刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为31415926<π<31415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈31415926)密率22/7(≈314),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这
一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对GH哈
代与JE李特尔伍德关于华林问题及E赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之 一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等著作 !
苏步青(1902-2003) 浙江平阳人。1927年毕业于日本东北帝国大学数学系,后入该校研究院,获理学博士学位。回国后,受聘于浙江大学数学系。1952年全国院系调整,到复旦大学任教,任教务长、副校长、校长等职,1983年起任复旦大学名誉校长。1985年起任温州大学名誉校长。历任第七、八届全国政协副主席,第五、六届全国人大常委,民盟中央副主席。1955年当选为中国科学院数学物理学部委员,兼任学术委员会常委,专长微分几何,创立了国内外公认的微分几何学派。撰有《射影曲线概论》、《射影曲面概论》等专著10部。研究成果“船体放样项目”、“曲面法船体线型生产程序”分别荣获全国科学大会奖和国家科技进步二等奖。
苏老虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心。
苏步青先生逝世的消息传开后,平阳人民的心情非常沉重。因为他与家乡人民的感情极深,他的名字早已与家乡的许多方面连在一起。
当我重新捧读“卧牛山下农家子,牛背讴歌带溪水。欲砍青阶竹作鞭,牵牛去耕天下田”的诗句,更是别有一番思绪。苏步青不仅是中外闻名的数学家,也是一位优秀的诗人。他一生与诗结缘,诗中不仅反映了他热爱祖国的精神,还渗透了浓郁乡情。仅以《苏步青业余诗词钞》几百首诗来说,赞美家乡的就有几十首:瓯江雁荡、卧牛带溪、农家风情、儿歌俚语,都在诗词中尽展风姿,其创作时间长达60余年。诗是苏步青的人格投影、情感物化和生命结晶。读他的诗,为我们了解现代中国正直知识分子的心灵世界提供了一份不可多得的艺术参照。
早在抗战时期,苏步青居于西北的一个小镇上,身处“流亡大学”的困难境地,仍不忘家乡父老,以诗寄情:“画角声声催铁血,烽烟处处缺金瓯。”“万里家乡隔战尘,江南烟雨梦归频。”“遥怜儿女牵衣小,无奈家山归梦长。”抗战胜利后,他到台湾负责接收台北大学,很多朋友劝他留在台湾,但他依然决定回浙大。1946年3月,苏步青在从台湾归来的飞机上作《忆秦娥》,充满思乡之情:“台湾峡,深蓝一片波声歇。波声歇,孤机遥指,浙东瓯北。白云开处山重叠,晴空万里归时节。归时节,红楼幽楼,菱花新雪。”后来,蒋介石发动内战,陷人民于水深火热之中。苏步青的诗词重又流露出感时伤世、心忧天下的情愫:“极目东西无净土”、“愁闻鼙鼓动余哀”。在旧中国的灾难岁月里,他的诗词多忧患之音,沉郁之作,赤子之心跃然纸上。
