制粒搅拌机中有用HZ作单位的,那么1HZ等于多少rpm呢?

制粒搅拌机中有用HZ作单位的,那么1HZ等于多少rpm呢?,第1张

等于六十分之一rpm。

Hz 是频率的单位,频率是指电脉冲,交流电波形,电磁波,声波和机械的振动周期循环时,1秒钟重复的次数。1Hz代表每秒钟周期震动1次,60Hz代表每秒周期震动60次。

在高速搅拌制粒机上制备一批颗粒所需时间8-10min,且制得颗粒粒径范围为20-80目,烘干后可以直接用于压片。

设备主要由制粒筒、搅拌桨、切割刀和动力系统组成。当原料、辅料和黏合剂进入制粒筒并盖封后,启动电源,大搅拌桨的小切割刀就按各自的轴进行旋转运动,大搅拌桨主要使物料上下左右翻动并进行均匀混合。

扩展资料:

设备特点

1、混合均匀。在主药和辅料比重差异上较大的情况下能达到良好的混合效果。

2、颗粒效果好,所制成的颗粒在粒度均匀,片子硬度,释放度,片子光洁度方面都有优于传统工艺制成的颗粒。

3、效率高,快速搅拌混合、切割制粒二道工序一步完成,与老工艺相比效率提高4-5倍。

4、无污染,符合GMP规范和劳动保护要求。

-高速搅拌制粒机

-HZ

在非金属矿产加工生产中,也常用螺旋桨式搅拌机来搅拌泥浆,使泥浆中各组分混合均匀,固体颗粒不致沉淀,产生较好的悬浮状态。此外,也用于在水中松解泥料以制备均质泥浆。螺旋桨式搅拌机结构简单,使用方便,故在非金属矿产加工中得到广泛的应用。

一、构造和工作原理

螺旋桨式搅拌机的构造如图4-8所示。它主要由垂直安置的主轴3和三叶螺旋桨1以及贮浆池2组成。主轴由电动机4经减速器5带动旋转。电动机和减速器安装在架于钢筋混凝土制的贮浆池的横梁7上,螺旋桨用键和螺母固定于主轴末端。

当螺旋桨在液态泥浆中转动时,迫使泥浆产生激烈的运动,其中除了有切向和径向运动外,还有速度较大的轴向运动,这种轴向运动能促使泥浆强烈对流循环,因而泥浆可得到有效的混合和搅拌。

图4-8 螺旋桨式搅拌机

1-螺旋桨;2-贮浆池;3-立轴;4-电动机;5-减速器;6-机座;7-横梁

二、螺旋桨

螺旋桨是螺旋搅拌机的运动工作件。常用三片桨片,单层旋桨。

螺旋桨由叶片和轴套组成,其叶片沿圆周等分排列,其结构如图4-9所示。

桨叶与轴套通常是铸成整体的,桨叶的前面是工作面(又称压力面),为斜螺旋面的一部分;桨叶的后面是非工作面,其与轴线为中心的圆柱面的相交线一般是二次抛物线形状。零件图中除了必要的投影视图外,为了反映叶片复杂的剖面图,称叶片型线图。有关桨片设计可参见有关资料介绍。

螺旋桨紧固于立轴上,除用平键联接外,在轴端还用铜质盖形螺母上紧。具有右旋螺纹的盖形螺母随立轴和螺旋桨一同在料浆中旋转。为了使料浆作用于螺母上阻力矩与螺母拧紧方向相同,以防螺母自行松脱,立轴应作顺时方向(从立轴顶端朝下观察的转向)旋转,那么螺旋桨要把料浆推向下方,桨叶螺旋面的旋向应当是左旋。

图4-9 螺旋桨结构投影图

三、搅拌池

大型搅拌池多为薄地式混凝土筑制,小型的可用板材制成。对大型浆池,为减少料浆随螺旋桨整体旋转,提高桨叶与料浆间的相对运动速度而有较好的搅拌效果,一般浆池的横截面为正多边形(多用八边形),浆池的直径对横截面为正多边形的搅拌池来说,是指正多边形的内切圆直径。

搅拌池的直径要合理选择,直径过大,搅拌不容易均匀,局部地区会搅拌不到而成为死角;直径过小,则搅拌池容积太小,不能充分发挥搅拌机的作用,经济上不合理,通常搅拌池的直径可按下式选择:

非金属矿产加工机械设备

式中 D——搅拌池直径;

d——螺旋桨直径。

搅拌池的容积计算如下:

按搅拌比Vp/V0=10~13,计算池中料浆的体积V0,则搅拌池的容积

式中 Vp——搅拌池的容积;

K——搅拌池的有效利用系数,可取K=085。

由已知的搅拌池容积和直径,可计算搅拌池的深度,或者更为简单而实用的是用下面的经验公式确定搅拌池的深度。

非金属矿产加工机械设备

式中 H——搅拌池的深度;

D——搅拌池的直径。

由于螺旋桨式搅拌机搅拌时料浆的运动特性,在螺旋桨的下方,流线比较集中,而在搅拌池底部附近的四周,料浆的流速很小,往往成为搅拌不到的死角。为了避免这种情况的发生,搅拌池底部通常做成棱锥形的表面。底面直径为搅拌池直径的1/2,半锥角为45°,如图4-10所示。

