐射内近似不变。

不完全必要,当年的td,都是作为火力支援车,像su152,几乎是客串自走跑。德国的三号突击炮,105口径,他都是跟着补兵走,由步兵保护。

加厚装甲的根本原因是和敌方坦克对射,能抵抗更多的穿甲弹。但是突击炮,歼击车这些玩意本来就不是用来对射的。和游戏里一样黑枪+远程支援。所以说,灵活的机动性能才是最重要的,加装甲会增重的,牺牲了机动。失去了机动的歼击车请脑补猎虎。

当然了,作为装甲武器,总不能薄的连机枪都能打穿把,另外偶尔和敌军对射以下也不是没可能,所以说su85的设计就很合实际,低矮的车身,不厚的倾斜装甲,带来的是很难被敌军击中 击穿

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/8191066.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-12
下一篇2023-09-12

发表评论

登录后才能评论

评论列表(0条)

    保存