苏步青的家乡诗情在南雁这个主题上表现最丰富。他出生于1902年,1919年就离开家乡去日本留学,此后一直生活在他乡,可心中最牵挂的是家乡的南雁荡山,描写南雁风情的诗就有几十首:会文书院的古风、仙姑洞的香火、碧溪渡的竹筏、顺溪的香鱼、腾蛟的古桥……1940年他回乡时,写下了《南雁爱山亭晚眺》:“爱山亭上少淹留,烟绕村耕欲渐休。牛背只应横笛晚,羊肠从此入山幽。云飞千嶂风和雨,滩响一溪夏亦秋。长忆春来芳草遍,夕阳渡口系归舟。”由于诗人对环境十分熟悉,顺手拈来,把碧溪渡、东南屏嶂、云关等景点描绘得呼之欲出。1945年抗战刚胜利,他多想回家乡看看,可苦于没有机会,于是在《梦游仙姑洞》中写道:“梦里仙姑画里行,居然一水竹排轻。不知窗际寒灯影,竟化山头皓月明。”窗前的寒灯竟成了家乡的明月,可见其情深意切。他的《忆游南雁》、《南雁佳景吟》、《思乡》、《南雁寄怀》无不在回忆和思念中写就。1942年,友人在送他的诗中写道:“子规声里情难遣,心逐飞鸿雁荡边。”他和道:“云关千级迂仙道,月牖孤悬印雁行。”家乡的老同学施锵带来了南雁特产香鱼干,他又深情地写下:“闻道家园秋已晚,西风不用忆鲈鱼。”
家乡的故居前有座山叫牛山卧,是南雁景观之一。苏步青的诗中屡次出现此山,并自称是“卧牛山下看牛郎”、“ 卧牛山下旧耕农”、“卧牛山下农家子”。他与著名文史学家苏渊雷教授是同乡,两人同在上海工作,对南雁都深怀感情。1983年苏步青给苏渊雷写了《南雁荡寄怀似仲翔》:“一别名山四十春,有时归思寄南云。仙姑何幸馨香火,孙老无端榜会文(孙衣言题会文书院一联:‘伊洛微言持敬始,永嘉前辈读书多’)。牛背笛横斜日渡,羊肠径逐故园门。秋来处处堪留恋,朱橘黄柑又几村。”接到诗稿,激起苏渊雷无限怀想,写下了《步老寄示南雁荡长句儿时就读会文书院有同感焉次和却寄》:“南雁回翔六十春,辅仁会友气凌云。木樨淡放知无隐,华表斜看有逸文。野渡半篙真罨画,青灯一味足玄门。珂乡未觉灵山远,起凤腾蛟别有村。”两位名人的诗如今成了家乡的珍品。1985年,苏步青为《平阳地名志》题词,写下了“地灵人杰我平阳,鳌水雁山鱼米香”,诗句后来成为赞誉平阳的名句。
读苏步青的诗词,不难感觉到他是性情中人。其实,他无心做诗人,但经久不衰的生活热情,丰富多彩的人生阅历,渊博的学识,深厚的文学功底,加上炽热的怀乡情感,却使他每有所作皆臻佳境,成就为真正的诗人
这让我想起一个人来:苏步青(前复旦校长)
苏步青在读初中时,对数学并不感兴趣,可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。1919年苏步青中学毕业后赴日本留学。1927年毕业于日本东京帝国大学数学系,后入该校研究生院,1931年毕业获理学博士学位
从这里我们看到,成为数学家,成为天才,并不是要一定很高的天赋,而是他的研究他的作为是否有思想,对社会是否有贡献
我中学时是学文的(我文科很好的哦),大学时学习工程造价,毕业后学习计算机编程,至今
我不知道你现在跨专业学习计算机是哪方面的,但我没有感到编程对数学基础有什么多高的造赋或要求,虽然算法有时会让人晕头转向原因只是不你太不认识他了,熟悉一下,你会发现你的思维会是这么的清晰
面向对象思想和数学一样,只是从一切实际出发的客观事物的分析思想而已
送给你一句我最喜欢的,也是一位数学家的话:天才在于积累,聪明在于勤奋(华罗庚)
中国部分著名数学家介绍(包括古代)
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为31415926<π<31415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈31415926)密率22/7(≈314),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这
一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对GH哈
代与JE李特尔伍德关于华林问题及E赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之 一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等著作 !
