1、如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
2、一般情况是,焊接周围的压应力和拉应力最大,如果是人弯曲的话弯曲位置的张力也打,正应力要看材质和梁的长度宽度高度用物理几何算和模拟知道在什么位置。
扩展资料
计算说明:
1、对齐弯曲梁的下支座白色记号。
2、将力值调零,实验中取P0=100N,ΔP=350N,Pmax=1500N,分四次加载,在P0处将应变仪调零,实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。
3、每个测点求出应变增量的平均值 (m=1,2,···,5),算出相应的应力增量实测值(MPa)。其中,E取。
4、纯弯曲段(CD段)内的弯矩增量为:由公式求出各测点的理论值,式中。
5、对每个测点列表比较和,并计算相对误差。在梁的中性层(第1点),因,故只需计算绝对误差。
接触应力看的是一个点的受力,齿轮旋转一圈,单个齿上的一点只啮合一次,接触产生力,不接触不产生力,因此最小接触应力为0,属于脉动循环。
当梁承受分布载荷作用时,两截面上的剪力不同,因而翘曲程度也不相同,而且,此时纵向纤维还受到分布载荷的挤压或拉伸作用,但精确分析表明,如果梁长l与梁高h相比足够大时,这种翘曲对弯曲正应力的影响很小,应用公式计算弯曲正应力仍然是相当精确的。
扩展资料:
推导纯弯曲梁横截面的正应力公式,与推导扭转切应力公式相似,也需要从变形几何关系、物理关系和静力学三方面来考虑。
纯弯曲时梁的纵向“纤维”由直线变为圆弧,相距的两横截面1'-1'和2'-2'绕中性轴发生相对转动,如图2所示。横截面1'-1'和2'-2'延长相交于O点,O点即为中性层的曲率中心。
-弯曲应力
应力是物体内部的力的表现形式,通常用于描述物体受力后的反应或变形情况。它是单位面积上作用的力,可以通过将力除以受力面积来计算。
应力可以分为三种类型:拉应力、压应力和剪应力。
1拉应力
当一个物体被外部力拉伸时,在受力方向上产生的内部应力称为拉应力。拉应力使物体在受力方向上发生变长。
2 压应力
当一个物体被外部力压缩时,在受力方向上产生的内部应力称为压应力。压应力使物体在受力方向上发生变短。
3 剪应力
当一个物体受到共面两个相对方向的外部力时,在平行于力的平面上产生的内部应力称为剪应力。剪应力使物体在剪切平面上发生形变。
应力的大小可以通过施加的力以及受力面积来计算。一般来说,单位面积上的应力越大,物体受力越强烈。
应力是材料力学中重要的概念,对于研究材料的强度、变形性能以及结构的稳定性等方面具有重要意义。
扭力是指作用在物体上使其绕轴线旋转的力,也称为转矩。它是一个矢量量值,具有大小和方向。
当一个物体受到扭转或者转动时,外部施加的力会产生扭力。扭力的大小取决于施加力的大小和与轴线的距离,以及力的作用方向和旋转轴线的方向。
扭力可以通过扭矩公式来计算:
扭矩 = 力 × 距离 × sin(θ)
其中,力表示施加的力的大小,距离表示力作用点到旋转轴线的距离,θ表示力的作用角度与旋转轴线的夹角。
单位国际制中,扭力的单位是牛顿米(N·m)或者提诺(Nm)。
扭力在物理学和工程中有广泛应用,例如在机械传动系统中,扭力用于传递能量和控制旋转运动;在车辆的驱动系统中,引擎产生的扭力用于驱动车轮;在建筑结构中,扭力用于分析和设计梁柱的承载能力等。
应力和扭力的关系
应力和扭力是两个不同的概念,但它们之间存在某种联系。应力是描述物体内部受力状态的量,而扭力是作用于物体上使其绕轴线旋转的力。
在弹性材料力学中,当一个物体受到扭转时,会产生剪应力。剪应力是一种类型的应力,它描述了物体内部由于受到扭转而产生的剪切变形。
剪应力和扭力之间的关系可以用下面的公式表示:
扭力 = 剪应力 × 截面积 × 距离
其中,剪应力表示沿垂直平面上的单位面积上作用的力,截面积表示垂直于扭转轴的截面的面积,距离表示力的作用点到扭转轴的距离。
这个公式表明,在一个材料上施加的剪应力越大,截面积越大,距离越大,相应的扭力也会增加。
所以,扭力与剪应力之间存在一定的关系,但请注意,这仅仅适用于受到扭转的材料或物体。其他情况下的应力和扭力之间可能没有直接的关系。
应力和扭力的实际应用
1结构设计与工程
在建筑结构设计中,需要考虑各种受力情况,如压应力、拉应力和剪应力,以确保结构的稳定性和安全性。扭力在桥梁、塔楼等结构中也是重要考虑因素,用于评估结构的承载能力和防止变形。
2 机械工程
在机械设计和制造中,应力和扭力的分析对于确定零件的强度和耐久性非常重要。例如,在轴承、齿轮、传动系统等机械装置中,需要对扭矩和剪应力进行计算和控制,以确保它们可以承受预期的负荷和工作条件。
3 材料科学与工艺
研究材料的应力和扭力特性有助于理解材料的强度、刚度和变形行为。这对于选择合适的材料、优化材料的加工工艺以及预测材料在特定条件下的性能非常重要。
4 汽车工程
在汽车设计中,引擎的扭力输出是一个重要考虑因素。通过扭力的传递和转化,驱动轮可以提供足够的牵引力,实现车辆的加速和运动。
5 电子设备
在电子设备和芯片封装中,应力分析用于评估材料的可靠性和热膨胀匹配。通过对应力的管理,可以减少裂纹和断裂的风险,提高设备的性能和寿命。
