1 Take the Fourier transform of (a windowed excerpt of) a signal这一步其实说了两件事:一是把语音信号分帧,二是对每帧做傅里叶变换。要分帧是因为语音信号是快速变化的,而傅里叶变换适用于分析平稳的信号。在语音识别中,一般把帧长取为20~50ms,这样一帧内既有足够多的周期,又不会变化太剧烈。每帧信号通常要与一个平滑的窗函数相乘,让帧两端平滑地衰减到零,这样可以降低傅里叶变换后旁瓣的强度,取得更高质量的频谱。帧和帧之间的时间差(称为“帧移”)常常取为10ms,这样帧与帧之间会有重叠,否则,由于帧与帧连接处的信号会因为加窗而被弱化,这部分的信息就丢失了。傅里叶变换是逐帧进行的,为的是取得每一帧的频谱。一般只保留幅度谱,丢弃相位谱。
2 Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows这一步做的事情,是把频谱与下图中每个三角形相乘并积分,求出频谱在每一个三角形下的能量:这一步有如下几个效果:
1) 傅里叶变换得到的序列很长(一般为几百到几千个点),把它变换成每个三角形下的能量,可以减少数据量(一般取40个三角形);
2) 频谱有包络和精细结构,分别对应音色与音高。对于语音识别来讲,音色是主要的有用信息,音高一般没有用。在每个三角形内积分,就可以消除精细结构,只保留音色的信息。当然,对于有声调的语言来说,音高也是有用的,所以在MFCC特征之外,还会使用其它特征刻画音高。
3) 三角形是低频密、高频疏的,这可以模仿人耳在低频处分辨率高的特性。
3 Take the logs of the powers at each of the mel frequencies这一步就是取上一步结果的对数。简单点理解,它是对纵轴的放缩,可以放大低能量处的能量差异;更深层次地,这是在模仿倒谱(cepstrum)的计算步骤。倒谱又是另一个话题,此处不展开讲了。
4 Take the discrete cosine transform of the list of mel log powers, as if it were a signal求倒谱时这一步仍然用的是傅里叶变换。计算MFCC时使用的离散余弦变换(discrete cosine transform,DCT)是傅里叶变换的一个变种,好处是结果是实数,没有虚部。DCT还有一个特点是,对于一般的语音信号,这一步的结果的前几个系数特别大,后面的系数比较小,可以忽略。上面说了一般取40个三角形,所以DCT的结果也是40个点;实际中,一般仅保留前12~20个,这就进一步压缩了数据。上面整个过程的结果,就把一帧语音信号用一个12~20维向量简洁地表示了出来;一整段语音信号,就被表示为这种向量的一个序列。语音识别中下面要做的事情,就是对这些向量及它们的序列进行建模了。
语音识别是声音通过空气传入声音接受器(如人耳)
说话人识别是通过骨骼(固体)和气体同时传入 内包含有些低音
两种声音感觉不同语音识别的基本过程 根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。但无论那种语音识别系统,其基本原理和处理方法都大体类似。
语音识别过程主要包括语音信号的预处理、特征提取、模式匹配几个部分。预处理包括预滤波、采样和量化、加窗、端点检测、预加重等过程。语音信号识别最重要的一环就是特征参数提取。提取的特征参数必须满足以下的要求:
(1)提取的特征参数能有效地代表语音特征,具有很好的区分性; (2)各阶参数之间有良好的独立性;
(3)特征参数要计算方便,最好有高效的算法,以保证语音识别的实时实现。
在训练阶段,将特征参数进行一定的处理后,为每个词条建立一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音特征参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。同时,还可以在很多先验知识的帮助下,提高识别的准确率。