确定搅拌池的深度时,还要结合搅拌轴伸长度一并考虑,不要使搅拌机主轴悬臂太长,以免扭断或由于螺旋桨受力不平衡时,造成侧向弯曲,失去稳定性,并使轴承容易损坏。

图4-10 搅拌池结构图

1-瓷砖;2-地脚螺拴预留孔;3-人孔

四、立轴

立轴的材料通常采用45号钢,为了防止铁质对料浆的污染,轴伸入料浆的那一段应当采取防腐蚀措施。

1轴的强度计算

工作时,主轴承受扭转和弯曲的组合作用,但是,为了简化计算,工程中往往假定立轴仅仅承受扭矩的作用,然后用增加安全系数,即降低材料的许用应力来弥补由于忽略弯曲作用所造成的误差。

对于实心轴,轴的直径

非金属矿产加工机械设备

式中 ds——轴的直径(xm);

N——轴传递的功率(kW);

n——轴的转速(r/min);

A——与轴的材料和载荷性质有关的系数,一般可按表4-6查取。

表4-6 轴实用材料的许用应力[T]及A值

表4-7 选取τk=310kgf/cm2时各轴的直径、转速、功率关系表

注:在粗线以上范围的建议选用表4-9更为合适。若τk=310kgf/cm2时,需根据换算系数计算后取两表的较大值。

以45号钢为基础,取τ=310kgf/cm2(即A=1051)时,各轴的直径、转速、功率间的关系见表4-7。

对于空心轴,轴的直径

非金属矿产加工机械设备

式中 Ds——空心轴的外径(cm);

α——轴的内径与外径之比;

其余符号的意义和单位同前。

2轴的刚度计算

为了防止转轴产生过大的扭转变形,以免在运转中引起震动造成轴封失效,应该将轴的扭转变形限制在一个允许的范围内,这是设计中的扭转刚度条件,为此,搅拌轴要进行刚度计算。

对于实心轴,轴的直径

非金属矿产加工机械设备

式中 d——轴的直径(cm);

N——轴传递的功率(kW);

n——轴的转速(r/min);

B——与扭转变形的扭转角有关的系数。对于剪切弹性模数G0=81×105kgf/㎝2,钢的B值见表4-8。

表4-8 B系数(G0=81×105kgf/cm2时)

为了使用方便以G0=81×105kgf/cm2、φ=1/2°为条件,根据 公式,把各种不同的转速、传递功率、直径的关系列于表4-9。

对于空心轴,表4-7或4-9要结合4-10进行选取。

必须指出,在选取轴径时应同时满足刚度和强度计算两个条件。一般按刚度条件计算的轴径较之强度条件计算者为大,所以通常对搅拌轴来说,主要以刚度条件确定轴径。如果刚度条件计算的结果较之强度条件计算结果相差较大时,可考虑改变轴的材质,即选用强度较差的材料。但仍然要满足强度条件要求。当转速较低功率又较大时,对强度条件是不可忽视的。

确定轴的直径时,还必须考虑轴上开有键槽或孔会引起轴的局部削弱,直径因而应适当增大,按照一般经验,轴上开有一个键槽或浅孔时,直径应增大4%~5%。如果在同一横截面位置开有两个键槽或浅孔,则直径应增大7%~10%。此外,轴的直径还应增加2~4mm作为腐蚀富裕度。

表4-9 选取φ=1/2°,G0=810×105kgf/cm2时轴的直径、转速、功率关系表

注:在粗线以下范围,建议选用表4-7更为合适。若φ≠1/2°时,需根据换算系数计算后取两表的较大值。

表4-10 空心轴换算值b0

注:空心轴查表时,须将实际传动功率除以b0得N换,再查表4-7或4-9。

立轴是悬伸到搅拌池中进行搅拌操作的,支承条件较差,常常由于侧向外力的作用而造成弯曲,弯曲的结果使离心力增大,从而又进一步增加弯曲的程度,最后使轴和轴承完全破坏。为了防止这种情况发生,在设计中应尽可能增大立轴轴承之间的距离和缩短悬臂的长度,并应对螺旋桨的静平衡精度提出一定的要求。

在一般情况下,立轴轴承之间的距离B和悬臂长度L可用下面的公式验算。

L/B≠4~5 (4-11)

L/ds≤40~50 (4-12)

立轴的不直度允许差一般取为01/1000。

螺旋搅拌机结构简单,操作容易,搅拌作用强烈,效果较好;但磨损较快。使用时要注意不要让搅拌机空转,即搅拌池中没有料浆时不要开动搅拌机。

图4-11 搅拌轴的支承

五、主要参数的确定

1转速n

螺旋桨的转速太低时,操作强度下降,搅拌效果不好;转速太高时,功率消耗和作用在桨叶上的力都急剧增大。桨叶不能做得过分笨重。根据实际使用的数据,螺旋桨的转速

非金属矿产加工机械设备

式中 n——螺旋桨的转速(r/min);

d——螺旋桨的直径(m)。

实际上用上式计算的螺旋桨转速往往是偏高的,且供设计和使用时参考。选定螺旋桨转速时,应根据使用要求确定,例如用于松解泥料以制备均质泥浆时,需要有比较强烈的冲刷和碰击作用,应当采用较高的转速;如用于搅拌泥浆使之保持均匀,则可使用较低的转速。