苏步青(1902-2003) 浙江平阳人。1927年毕业于日本东北帝国大学数学系,后入该校研究院,获理学博士学位。回国后,受聘于浙江大学数学系。1952年全国院系调整,到复旦大学任教,任教务长、副校长、校长等职,1983年起任复旦大学名誉校长。1985年起任温州大学名誉校长。历任第七、八届全国政协副主席,第五、六届全国人大常委,民盟中央副主席。1955年当选为中国科学院数学物理学部委员,兼任学术委员会常委,专长微分几何,创立了国内外公认的微分几何学派。撰有《射影曲线概论》、《射影曲面概论》等专著10部。研究成果“船体放样项目”、“曲面法船体线型生产程序”分别荣获全国科学大会奖和国家科技进步二等奖。
苏老虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心。
苏步青先生逝世的消息传开后,平阳人民的心情非常沉重。因为他与家乡人民的感情极深,他的名字早已与家乡的许多方面连在一起。
当我重新捧读“卧牛山下农家子,牛背讴歌带溪水。欲砍青阶竹作鞭,牵牛去耕天下田”的诗句,更是别有一番思绪。苏步青不仅是中外闻名的数学家,也是一位优秀的诗人。他一生与诗结缘,诗中不仅反映了他热爱祖国的精神,还渗透了浓郁乡情。仅以《苏步青业余诗词钞》几百首诗来说,赞美家乡的就有几十首:瓯江雁荡、卧牛带溪、农家风情、儿歌俚语,都在诗词中尽展风姿,其创作时间长达60余年。诗是苏步青的人格投影、情感物化和生命结晶。读他的诗,为我们了解现代中国正直知识分子的心灵世界提供了一份不可多得的艺术参照。
早在抗战时期,苏步青居于西北的一个小镇上,身处“流亡大学”的困难境地,仍不忘家乡父老,以诗寄情:“画角声声催铁血,烽烟处处缺金瓯。”“万里家乡隔战尘,江南烟雨梦归频。”“遥怜儿女牵衣小,无奈家山归梦长。”抗战胜利后,他到台湾负责接收台北大学,很多朋友劝他留在台湾,但他依然决定回浙大。1946年3月,苏步青在从台湾归来的飞机上作《忆秦娥》,充满思乡之情:“台湾峡,深蓝一片波声歇。波声歇,孤机遥指,浙东瓯北。白云开处山重叠,晴空万里归时节。归时节,红楼幽楼,菱花新雪。”后来,蒋介石发动内战,陷人民于水深火热之中。苏步青的诗词重又流露出感时伤世、心忧天下的情愫:“极目东西无净土”、“愁闻鼙鼓动余哀”。在旧中国的灾难岁月里,他的诗词多忧患之音,沉郁之作,赤子之心跃然纸上。
苏步青的家乡诗情在南雁这个主题上表现最丰富。他出生于1902年,1919年就离开家乡去日本留学,此后一直生活在他乡,可心中最牵挂的是家乡的南雁荡山,描写南雁风情的诗就有几十首:会文书院的古风、仙姑洞的香火、碧溪渡的竹筏、顺溪的香鱼、腾蛟的古桥……1940年他回乡时,写下了《南雁爱山亭晚眺》:“爱山亭上少淹留,烟绕村耕欲渐休。牛背只应横笛晚,羊肠从此入山幽。云飞千嶂风和雨,滩响一溪夏亦秋。长忆春来芳草遍,夕阳渡口系归舟。”由于诗人对环境十分熟悉,顺手拈来,把碧溪渡、东南屏嶂、云关等景点描绘得呼之欲出。1945年抗战刚胜利,他多想回家乡看看,可苦于没有机会,于是在《梦游仙姑洞》中写道:“梦里仙姑画里行,居然一水竹排轻。不知窗际寒灯影,竟化山头皓月明。”窗前的寒灯竟成了家乡的明月,可见其情深意切。他的《忆游南雁》、《南雁佳景吟》、《思乡》、《南雁寄怀》无不在回忆和思念中写就。1942年,友人在送他的诗中写道:“子规声里情难遣,心逐飞鸿雁荡边。”他和道:“云关千级迂仙道,月牖孤悬印雁行。”家乡的老同学施锵带来了南雁特产香鱼干,他又深情地写下:“闻道家园秋已晚,西风不用忆鲈鱼。”
家乡的故居前有座山叫牛山卧,是南雁景观之一。苏步青的诗中屡次出现此山,并自称是“卧牛山下看牛郎”、“ 卧牛山下旧耕农”、“卧牛山下农家子”。他与著名文史学家苏渊雷教授是同乡,两人同在上海工作,对南雁都深怀感情。1983年苏步青给苏渊雷写了《南雁荡寄怀似仲翔》:“一别名山四十春,有时归思寄南云。仙姑何幸馨香火,孙老无端榜会文(孙衣言题会文书院一联:‘伊洛微言持敬始,永嘉前辈读书多’)。牛背笛横斜日渡,羊肠径逐故园门。秋来处处堪留恋,朱橘黄柑又几村。”接到诗稿,激起苏渊雷无限怀想,写下了《步老寄示南雁荡长句儿时就读会文书院有同感焉次和却寄》:“南雁回翔六十春,辅仁会友气凌云。木樨淡放知无隐,华表斜看有逸文。野渡半篙真罨画,青灯一味足玄门。珂乡未觉灵山远,起凤腾蛟别有村。”两位名人的诗如今成了家乡的珍品。1985年,苏步青为《平阳地名志》题词,写下了“地灵人杰我平阳,鳌水雁山鱼米香”,诗句后来成为赞誉平阳的名句。
读苏步青的诗词,不难感觉到他是性情中人。其实,他无心做诗人,但经久不衰的生活热情,丰富多彩的人生阅历,渊博的学识,深厚的文学功底,加上炽热的怀乡情感,却使他每有所作皆臻佳境,成就为真正的诗人
教案中对每个课题或每个课时的教学内容,教学步骤的安排, 教学 方法 的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性。接下来是我为大家整理的基本不等式教案 范文 ,希望大家喜欢!
