1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。
2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。
3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n sin(1/n) 用1/n^2 来代替
4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。
扩展资料:
在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数 和 ,也就是说该级数的部分和序列没有一个有穷极限。
如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数调和级数的发散性被中世纪数学家奥里斯姆所证明。
收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,这个事实一般并不怎么有用,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。
发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。
发散级数的求和作为数值技巧也与插值法和序列变换相关,这类技巧的例子有:帕德近似、Levin类序列变换以及与量子力学中高阶微扰论的重整化技巧相关的依序映射。
收敛数列
令{ }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有| -A|<b恒成立,就称数列{ }收敛于A(极限为A),即数列{ }为收敛数列。
函数收敛
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收敛的定义方式很好的体现了数学分析的精神实质。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)至un(x) 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)++un(x)+⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)++un(x0)+ (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。
函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)++un(x)+把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0
参考资料:
1、如果给系统作用单位理想脉冲函数,得到的脉冲响应是收敛的,表明系统能回到原来的平衡状态。
2、如果脉冲响应不收敛到0,单位阶跃响应一定会发散,故单位阶跃响应要是稳定的,则系统也是稳定的。对于非线性系统,稳定性与输入无关。
证明如下:
设lim xn = a,lim xn = b
当n > N1,|xn - a| < E
当n > N2,|xn - b| < E
取N = max {N1,N2},
则当n > N时有
|a-b|=|(xn - b)-(xn - a)|
收敛数列定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|。
收敛数列的性质:
如果数列收敛,那么它的极限唯一;
如果数列收敛,那么数列一定有界;
保号性;
与子数列的关系一致发散的数列有可能有收敛的子数列。
由于sin1/n~1/n,而级数1/n是发散的,根据比较判别法的极限形式知级数sin1/n也是发散的。
判别无穷级数的收敛性的方法:
首先可根据级数收敛的必要条件,级数收敛其一般项的极限必为零。反之,一般项的极限不为零级数必不收敛。
若一般项的极限为零,则继续观察级数一般项的特点:
若为正项级数,则可选择正项级数审敛法,如比较、比值、根值等审敛法。
若为交错级数,则可根据莱布尼茨定理。
另外,还可根据绝对收敛与条件收敛的关系判断。
扩展资料:
一个级数如果是绝对收敛的,那么也就一定是收敛的。
绝对收敛级数不仅具有可以应用针对正项级数的敛散性的判别法的特性,还具有如下的性质:
如果把任意项级数的所有正项都保持不变,而所有负项都更换为0,那么就得到一个正项级数 ;如果把它的所有负项都改变符号,而正项都更换为0,则得到另一个正项级数 ,然后就得到一个任意项级数的绝对收敛的充要条件,为正项级数与都收敛。从这个性质能够得到一个推论,即:如果任意项级数绝对收敛,就有。
作为加法交换律的一个推广,对于正项级数,如果任意改变它的各项的相加顺序,不会改变它的敛散性,同样,对于绝对收敛级数也有这样的性质。
不只是对于加法的交换律,对于绝对收敛级数的乘积也有性质:
如果两个任意项级数都绝对收敛,那么它们的各项的乘积,按照任意方法排列而得到的级数同样绝对收敛,并且和为两个任意项级数的和的乘积。
1、首先,拿到一个数项级数,我们先判断其是否满足收敛的必要条件:
若数项级数收敛,则 n→+∞ 时,级数的一般项收敛于零。
(该必要条件一般用于验证级数发散,即一般项不收敛于零。)
2、若满足其必要性。接下来,我们判断级数是否为正项级数:
若级数为正项级数,则我们可以用以下的三种判别方法来验证其是否收敛。(注:这三个判别法的前提必须是正项级数。)
3、三种判别法
①比较原则;
②比式判别法,(适用于含 n! 的级数);
③根式判别法,(适用于含 n次方 的级数);
(注:一般能用比式判别法的级数都能用根式判别法)
4、若不是正项级数,则接下来我们可以判断该级数是否为交错函数:
5、若不是交错函数,我们可以再来判断其是否为绝对收敛函数:
6、如果既不是交错函数又不是正项函数,则对于这样的一般级数,我们可以用阿贝尔判别法和狄利克雷判别法来判断。
详细条件请参考:
如何判断一个数项级数是否收敛(详解)_百度经验
http://jingyanbaiducom/article/b907e627b651b646e6891c7bhtml
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)