2功率N

搅拌桨所消耗功率,主要是克服桨叶在运动过程中所遇到流体阻力,因此,所需功率不但和搅拌机的结构尺寸等有关,还和料浆性质、桨叶转速和安装位置等有关,搅拌过程是一个复杂的操作,从理论上可推得:

非金属矿产加工机械设备

式中 ρ——浆料密度(kg/m3);

n——桨叶转速(r/min);

d——桨叶直径(m);

ζ——功率系数,由实际测定得出。

对于三叶单层螺旋桨搅拌机,可用下式估算:

非金属矿产加工机械设备

式中 ρ——浆料密度(kg/m3);

n、d——同上。

上述计算功率只考虑搅拌机本身克服料浆阻力的因素,没有包括机械运转部分和传动装置等功率消耗。因此,确定电动机功率时,还必须考虑搅拌机和传动装置的机械效率,同时还应乘上功率储备系数,功率储备系数可取15左右。

表4-11列出了螺旋桨式搅拌机的规格和主要技术性能。

表4-11 螺桨搅拌机的规格和主要技术性能

皮带减速:10:33=03 03×1400=420转/每分钟

减速机减速:1:32=003125 003125×420=13125转/每分钟

你的搅拌机每分钟转速约为13125转/每分钟

一般规定

1 深层搅拌法适于处理淤泥、淤泥质土、粉土和含水量较高且地基承载力标准值不大于120KPa的粘性土等地基。当用于处理泥炭土或地下水具有侵蚀性时,宜通过试验确定其适用性,冬季施工时应注意负温对处理效果的影响。

2 工程地质勘察应查明填土层的厚度和组成,软土层的分布范围、含水量和有机质含量,地下水的侵蚀性质等。

3 深层搅拌设计前必须进行室内加固试验,针对现场地基土的性质,选择合适的固化剂及外掺剂,为设计提供各种配比的强度参数。加固土强度标准值宜取90d龄期试块的无侧限抗压强度。

设计

1深层搅拌法处理软土的固化剂可选用水泥,也可选用其它有效的固化材料。固化剂的掺入量宜为被加固土重的7%~15%外掺剂可根据工程需要选用具有早强、缓凝、减水、节约水泥等性能的材料,但应避免污染环境。

2搅拌桩复合地基承载力标准值应通过现场复合地基荷载试验确定,也可按下式计算:

fsp,k=m·Rkd/Ap + β·(1-m)fs,k (1)

式中

fsp,k —— 复合地基的承载力标准值;

m—— 面积置换率;

Ap—— 桩的截面积;

fs,k —— 桩间天然地基土承载力标准值;

β —— 桩间土承载力折减系数,当桩端土为软土时,可取05~10,当桩端土为硬土时,可取01~04,当不考虑桩间土的作用时,可取0;

Rkd —— 单桩竖向承载力标准值,应通过现场单桩荷载试验确定。单桩竖向承载力标准值也可按下列二式计算,取其中较小值:

Rkd =ηfcu,kAp

Rkd=qsUpl + αApqp

式中

fcu,k —— 与搅拌桩身加固土配比相同的室内加固土试块(边长为707mm的立方体,也可采用边长为50mm的立方体)的无侧限抗压强度平均值;

η—— 强度折减系数,可取035~050;

qs—— 桩周土的平均摩擦力,对淤泥可取5~8KPa,对淤泥质土可取8~12KPa,对粘性土可取12~15KPa;

Up—— 桩周长;

l—— 桩长;

qp—— 桩端天然地基土的承载力标准值,可按国家标准《建筑地基基础设计规范》GBJ7-89第三章第二节的有关规定确定;

α —— 桩端天然地基土的承载力折减系数,可取04~06

在设计时,可根据要求达到的地基承载力,按(1)式求得面积置换率m

3深层搅拌桩平面布置可根据上部建筑对变形的要求,采用柱状、壁状、格栅状、块状等处理形式。可只在基础范围内布桩。

柱状处理可采用正方形或等边三角形布桩形式,其桩数可按下式计算:

n=m·A/Ap (923)

式中

n —— 桩数;

A —— 基础底面积。

4当搅拌桩处理范围以下存在软弱下卧层时,可按国家标准《建筑地基基础设计规范》GBJ7-89的有关规定进行下卧层强度验算。

5 搅拌桩复合地基的变形包括复合土层的压缩变形和桩端以下未处理土层的压缩变形。其中复合土层的压缩变形值可根据上部荷载、桩长、桩身强度等按经验取 10~30mm桩端以下未处理土层的压缩变形值可按国家标准《建筑地基基础设计规范》GBJ7-89的有关规定确定。

