译者:AI研习社( 洛克•麦金托 、 小海绵 )
双语原文链接: What’s the Difference Between an Ontology and a Knowledge Graph
随着语义应用程序成为业界越来越热门的话题,客户经常来EK询问有关本体和知识图谱的问题。具体来说,他们想知道两者之间的区别。本体和知识图谱是一回事吗?它们有何不同?两者之间是什么关系?
在这篇博客中,我将引导您了解本体和知识知识图谱,讲述它们之间的区别以及它们如何组织大量数据和信息。
本体是语义数据模型,用于定义domain中事物的类型以及可用于描述它们的属性。本体是广义的数据模型,这意味着它们仅对具有某些属性的事物的一般类型进行建模,而并不包含有关我们domain中具体个体的信息。例如,本体论不能描述您的狗,斑点和它的所有个体特征,主要描述狗的一般概念,尝试描述大多数狗可能具有的特征。这样做可以使我们在将来用本体来描述其他狗。
本体有三个主要组成部分,通常描述如下:
例如,假设我们有以下关于书籍、作者和出版商的信息:
首先,我们要标识类(数据中事物的唯一类型)。这个示例数据似乎捕获了关于书籍的信息,因此它是类的一个很好的候选项。具体来说,示例数据捕获了关于书籍的某些类型的内容,比如作家和出版商。再深入一点,我们可以看到我们的数据还捕获了关于出版商和作者的信息,比如他们的位置。这给我们留下了这个例子中的四个类:
下一步,我们需要标识关系和属性(为了简单,我们可以将关系和实体属性都视为属性)。使用我们在之前定义的类,我们可以查看数据并开始列出我们看到的每个类的所有属性。例如,在书籍类中,一些属性可能是:
其中一些属性是连接两个类的关系。例如,关系属性“书籍有作者”是一个连接书籍类和作者类的关系。其他属性,像“书籍发布的日期”是实体属性,只描述一个类,而不是将两个类连接在一起。
需要注意的是,这些属性可能适用于任何给定的书籍,但它们不一定适用于每一本书。例如,很多书都没有续集。这在我们的本体中很好,因为我们只是想确保我们捕获了可能适用于许多(但不一定是所有)书籍的属性。
虽然上面的属性列表很容易阅读,但是重写这些属性以更清楚地定义我们的类和属性会有所帮助。例如,“书籍有作者”可以写成:
书→有作者→作者
尽管你可以包括更多的属性,这取决于你的用例,对于这个博客,我已经定义了以下属性:
记住,我们的本体是一个通用的数据模型,这意味着我们不想在本体中包含关于特定书籍的信息。相反,我们希望创建一个可重用的框架,将来我们可以用它来描述其他书籍。
当我们结合类和关系时,我们能够以图的形式查看本体:
使用本体作为一个框架,我们可以添加关于个别书籍、作者、出版商和位置的真实数据来创建一个知识图谱。利用上面表中的信息和本体,我们可以创建每个本体关系的特定实例。比如,如果我们的本体中有这样的关系“书籍→有作者→作者”,这个关系的单个实例如下:
如果我们把我们拥有的关于《杀死一只知更鸟》这本书的所有信息加进去,我们可以看到知识图谱的开端:
如果我们对所有的数据都这么做,我们最终会得到一个使用本体对数据进行编码的图。通过使用知识图谱,我们可以将数据看作一个关系网络,而不是作为单独的表格在我们无法理解的数据点间绘制新的连接。具体来说,使用SPARQL,我们可以查询数据和使用推理功能(让知识图谱建立之前没有定义的连接)。
正如你在上面例子中所看的,当你将本体(我们的数据模型)应用到一组单独的数据点(书籍、作者和出版商数据)时,那么就是创建了一个知识图谱。换句话说:
本体+数据=知识图谱
AI研习社是AI学术青年和AI开发者技术交流的在线社区。我们与高校、学术机构和产业界合作,通过提供学习、实战和求职服务,为AI学术青年和开发者的交流互助和职业发展打造一站式平台,致力成为中国最大的科技创新人才聚集地。
如果,你也是位热爱分享的AI爱好者。欢迎与译站一起,学习新知,分享成长。
跟你说说知识图谱和传统知识库与关系数据库的区别吧。
知识图谱、传统知识库和数据库各自尤其特点,它们之间的区别主要在语义层和数据层上包含信息的多少而产生一定的不同。
知识图谱需要完成语义推理等任务,并且还需要提供丰富的实例数据来实现关联检索任务,因此,同时包含语义知识和丰富的实例数据。而关系型数据库主要完成数据检索任务,只含有丰富的数据,传统知识库主要为了实现推理任务,含有丰富的语义知识,也就是概念知识及其之间的关联关系,有时也含有少量的实例数据。这三者之间最主要的区别和联系在于:
知识图谱是在传统知识库的基础上发展而来的,但更注重其中的实例数据。
知识图谱无法替代数据库,大规模图谱处理需借助数据库技术。
知识图谱包含语义信息,可进行一定的推理,且形式更灵活,可扩展性更好。
面试前搜集往年面试常考题目属于使用信息检索和分析技术来解决问题。
信息检索和分析技术已经成为许多领域中不可或缺的工具,在面试前搜集往年面试常考题目时,我们需要了解这些技术的基本概念和应用。同时,人工智能技术的发展也为信息检索和分析带来了新的机遇和挑战。
1、什么是信息检索技术?
信息检索技术是指在大规模数据集合中自动地查找、筛选、排序相关信息的过程。它通常包括了关键字查询、文本预处理、索引构建、查询优化和结果排序等环节。
2、信息检索技术在哪些领域有应用?
信息检索技术已经应用到了广泛的领域中,比如搜索引擎、文本挖掘、情感分析、舆情监测、知识图谱构建等。
3、如何构建一个高效的搜索引擎?
构建高效的搜索引擎需要先进行数据抓取、清洗和存储,然后利用信息检索技术对数据进行索引构建和查询优化,最后利用机器学习算法对用户偏好进行分析和个性化推荐。
4、什么是文本挖掘?
文本挖掘是一种从非结构化或半结构化数据中发现有用信息的过程。它通常包括了文本分类、命名实体识别、主题识别、情感分析等任务。
5、如何进行文本分类?
文本分类可以使用传统的基于规则或机器学习的方法,比如朴素贝叶斯、决策树、支持向量机等算法,也可以使用深度学习模型,如卷积神经网络、循环神经网络等。
6、什么是情感分析?
情感分析是指对文本中的情感倾向进行自动化识别和分类的过程。它通常涉及到情感词典构建、特征提取、分类器训练等步骤。
7、如何应用情感分析?
情感分析可以应用到广泛的领域中,比如商品评论分析、社交媒体分析、政治舆情分析等。在这些场景中,情感分析可以帮助人们更好地理解消费者需求、维护品牌形象、精准预测选举结果等。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)