自动语音识别通常有以下几种分类方法:
(1)按系统的用户情况分:特定人和非特定人识别系统;
(2)按系统词汇量分:小词汇量、中词汇量和大词汇量系统;
(3)按语音的输入方式分:孤立词、连接词、连续语音系统等;
(4)按输入语音的发音方式分:朗读式、口语(自然发音)式;
(5)按输入语音的方言背景情况分:普通话、方言背景普通话、方言语音识别系统;
(6)按输入语音的情感状态分;中性语音、情感语音识别系统。
可以把声发射信号分为突发型和连续型两种。
声波信号和声纹信号的区别:
1物理特性不同。
声波信号是一种机械波,具有频率、振幅和波长等物理量;而声纹信号则是人类声音中所包含的个体特征,如声调、音色、语速、语调等。
2应用领域不同。
声波信号在通信、音乐、语音识别等领域有着广泛的应用;而声纹信号则主要用于身份识别、语音识别、情感识别等领域。
3识别方式不同。
声波信号的识别主要依靠声音的高低、响度、音色等特征;而声纹信号的识别则主要依靠声调、音色、语速、语调等个体特征。
4技术难度不同。
声波信号的识别技术相对成熟,已经有了很多应用;而声纹信号的识别技术相对较新,还需要进一步的研究和发展。
5声波信号。
声波信号是指声音在空气、水、固体等介质中传播时所产生的机械波。声波信号的特点是具有频率、振幅和波长等物理量,可以通过声音的高低、响度、音色等特征来进行识别和分析。声波信号在通信、音乐、语音识别等领域有着广泛的应用。
6声纹信号。
声纹信号是指人类声音中所包含的个体特征,如声调、音色、语速、语调等。声纹信号可以用于身份识别、语音识别、情感识别等领域。与传统的密码、指纹等身份识别方式相比,声纹识别具有非接触、非侵入性、易于使用等优点,因此在安全领域有着广泛的应用。
7知识拓展:
声发射法适用于实时动态监控检测,且只显示和记录扩展的缺陷,这意味着与缺陷尺寸无关。而是显示正在扩展的最危险缺陷。这样,应用声发射检验方法时可以对缺陷不按尺寸分类,而按其危险程度分类。
按这样分类,构件在承载时可能出现工件中应力较小的部位尺寸大的缺陷不划为危险缺陷,而应力集中的部位按规范和标准要求允许存在的缺陷因扩展而被判为危险缺陷。声发射法的这一特点原则上可以按新的方式确定缺陷的危险性。
《语音信号处理(第2版)》介绍了语音信号处理的基础、原理、方法和应用,以及该学科领域近年来取得的一些新的研究成果和技术。全书共分14章,包括绪论、语音信号处理基础知识、语音信号分析、矢量量化技术、隐马尔可夫模型、神经网络在语音信号处理中的应用、语音编码、语音合成、语音识别、说话人识别与语种辨识、语音转换与语音隐藏、语音信号中的情感信息处理、耳语音信号处理、语音增强等内容。
相比其他的识别技术,阿尔法鹰眼主要实现的是对人类情感的识别技术
“阿尔法鹰眼”的学名是情感人工智能反恐安防系统。它的理论基础是1914年生理学医学诺贝尔奖获得者奥地利科学家巴拉尼的“VER前庭情感反射”:人体自体原发性紧张是一种情感的表达,会通过能量的变化表现出来。巴拉尼的发现在100年后被一群来自中国人民大学、延边大学和韩国汉阳大学从事数学、计算机和电子工程研究的专家加以发挥和突破。
扩展资料
“阿尔法鹰眼”实际运用:
和人脸识别不同,“阿尔法鹰眼”是一种动态识别,可因时因地因人开展工作,还会像“阿尔法GO”一样不断学习、进步。在实际运用场景中,“阿尔法鹰眼”会通过阈值设定给出不同的安全状态,例如小于60%为安全,大于60%为危险。
当然你也可以根据需要个性化订制阈值。这样,当被检测者走过摄像安检通道的5至10秒内,“阿尔法鹰眼”就能分析出该人的安全值,如果显示安全状态阈值大于60%,意味着该人的情绪和行为异于常人,需要进行进一步安全检查。“阿尔法鹰眼”就是这样在无任何已知信息的情况下快速识别出有犯罪意图和暴力倾向的潜在危险人群。
参考资料:
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)