6深层搅拌壁状处理用于地下挡土结构时,可按重力式挡土墙设计。为了加强其整体性,相邻桩搭接宽度宜大于100mm

施工

1深层搅拌法施工的场地应事先平整,清除桩位处地上、地下一切障碍物(包括大块石、树根和生活垃圾等)。场地低洼时应回填粘性土料,不得回填杂填土。

基础底面以上宜预留500mm厚的土层,搅拌桩施工到地面,开挖基坑时,应将上部质量较差桩段挖去。

2深层搅拌施工可按下列步骤进行:

1)深层搅拌机械就位;

2)预搅下沉;

3)喷浆搅拌提升;

4)重复搅拌下沉;

5)重复搅拌提升直至孔口;

6)关闭搅拌机械。

3施工前应标定深层搅拌机械的灰浆泵输浆量、灰浆经输浆管到达搅拌机喷浆口的时间和起吊设备提升速度等施工参数,并根据设计要求通过成桩试验,确定搅拌桩的配比和施工工艺。

4施工使用的固化剂和外掺剂必须通过加固土室内试验方能使用。固化剂浆液应严格按预定的配比拌制。配备好的浆液不得离析,泵送必须连续,拌制浆液的罐数、固化剂与外掺剂的用量以及泵送浆液的时间等应有专人记录。

5应保证起吊设备的平整度和导向架的垂直度,搅拌桩的垂直度偏差不得超过15%,桩位偏差不得大于50mm

6搅拌机预搅下沉时不宜冲水,当遇到较硬土层下沉太慢时,方可适量冲水,但应考虑冲水成桩对桩身强度的影响。

7搅拌机喷浆提升的速度和次数必须符合施工工艺的要求,应有专人记录搅拌机每米下沉或提升的时间,深度记录误差不得大于50mm,时间记录误差不得大于5s,施工中发现的问题及处理情况均应注明。

质量检验

1施工过程中应随时检查施工记录,并对每根桩进行质量评定。对于不合格的桩应根据其位置和数量等具体情况,分别采取补桩或加强邻桩等措施。

2搅拌桩应在成桩7d内用轻便触探器钻取桩身加固土样,观察搅拌均匀程度,同时根据轻便触探击数用对比法判断桩身强度。检验桩的数量应不少于已完成桩数的2%

3在下列情况下尚应进行取样、单桩荷载试验或开挖检验:

1)经轻便触探对桩深强度有怀疑的桩应钻取桩身芯样,制成试块并测定桩身强度;

2)场地复杂或施工有问题的桩应进行单桩荷载试验,检验其承载力;

3)对相邻桩搭接要求严格的工程,应在桩养护到一定龄期时选取数根桩进行开挖,检查桩顶部分外观质量。

4基槽开挖后,应检验桩位、桩数与桩顶质量,如不符合规定要求,应采取有效补救措施。

深层搅拌法适用于饱和软黏土、淤泥质亚黏土、新吹填土、沼泽地带炭土、沉积粉土等土层的建筑物基础加固,深层搅拌掺水泥格栅式挡墙作为深基坑支护,隔水帷幕,以及道路,港口基础的软土地基加固,土的承载力可由90Kpa提高到248Kpa

(一)施工准备

1材料

(1) 深层搅拌法加固软黏土,宜选用525#以上普硅水泥作为固化剂,水泥掺量根据加固强度,一般为加固土重的7%-15%,每一立方米掺加水泥量约为110-160Kg用公式表示为:掺入比(%)=水泥重/被加固的软土重×100%

(2) 改善水泥土性质和桩(墙)体强度,可选用木质素磺酸钙、石膏、氯化钠、氯化钙、硫酸钠等外加剂,还可掺入不同比例的粉煤灰。

(3) 深层搅拌以水泥作为固化剂,其配合比为水泥:砂=1:1-1:2,为增加水泥砂浆和易性能,利于泵送,宜加入减水剂(木质素磺酸钙),掺入量为水泥用量的02%-025%,并加入硫酸钠,掺入量为水泥用量的1%,以及加入石膏,掺入量为水泥用量的2%,水灰比为041-050,水泥浆稠度为1-14CM,能起到速凝早强作用。

2作业条件

(1) 依据地质勘察资料进行室内配合比试验,结合设计要求,选择水泥加固掺入比,确定搅拌工艺。

(2) 依据设计图纸,编制施工方案,做好现场平面布置,安排施工进度,布置水泥浆制备的灰浆池,有条件时将水泥浆制备系统安装在流动挂车上,便于流动供应,采用泵送浇筑时,泵送距离小于50米为宜。

(3) 清理现场地下、地面及空中障碍物,以利施工安全。

(4) 测量放线,定出每一个桩位。

(5) 机械设备配置:深层搅拌机、起重机及导向、量测、固化剂制备等系统。

(6) 劳动组织:每台深层搅拌机械组由12人组成。

(7) 如施工现场表土坚硬,需要注水搅拌时,现场四周设排水沟及集水井。

(二)操作工艺

1深层搅拌法水泥土固化原理及操作工艺

(1) 利用水泥系作为固化剂通过特殊的深层搅拌机在地基深处就地将软黏土与水泥浆强制拌和后,首先发生水泥分解,水化反应生成水化物,然后水化物胶结与颗粒发生粒子交换,因粒化作用,以及硬凝反应,形成具有一定强度和稳定性水泥加固土,从而提高地基承载力及改变地基土物理力学性能,达到加固软土地基效果。