应力和扭力的例题
1 一个长为2米,宽为05米,厚度为01米的矩形板材,受到垂直于板面方向的拉力为5000牛顿,计算该板材受到的拉应力。
答案:拉应力 = 拉力 / 截面积 = 5000 N / (2 m × 05 m) = 5000 Pa = 5 kPa
2 一个圆柱体的直径为10厘米,长度为20厘米,承受着沿轴线方向的扭力为100牛顿·米,计算该圆柱体受到的剪应力。
答案:剪应力 = 扭力 / (截面积×距离) = 100 N·m / (π×(5 cm)^2×20 cm) ≈ 0127 MPa
3 一个轴承承受着径向力1500牛顿和切向力800牛顿,轴承的外径为20厘米,内径为12厘米,求轴承上的最大法向和剪应力。
答案:最大法向应力等于最大径向力除以柱体截面积,最大径向应力 = 1500 N / (π×((20 cm)^2 - (12 cm)^2)) ≈ 209 MPa
最大剪应力等于切向力除以柱体截面积,最大剪应力 = 800 N / (π×(20 cm)×(12 cm)) ≈ 034 MPa
这些例题展示了应力和扭力的计算方法,根据具体情况,你可以应用不同的公式来解决各种应力和扭力相关问题。
通过受力地质体中一点P可截取无数个不同方位的截面,每个截面上正应力(σ)和剪应力(τ)的大小和方向均不相同。为了分析过P点不同截面上应力的大小和方向,以P点为几何中心截取一微分六面体,称为单元体。六面体的各棱分别平行于直角坐标系的坐标轴,边长分别为dx、dy和dz。每一面上的应力可分为一个正应力和两个剪应力(图3-3)。
图3-3 应力分量
正应力用σ和一个下脚标表示,如σx表示该正应力作用在垂直x轴平面上并平行x轴,同理,σy和σz表示作用在垂直y轴和z轴平面上并平行该坐标轴的正应力。剪应力用τ和两个下脚标表示,第一个下脚标代表所在平面所垂直的坐标轴,第二个脚标代表该剪应力所平行的坐标轴。如τxy表示作用于垂直x轴平面上并平行y轴的剪应力。剪应力共有6个,即τxy、τyx、τxz、τzx、τyz和τzy。因此在微分六面体上共有9个应力分量:σx、σy、σz、τxy、τyx、τxz、τzx、τzy、τyz。
在静力学平衡条件下,6个剪应力分量有如下关系:
-τxy=τyx-τxz=τzx-τyz=τzy (3-4)
即:在互相垂直平面上相互垂直的一对剪应力大小相等,符号相反,称为剪应力互等定律。因此9个应力分量可简化为6个:σx、σy、σz、τxy、τxz、τyz。若一点的6个应力分量已知,通过该点的任何截面上的应力均可求得,所以这6个应力分量可确定该点的应力状态。
事实上,以P点为几何中心可截取无数个微分六面体,每个微分六面体的表面均受到一个正应力和互相垂直的两个剪应力。但总可以找出这样一个微分六面体:该六面体的6个面上只作用有正应力而没有剪应力。单元体上剪应力为零的平面称为主平面,主平面上作用的正应力称为主应力,主应力的方向线叫主应力轴。因此,这个微分六面体将有3个主应力:σ1、σ2和σ3,并规定σ1>σ2>σ3,分别称为最大主应力、中间主应力和最小主应力。最大主应力与最小主应力之差(σ1-σ3)称为应力差。应力差越大,变形越强烈。
如果P点主应力的大小和方向已知,可求过P点任意截面上的正应力和剪应力。所以三个主应力可确定一点的应力状态。
根据三个主应力,可将点的应力状态分成三种类型:
单轴应力状态:一个主应力(σ1或σ3)不为零,另外两个主应力为零。
双轴应力状态:两个主应力不为零,另外一个主应力为零。
三轴应力状态:三个主应力均不为零。
综述:因为应变花是有方向性的。
应变花一种具有两个或两个以上不同轴向敏感栅的电阻应变计,用于确定平面应力场中主应变的大小和方向。
计算方法:
主应变的大小和方向可以用三轴和四轴应变花的各敏感栅测得的应变,按公式算出,也可以从应变莫尔圆求出。
主应力的大小,可以用各敏感栅测得的应变,及被测构件材料的弹性模量和泊松比按公式算出。
-应变花
1、正应力:垂直于截面的应力分量称为正应力(或法向应力),用σ表示。正应力表示零件内部相邻两截面间拉伸和压缩的作用。
2、正应变:该点处,某一方向的截面上所分布的法向应力所产生的长度方向的应变称为正应变。
3、切应力:相切于截面的应力分量称为剪应力或切应力,用τ表示。切应力表示相互错动的作用。
4、切应变:该点处,某一方向的截面上所分布的剪切力所产生的长度方向的应变称为切应变。也称为剪应变。
知识点延伸:
正应力和切应力的向量和称为总应力。正应力和切应力是度量零件强度的两个物理量。
1、正应力:垂直于截面的应力分量称为正应力(或法向应力),用σ表示。正应力表示零件内部相邻两截面间拉伸和压缩的作用。
2、正应变:该点处,某一方向的截面上所分布的法向应力所产生的长度方向的应变称为正应变。
3、切应力:相切于截面的应力分量称为剪应力或切应力,用τ表示。切应力表示相互错动的作用。
4、切应变:该点处,某一方向的截面上所分布的剪切力所产生的长度方向的应变称为切应变。也称为剪应变。
知识点延伸:
正应力和切应力的向量和称为总应力。正应力和切应力是度量零件强度的两个物理量。
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)