基本不等式教案范文一
教学目标
1、知识与技能目标
(1)掌握基本不等式 ,认识其运算结构;
(2)了解基本不等式的几何意义及代数意义;
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
能力培养
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
教学重点
应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程。
教学难点
基本不等式 等号成立条件。
教学方法
教师启发引导与学生自主探索相结合
教学工具
课件辅助教学、实物演示实验
教学流程
SHAPE MERGEFORMAT
教学过程设计
创设情景,引入新课
如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系
赵爽弦图
1探究图形中的不等关系
将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。
2得到结论:一般的,如果
3思考证明:你能给出它的证明吗
证明:因为
当
所以, ,即
4基本不等式
1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得 ,通常我们把上式写作:
2)从不等式的性质推导基本不等式
用分析法证明:
要证 (1)
只要证 (2)
要证(2),只要证 a+b- 0 (3)
要证(3),只要证 ( - ) (4)
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
3)理解基本不等式 的几何意义
基本不等式教案范文二
课题:343 基本不等式 的应用(二) 科目:数学 教学对象:高二(290)学生 课时:1课时 提供者:刘和安 单位: 姚安一中 一、教学内容分析 本节课的研究是起到了对学生以前所学知识与方法的复习、应用,进而构建他们更完善的知识网络数学建模能力的培养与锻炼是数学教学的一项长期而艰苦的任务,这一点,在本节课是真正得到了体现和落实
根据本节课的教学内容,应用观察、阅读、归纳、逻辑分析、思考、合作交流、探究,对基本不等式展开实际应用,进行启发、探究式教学并使用投影仪辅助 二、教学目标 (一)知识目标:构建基本不等式解决函数的值域、最值问题;
(二)能力目标:让学生探究用基本不等式解决实际问题
(三)情感、态度和价值观目标:
通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系并需要从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,使学生感受数 学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯; 三、学习者特征分析 在本节课的教学过程中,仍应强调不等式的现实背景和实际应用,真正地把不等式作为刻画现实世界中不等关系的工具通过实际问题的分析解决,让学生去体会基本不等式所具有的广泛的实用价值,同时,也让学生去感受数学的应用价值,从而激发学生去热爱数学、研究数学而不是觉得数学只是一门枯燥无味的推理学科在解决实际问题的过程中,既要求学生能用数学的眼光、观点去看待现实生活中的许多问题,又会涉及与函数、方程、三角等许多数学本身的知识与方法的处理 四、教学策略选择与设计 1采用探究法,按照观察、阅读、归纳、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;
2教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;
3设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣 五、教学重点及难点 教学重点:1构建基本不等式解决函数的值域、最值问题
2让学生探究用基本不等式解决实际问题;
教学难点:1让学生探究用基本不等式解决实际问题;
2基本不等式应用时等号成立条件的考查;