(2) 深层搅拌两台电动机分别通过减速器,搅拌轴使搅拌头切削软土,并经中心管向地基土中压入固化剂,强制拌和成水泥土。

2深层搅拌法施工工艺特点:根据上部结构的要求,可布置成柱状、壁状和块状三种加固形式。柱(桩)状加固形式:每间隔一定的距离打设一根 搅拌桩。壁状加固形式:将相邻搅拌桩部分重叠搭接而成。块状加固形式:纵横两个方向的相邻桩搭接而成。

3深层搅拌桩施工工艺

(1) 定位对中

(2) 预搅下沉

(3) 制备固化剂浆液

(4) 喷浆搅拌提升

(5) 重复搅拌

(6) 移位

4壁状加固施工工艺流程:按柱状加固工艺,将相邻两桩纵向相垂搭接成行施工,相邻两桩搭距按设计需要确定。形状如“8”字型。

5块状加固施工工艺流程:按深层搅拌施工工艺将相邻的桩纵横搭接施工,即组成块状加固体,两行桩之间搭接距可按设计需要确定。

(三)质量标准

1保证项目

深层搅拌桩使用的水泥品种、标号、水泥浆的水灰比,水泥加固土的掺入比和外加剂的品种掺量,必须符合设计要求。

检验方法:检查出厂证明、合格证试验报告及施工记录。

2基本项目

(1) 深层搅拌桩的深度、断面尺寸、搭接情况整体稳定和墙体、桩身强度必须符合设计要求。

检验方法:

1)一般成桩后两周内用钻机取样检验,开挖检查断面尺寸,观察桩身搭接情况及搅拌均匀程度,桩身不能有渗水现象。

2)搅拌桩质量检验,使用轻便触探,根据触探击数判断各段水泥浆强度。

(2) 现场载荷试验:用此法进行工程加固效果检验,因为搅拌桩的质量与成桩工艺、施工技术密切相关,用现场载荷试验所得到的承载力完全符合实际情况。

(3) 定期进行沉降观测,对正式采用深层搅拌加固地基的工程,定期进行沉降观测、侧向位移观测,是直观检查加固效果的理想方法。

3允许偏差

H为桩长度。

(四)施工注意事项

1避免工程质量通病

(1) 深层搅拌机应基本保持垂直,要注意平整度和导向架垂直度。

(2) 深层搅拌叶下沉到一定深度后,即开始按设计配合比拌制水泥浆。

(3) 水泥浆不能离析,水泥浆要严格按照设计的配合比配置,水泥要过筛,为防止水泥浆离析,可在灰浆机中不断搅动,待压浆前才浆水泥浆倒入料斗中。

(4) 要根据加固强度和均匀性预搅,软土应完全预搅切碎,以利于水泥浆均匀搅拌

1)压浆阶段不允许发生断浆现象,输浆管不能发生堵塞。

2)严格按设计确定数据,控制喷浆、搅拌和提升速度。

3)控制重复搅拌时的下沉和提升速度,以保证加固范围每一深度内,得到充分搅拌。

(5) 在成桩过程中,凡是由于电压过低或其它原因造成停机,使成桩工艺中断的,为防止断桩,在搅拌机重新启动后,将深层搅拌叶下沉半米后再继续成桩。

(6) 相邻两桩施工间隔时间不得超过12小时(桩状)。

(7) 确保壁状加固体的连续性,按设计要求桩体要搭接一定长度时,原则上每一施工段要连续施工,相邻桩体施工间隔时间不得超过24小时(壁状)。

(8) 考虑到搅拌桩与上部结构的基础或承台接触部分受力较大,因此通常还可以对桩顶板-15M范围内再增加一次输浆,以提高其强度。

(9) 在搅拌桩施工中,根据摩擦型搅拌受力特点,可采用变掺量的施工工艺,即用不同的提升速度和注浆速度来满足水泥浆的掺入比要求。在定量泵条件下,在软土中掺入不同水泥浆量,只有改变提升速度,通过提升速度检测仪检测。

2主要安全技术措施

(1) 深层搅拌机冷却循环水在整个施工过程中不能中断,应经常检查进水和回水温度,回水温度不应过高。

(2) 深层搅拌机的入土切削和提升搅拌,负载荷太大及电机工作电流超过额定值时,应减慢提升速度或补给清水,一旦发生卡钻或停钻现象,应切断电源,将搅拌机强制提起之后,才能重启动电机。

