救护车的英语怎么说?

救护车的英语怎么说?,第1张

中文口译

救护车

(1)[救护车]:医院或医疗单位专用于运送伤病员的车辆。

(2)[急救卡车]:一种装有特殊设备的汽车,用于营救飞机失事的幸存者。

救护车是英文,具体定义如下:

发音:英语[MBJLNS],美国[MBJLNS]

表情:救护车;战时流动医院

词性:通常在句子中用作名词。

固定:救护官救护官

救护人员正在照料到达的伤员。

救护车里的救护人员正在照顾伤者。一站式出国留学攻略 http://wwwoffercomingcom

SpaGCN首先构建一个图来表示 考虑空间位置和组织学信息的所有点的关系 。 接下来,SpaGCN 利用 图卷积层来聚合来自相邻点的基因表达信息 。 然后,SpaGCN 使用 聚合表达式矩阵使用无监督迭代聚类算法对点进行聚类 。 每个clusters被视为一个空间域,SpaGCN 然后从中检测通过 DE 分析在域中丰富的 SVG。 当单个基因不能标记一个域的表达模式时, SpaGCN 会构建一个meta基因,由多个基因组合形成,来代表该域的表达模式

The current version of SpaGCN requres three input data:

The gene expreesion data can be stored as an AnnData object AnnData stores a data matrix X together with annotations of observations obs, variables var and unstructured annotations uns

Set hyper-parameters

Run SpaGCN

Plot spatial domains

生活很好,有你更好

Single Cell Gene Co-Expression Network Reveals FECH / CROT Signature as a Prognostic Marker

AR(Androgen receptor,雄激素受体)活性的增加驱动晚期前列腺癌的治疗耐药,深入剖析AR调控网络的机制至关重要。GCN(co-expression network)有助于成功识别AR变量驱动的基因模块,但是由于GCN的高度稀疏性和维数高,为所有被检测基因构建的GCN太大而无法解释。而加权相关网络分析(WGCNA)利用层次聚类方法识别基因簇,并能提取潜在表型的有意义的生物信息。近期研究表明LNCaP细胞对雄激素剥夺治疗反应不一。现已发现雄激素剥夺治疗的耐药亚群,其特征是细胞周期活动增强。因此,本研究旨在从单细胞的角度找出AR调控的关键生物学过程及其雄激素调控基因。

==androgen(R1881)== ,也被称为甲基三烯醇,是一种合成的雄激素。它是AR激动剂。

biomodal:双峰性表达,描述如下图

BI value:BI index,用来代表 biomodal expression的extent,The bimodality index (BI) is used to distribution of marker genes (AR, KLK3, and TMPRSS2) in single cells; Genes with BI > 12 are regarded as bimodally expressed genes

数据:We downloaded the processed expression (RPKM) profiles of LNCaP cells generated by single cell RNA-seq from GEO (accession ID: GSE99795) The dataset contains 144 LNCaP cells from 0 h untreated, 12 h untreated and 12 h R1881 treated conditions There are 48 cells under each condition

Bimodality expression was performed using the ==R package, SIBER== First, a normal mixture model (‘NL’) was specified on the log2 transformed RPKM expression values to fit the gene expression distribution into a two component mixture model ( component 1 and 2) Next the average values ( mu1 and mu2 ) were calculated Other parameters were also obtained including variance values ( sigma1, sigma2 ) and corresponding proportion of the component 1 and 2 ( pi1 and pi2 )

==应用的包是RobustRankaAggreg==

GraphSage是在论文Inductive Representation Learning on Large Graphs

William中提出的一种归纳式的embedding表示训练方法。

在上一篇所讲的GCN是transductive learning(直推式学习),即通过一个固定的图,直接训练每个节点的embedding。但是在很多图场景下,图节点是实时更新的,所以本文提出了inductive learning(归纳式学习)。不是在一个静态图上训练每个节点的embedding,而是通过训练得到一个由neighbood到embedding的映射关系(aggregator),使得结果可以仅通过邻居关系得到新加入的节点的embedding。

针对无监督学习,训练loss用的是pair-wise,认为有联系的2个节点间embedding应该是接近的,而没有联系的2个节点间embedding应该是远离的。(用内积表达的是余弦距离)

在训练数据集中有每个节点的feature information,然后用feature information来训练得到用户的节点,那如果没有feature information怎么办呢?用index来表示吗?

这篇论文做融合的总体框架还是GraphSage:从neighbor中抽取一定数量进行融合。但是与Graph有所区别在于不是随机抽取而是importance pooling 以下说一下这篇论文的主要创新点:

这篇论文的总体框架其实很经典:

这篇文章是对上述NGCF所做的一个改进。文章发现NGCF中的feature transformation(W1, W2)和nonlinear activation( )操作不但使训练更困难,并且降低了准确度。这个的主要原因在于:GCN is originally proposed for node classification on attributed graph, where each node has rich attributes as input features; whereas in user-item interaction graph for CF, each node (user or item) is only described by a one-hot ID, which has no concrete semantics besides being an identifier In such a case, given the ID embedding as the input, performing multiple layers of nonlinear feature transformation —which is the key to the success of modern neural networks — will bring no benefits, but negatively increases the difficulty for model training

优化后的LightGCN的forward propagation layer:

注:在forward propagation中并没有加入self connection是因为layer embedding 的weighted sum操作其实包含了self connection。具体证明过程如下:

So inserting self-connection into A and propagating embeddings on it is essentially equivalent to a weighted sum of the embeddings propagated at each LGC layer

这篇论文旨在解决2个问题:

So MGNN-SPred jointly considers target behavior and auxiliary behavior sequences and explores global item-to-item relations for accurate prediction

本文算法框架:

构图算法:

Item Representation Learning:

for each node , one-hot representation ;

Sequence Representation Learning:

It was found that simple mean-pooling could already achieve comparable performance compared with attention mechanism while retaining low complexity

It is self-evident that the contributions of auxiliary behavior sequence for the next item prediction are different in different situationsSo a gated mechanism is designed to calculate the relative importance weight :

where denotes the one-hot representation of the ground truth

这篇论文是解决sequential recommendation主要贡献点在于:

首先在一个序列中用sliding window strategy取出子序列 ,然后对每个子序列如下图所示对item添加边

用external memory units去存储随时间变化的用户长期兴趣。用户随时间接触的序列为:

则首先用multi-dimensional attention model生成query embedding:

其中 是sinusoidal positional encoding function that maps the item positions into position embeddings

然后对memory unit作操作:

The superscript C denotes the fusion of long- and short-term interests

表示短期内接触的item与所要求的item的关系远近

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/qinggan/7882453.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-07
下一篇2023-09-07

发表评论

登录后才能评论

评论列表(0条)

    保存