1、若向量|OA|=|OB|=|OC|,则O为⊿ABC的外心
2、若向量GA+向量GB+向量GC=0向量,则G为⊿ABC的重心
3、若向量HA•向量HB =向量HB•向量HC =向量HC•向量HA,则H为⊿ABC的垂心
4、若a向量IA+b向量IB+c向量IC=0向量,则I为⊿ABC的内心
5、若a向量PA=b向量PB+c向量PC=0向量,则P为⊿ABC的角A的旁心
用向量表示三角形的五心
如图,ABC中,E是AC上一点,F是AB上一点,且
l
n
ECAElmFBAF,(通分总可以把异分母分数化为同分母分数)连接BE、CF交于点D,确定点D的位置 解:设,bACaAB DFCDDEBD,
由定比分点的向量表达式,得
bamlmamlmbABmlm
ACAFACADbnlnaACnln
ABAEABAD
11))(1())(1(11)
(1111))(1(11)
(1111
nmlmnlnlnmlm
解得11))(1())(1(11
代入得:bn
mln
anmlmAD
设O是平面上任意一点,则有,,OAOCbOAOBaOAODAD
上式可化为:OCn
mln
OBnmlmOAnmllOD
()
由()式出发,可得三角形五心的向量表达式
(1)若BE、CF是ABC两边的中线,交点D是三角形的重心
则1,1
FBAF
lmECAEln )(31
OCOBOAOD
(2)若BE、CF是ABC两内角的平分线,交点D是三角形的内心 则:a
b
BCACFBAFlmacBCABECAEln
, OCa
cbcOBacbbOAacbaOD 同理若D是顶点B所对的旁心,则有:
OC
c
bac
OBcbabOAcbaaOD:,CDOCbcacOBbcabOAbcaaOD
则有所对的旁心是顶点若
若将点O与上述五心重合,则有以下简单结论:
(1) 重心O:0OCOBOA (2) 内心O:0OCcOBbOAa (3) 垂心O:
0coscoscosOCC
c
OBBbOAAa (4) 外心O:05) A对的旁心O:0OCcOBbOAa; B对的旁心O:0OCcOBbOAa
C对的旁心O:0
则a
b
BCACFBAFlmacBCABECAEln
, 代入()式得:
OCc
bac
OBcbabOAcbaaOD
(3)若BE、CF是ABC两边上的高,交点D是三角形的垂心
则
A
a
B
b
FB
AF
l
m
A
a
C
c
C
a
A
c
EC
AE
l
n
cos
cos
,
cos
cos
cos
cos
同理
OC
C
c
B
b
A
a
C
c
OB
C
c
B
b
A
a
B
b
OA
C
c
B
b
A
a
A
a
OD
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
cos
(4)
若
BE
、
CF
的交点
D
是
ABC
的外心
,
即三边中垂线的交点
,
则有
:DA=DB=DC
根据正弦定理有
:
A
C
A
A
C
C
B
D
C
A
A
D
B
C
C
B
E
C
BE
EBA
A
BE
EC
AE
l
n
2
sin
2
sin
cos
sin
cos
sin
)
(
2
1
sin
sin
)
(
2
1
sin
sin
sin
sin
sin
sin
同理
A
B
FB
AF
l
m
2
sin
2
sin
OC
C
B
A
C
OB
C
B
A
B
OA
C
B
A
A
OD
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
2
sin
(5)
若
BE
、
CF
是
ABC
外角平分线
,D
是三角形的旁心
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)