(3) 深层搅拌机电网电压低于380V应暂停施工,以保护电机。

(4) 灰浆泵及输浆管路

1)泵送水泥浆前管路应保持湿润,以利输浆。

2)水泥浆内不得有硬结块,以免吸入泵内损坏缸体,每日完工后,需彻底清洗一次,喷浆搅拌施工过程中,如果发生故障停机超过半小时宜见拆卸管路,排除灰浆,妥为清洗。

3)灰浆泵应定期拆开清洗,注意保持齿轮减速器内润滑油清洁。

(5) 深层搅拌机械及起重设备,在地面土质松软环境下施工时,场地要铺填石块、碎石,平整压实,根据土层情况,铺垫枕木、钢板或特制路轨箱。

3产品保护

深层搅拌桩施工完成后,不允许在其附近随意堆放重物,防止桩体变形。

机器人概念已经红红火火好多年了,目前确实有不少公司已经研制出了性能非常优越的机器人产品,我们比较熟悉的可能就是之前波士顿动力的“大狗”和会空翻的机器人了,还有国产宇树科技的机器狗等,这些机器人动作那么敏捷,背后到底隐藏了什么高科技呢,控制技术太过复杂,一般不太容易了解,不过其中的机械原理倒是相对比较简单,大部分都是一些连杆机构

连杆机构(Linkage Mechanism)

又称低副机构,是机械的组成部分中的一类,指由若干(两个以上)有确定相对运动的构件用低副(转动副或移动副)联接组成的机构。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。

由若干刚性构件用低副联接而成的机构称为连杆机构,其特征是有一作平面运动的构件,称为连杆,连杆机构又称为低副机构。其广泛应用于内燃机、搅拌机、输送机、椭圆仪、机械手爪、牛头刨床、开窗、车门、机器人、折叠伞等。

主要特征

连杆机构构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,从而可用于实现已知运动规律和已知轨迹。

优点:

(1)采用低副:面接触、承载大、便于润滑、不易磨损,形状简单、易加工、容易获得较高的制造精度。

(2)改变杆的相对长度,从动件运动规律不同。

(3)两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触。

(4)连杆曲线丰富,可满足不同要求。

缺点:

(1)构件和运动副多,累积误差大、运动精度低、效率低。

(2)产生动载荷(惯性力),且不易平衡,不适合高速。

(3)设计复杂,难以实现精确的轨迹。

的相关词条如下

下面我们就看看一般都有什么连杆机构适于用于行走(或者移动)的。

平面四杆机构是由四个刚性构件用低副链接组成的,各个运动构件均在同一平面内运动的机构。机构类型有曲柄摇杆机构、铰链四杆机构、双摇杆机构等。

1、曲柄摇杆机构(Crank rocker mechanism )

曲柄摇杆机构是指具有一个曲柄和一个摇杆的铰链四杆机构。通常,曲柄为主动件且等速转动,而摇杆为从动件作变速往返摆动,连杆作平面复合运动。曲柄摇杆机构中也有用摇杆作为主动构件,摇杆的往复摆动转换成曲柄的转动。曲柄摇杆机构是四杆机构最基本的形式 。主要应用有:牛头刨床进给机构、雷达调整机构、缝纫机脚踏机构、复摆式颚式破碎机、钢材输送机等。

2、双曲柄机构(Double crank mechanism )

具有两个曲柄的铰链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,如果两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。

双曲柄机构类型分类

1不等长双曲柄机构

说明:曲柄长度不等的双曲柄机构。

结构特点:无死点位置,有急回特性。

应用实例:惯性筛

2平行双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相同的双曲柄机构。

结构特点:有2个死点位置,无急回特性。

应用实例:天平

3反向双曲柄机构

说明:连杆与机架的长度相等且两曲柄长度相等、曲柄转向相反的双曲柄机构。

结构特点:无死点位置,无急回特性。

运动特点:以长边为机架时,双曲柄的回转方向相反;以短边为机架时,双曲柄回转方向相同,两种情况下曲柄角速度均不等。

应用实例:汽车门启闭系统

3、铰链四杆机构(Hinge four-bar mechanism)

铰链是一种连接两个刚体,并允许它们之间能有相对转动的机械装置,比如门窗用的合页,就是一种常见的铰链。由铰链连接的四连杆就叫铰链四杆机构。所有运动副均为转动副的四杆机构称为铰链四杆机构,它是平面四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之後,直接与机架链接的构件称为连架杆,不直接与机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摆动的构件称为摇杆。如果以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。

铰链四杆机构可以通过以下方法演化成衍生平面四杆机构。

(1)转动副演化成移动副。如引进滑块等构件。以这种方式构成的平面四杆机构有曲柄滑块机构、正弦机构等。

(2)选取不同构件作为机架。以这种方式构成的平面四杆机构有转动导杆机构、摆动导杆机构、移动导杆机构、曲柄摇块机构、正切机构等。

(3)变换构件的形态。

(4)扩大转动副的尺寸,演化成偏心轮机构 。

4、双摇杆机构(Double rocker mechanism)

双摇杆机构就是两连架杆均是摇杆的铰链四杆机构,称为双摇杆机构。 机构中两摇杆可以分别为主动件。当连杆与摇杆共线时,为机构的两个极限位置。双摇杆机构连杆上的转动副都是周转副,故连杆能相对于两连架杆作整周回转。

双摇杆机构的两连架杆都不能作整周转动。三个活动构件均做变速运动,只是用于速度很低的传动机构中 。双摇杆机构在机械中的应用也很广泛,手动冲孔机,就是双摇杆机构的应用实例,比如说吧飞机起落架,鹤式起重机和汽车前轮转向机构都是双摇杆机构。

判别方法

1最长杆长度+最短杆长度 ≤ 其他两杆长度之和,连杆(机架的对杆)为最短杆时。

2 如果最长杆长度+最短杆长度 >其他两杆长度之和,此时不论以何杆为机架,均为双摇杆机构。

5、连杆机构的理论应用

动力机的驱动轴一般整周转动,因此机构中被驱动的主动件应是绕机架作整周转动的曲柄在形成铰链四杆机构的运动链中,a、b、c、d既代表各杆长度又是各杆的符号。当满足最短杆和最长杆之和小于或等于其他两杆长度之和时,若将最短杆的邻杆固定其一,则最短杆即为曲柄。若铰链四杆机构中最短杆与最长杆长度之和小于或等于其余两杆长度之和,则

a、 取最短杆的邻杆为机架时,构成曲柄摇杆机构;

b、 取最短杆为机架时,构成双曲柄机构;

c、 取最短杆为连杆时,构成双摇杆机构;

若铰链四杆机构中最短杆与最长杆长度之和大于其余两杆长度之和,则无曲柄存在,不论以哪一杆为机架,只能构成双摇杆机构。

急回系数

在曲柄等速运动、从动件变速运动的连杆机构中,要求从动件能快速返回,以提高效率。即k称为急回系数。曲柄存在条件参考图 

压力角

如图中的曲柄摇杆机构,若不计运动副的摩擦力和构件的惯性力,则曲柄a通过连杆b作用于摇杆c上的力P,与其作用点B的速度vB之间的夹角α称为摇杆的压力角,压力角越大,P在vB方向的有效分力就越小,传动也越困难,压力角的余角γ称为传动角。在机构设计时应限制其最大压力角或最小传动角。

死点

在曲柄摇杆机构中,若以摇杆为主动件,则当曲柄和连杆处于一直线位置时,连杆传给曲柄的力不能产生使曲柄回转的力矩,以致机构不能起动,这个位置称为死点。机构在起动时应避开死点位置,而在运动过程中则常利用惯性来过渡死点。

6、平面四杆机构一些案例

切比雪夫连杆机构其实是和霍肯连杆机构是属于同一种形式的四连杆机构,其轨迹点都是在连杆两端谁在的直线上。霍肯连杆机构的轨迹点是在两端点连线的延伸线上,而切比雪夫连杆机构的轨迹点是在两端点连线的中间。如下:

切比雪夫连杆机构的动态演示

1、切比雪夫(1821~1894)

俄文原名Пафну́тий Льво́вич Чебышёв,俄罗斯数学家、力学家。切比雪夫在概率论、数学分析等领域有重要贡献。在力学方面,他主要从事这些数学问题的应用研究。他在一系列专论中对最佳近似函数进行了解析研究,并把成果用来研究机构理论。他首次解决了直动机构(将旋转运动转化成直线运动的机构)的理论计算方法,并由此创立了机构和机器的理论,提出了有关传动机械的结构公式。他还发明了约40余种机械,制造了有名的步行机(能精确模仿动物走路动作的机器)和计算器,切比雪夫关于机构的两篇著作是发表在1854年的《平行四边形机构的理论》和1869年的 《论平行四边形》。

理论联系实际是切比雪夫科学工作的一个鲜明特点。他自幼就对机械有浓厚的兴趣,在大学时曾选修过机械工程课。就在第一次出访西欧之前,他还担任着彼得堡大学应用知识系(准工程系)的讲师。这次出访归来不久,他就被选为科学院应用数学部主席,这个位置直到他去世后才由李雅普诺夫接任。应用函数逼近论的理论与算法于机器设计,切比雪夫得到了许多有用的结果,它们包括直动机的理论、连续运动变为脉冲运动的理论、最简平行四边形法则、绞链杠杆体系成为机械的条件、三绞链四环节连杆的运动定理、离心控制器原理等等。他还亲自设计与制造机器。据统计,他一生共设计了40余种机器和80余种这些机器的变种,其中有可以模仿动物行走的步行机,有可以自动变换船桨入水和出水角度的划船机,有可以度量大圆弧曲率并实际绘出大圆弧的曲线规,还有压力机、筛分机、选种机、自动椅和不同类型的手摇计算机。他的许多新发明曾在1878年的巴黎博览会和1893年的芝加哥博览会上展出,一些展品至今仍被保存在苏联科学院数学研究所、莫斯科历史博物馆和巴黎艺术学院里。

2、切比雪夫连杆机构经常被用于模拟机器人的行走

根据公式i=3n-2m

(n为活动构件数目,m为低副数目)

可得自由度i=1

3、切比雪夫连杆机构被广泛运用在机器人步态模拟上,从动图上也能看出,它的轨迹底部较为平稳,步态方式非常像四足动物,收腿动作有急回特性。根据下图WORKING MODEL仿真分析可得,在X轴上,也能看出它的急回特点。

4、嵌入汽缸的切比雪夫直线机构的运动

动图 

5、使用切比雪夫连杆机构的行走桌子

常见到有人遛狗溜猫,但你绝对没见过人溜桌子的,拜荷兰设计师Wouter Scheublin的脑洞所赐,荷兰人民倒是有幸见到过这一奇葩景象,有人推着一张桌子在路上行走,而有着八条腿的桌子就运动着自己的腿,走的蹭蹭蹭的,场景怪异中带着搞笑,让人印象深刻。那么桌子是怎么行走的呢?其实并没有用上什么高科技,它只是通过精细的机械传动机构动起来而已。设计师受到俄罗斯数学家切比雪夫的理论启发,并将它应用到桌子中,所以这张160斤重的桌子轻轻推拉就能走,而且走的异常平稳,不比轮子差。

每条桌腿与桌板之间,都采用精细的木质结构打造。当用手推动桌子时,给力的一方会使桌腿不断前进,通过力臂的摇摆和连接处木质结构,会把力传递到对面的桌腿使之向前移动,然后桌子就能满街跑了。

江苏桑云龙专门做这个的。

根据物料的性质选择搅拌器:

直叶桨式

此类型为最基本的一种桨型,低速时为水平环流型,平流区操作;高速时为径流型。有挡板时,功率准数值:Np明显上升,为上下循环流,湍流加强,适用于低粘度液体的混合、分散、固液悬浮、传热等液相反应过程。

斜叶桨式

此类搅拌器可制成30°、45°、或60°倾角,有轴向和径向分流,流型比平直叶桨式复杂,排出性能比平直叶桨高,综合效果更好,因此使用频率比平直叶桨式高。

复合折叶桨式

这是一种轴向流叶轮,它在主叶片上再增加了一个辅助叶片,该辅叶片有消除主叶片后方发生的流动剥离现象,使搅拌功率减少:同时在叶端能产生交叉的垂直分流,提高了搅拌效果,适用于中、低粘度的混合、固液悬浮、传热等液相反应过程。

双折叶桨式

多段逆流型搅拌器,在运行时,可促进液体形成较大的轴向循环,可比传统的折叶搅拌器减少30%的混合时间。特别适用于过渡流型下的混合、固液悬浮、溶解、传热等液相反应过程。

椭圆叶桨式

本类搅拌器是直叶桨式的一种变型,桨底旋转面接近容器的椭圆面,兼起刮板的作用,多为低速运行,可在过渡流或层流区操作。

六后弯叶开启涡轮桨

本类搅拌器流型为径向流,在有挡板时可自桨叶为界形成上下两个循环流,剪切力和循环能力较直叶型性能稍差。弯叶开启涡轮式剪切力较小,桨叶不易磨损,适合于固液悬浮。对于固体溶解也很适合。

直叶圆盘涡轮桨

本类搅拌器较之开启涡轮式搅拌器,基本流型相同,同样具有高剪切能力和较大的循环能力,区别在于多一圆盘,下面 可以存一些气体,使气体分散更平稳,所以在气体分散吸收过程中,较为合适。

斜叶圆盘涡轮桨

本类搅拌器较之直叶圆盘涡轮式搅拌器,同样具有高剪切能力和较大的循环能力,区别在于斜叶有倾角,可以轴向分流,排出性能好,动力消耗低。

后弯叶圆盘涡轮桨

本类搅拌器较之开启涡轮式搅拌器,基本流型相同,同样具有高剪切能力和较大的循环能力,区别在于多一圆盘,下面 可以存一些气体,使气体分散更平稳,所以合适在气体分散吸收过程中使用;弯叶具有后角,排出性能好,动力消耗低。

半圆管圆盘涡轮桨

径流式搅拌器,它们的叶片为凹圆弧型,具有极强的径向排量及分散能力,在相同功率下,其传质系数比平直叶圆盘涡轮高20%以上,持气能力提高30%以上,且功耗比甚低,因此特别适用类似发酵工艺的溶氧操作反应,也适用于其它气体分散、吸收混合、传质传热等操作。

抛物线圆盘涡轮

锚式桨

本类搅拌器为慢速型搅拌器,适用于中高粘度液体的混和、传热或反应等过程。桨底旋转面接近容器的椭圆面,兼起刮板的作用,多为低速运行,常在层流状态操作。产生水平环向流,如为折叶或角钢型叶,可增加桨叶附近的涡流。

锚框式桨

本类搅拌器为慢速型搅拌器,适用于中高粘度液体的混和、传热或反应等过程。常在层流状态操作。产生水平环向流,如为折叶或角钢型叶,可增加桨叶附近的涡流。可根据需要在桨上增加立叶和横梁,以增大搅拌范围。

螺杆螺带桨

本类搅拌器为慢速型搅拌器,常在层流区操作,液体沿着螺旋面上升或下降形成轴向的上下循环,适用于中高粘度液体的混合和传热等过程。螺带式搅拌器的螺带外廓接近于搅拌槽内壁,搅拌直径大,强化了近罐壁的液体的上下循环,高粘度液体的传热过程很适用。螺带螺杆组合式,同时具有螺杆和螺带的特性,强化了液体内外围的循环,特别对非牛顿型似塑性及粘弹性液体有效。可根据釜底形状,按要求设计。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://hunlipic.com/meirong/8494754.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-09-20
下一篇2023-09-20

发表评论

登录后才能评论

评论列表(0条)

    保存