六、教学过程 教师活动 学生活动 设计意图 (一)导入新课
(二)推进新课
已知 ,若ab为常数k,那么a+b的值如何变化
若a+b为常数s,那么ab的值如何变化
老师用投影仪给出本节课的第一组问题
(1)求函数y=2x2+ (x>0)的最小值
(2)求函数y=x2+ (x>0)的最小值
(3)求函数y=3x2-2x3(0<x< p="" )的最大值
(4)求函数y=x(1-x2)(0<x<1)的最大值< p="">
(5)设a>0,b>0,且a2+ =1,求 的最大值
(三)合作探究 我们来考虑运用正数的算术平均数与几何平均数之间的关系来解答这些问题根据函数最值的含义,我们不难发现若平均值不等式的某一端为常数,则当等号能够取到时,这个常数即为另一端的一个最值
(四)例题精析
例某工厂要建造一个长方体形无盖贮水池,其容积为4 800 m3,深为 3 m如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低最低总造价是多少
当且仅当a=b时,a+b就有最小值为2k
当且仅当a=b时,ab就有最大值 (或ab有 最大值 )
学生完成
留五分钟的时间让学生思考,合作交流
(根据学生完成的典型情况,找五位学生到黑板板演,然后老师根据学生到黑板板演的完成情况再一次作点评)
学生思考、回答,
基本不等式教案范文三
一、教材背景分析
1教材的地位和作用
本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体
本节是复习课,不仅应让学生进一步理解概念,还要掌握应用基本不等式求最值,体会基本不等式在实际生活中的指导作用。
2学情分析
在认知上,学生已经掌握了不等式的基本性质,并能够根据不等式的性质进行数、式的大小比较,也具备了一定的平面几何的基本知识 如何让学生再认识“基本”二字,是本节学习的前提 事实上,该不等式反映了实数的两种基本运算(即加法和乘法)所引出的大小变化,这一本质不仅反映在其代数结构上,而且也有几何意义,由此而生发出的问题在训练学生的代数推理能力和几何直观能力上都发挥了良好的作用 因此,必须从基本不等式的代数结构和几何意义两方面入手,才能让学生深刻理解它的本质
另外,在用基本不等式解决最值时,学生往往容易忽视基本不等式使用的前提条件和等号成立的条件,因此,在教学过程中,应借助辨误的方式让学生充分领会基本不等式成立的三个限制条件(一正二定三相等)在解决最值问题中的作用
3、教学重难点:
教学重点:用数形结合的思想理解基本不等式,并从不同角度回顾和探索基本不等式的证明过程;用基本不等式解决一些简单的最值问题
教学难点:回顾在几何背景下抽象出基本不等式的过程;基本不等式中等号成立的条件;应用基本不等式解决实际问题
二、教学目标
1、利用“赵爽弦图”回顾重要不等式、基本不等式,再利用教材中的“探究”回顾基本不等式的几何意义,通过基本不等式的回顾,进一步让学生体会和感悟形数统一的思想方法;
2、通过对教材“探究”再探究,引导学生拓展基本不等式,体会基本不等式的应用;
3、通过对教材中例题的变式教学,让学生体会和感悟应用基本不等式求最值应该注意的问题,解决基本不等式在实际中的应用;
4、利用电脑屏幕的情景,激发学生学习数学的热情,进一步培养学生的数学应用能力;
5、通过学生自主构建知识网络结构图,深化对基本不等式的理解。
三、教学对策
本节作为基本不等式的复习课,一是借助弦图和几何画板演示,让学生回顾基本不等式的概念形成过程,体验基本不等式模型的观察、分析、猜想和概括等系列思维活动过程,复习基本不等式的代数结构特征,体会数学 抽象思维 的方法;二是通过基本不等式的证明方法的探索和不同角度的欣赏,学生能用文字语言、符号语言和图形语言表述基本不等式的结构特点,归纳得出基本不等式中等号成立的条件及其使用条件,进一步体会数形结合的思想方法;三是要引导学生用基本不等式解决常见的最值和实际问题,进一步体验数学建模的过程;
四、教学过程
(一)温故知新,回顾基本不等式
情景引入:
投影显示赵爽弦图。
问题1、请同学们重温“赵爽弦图”,比较正方形ABCD的面积S和里面的四个小三角形面积之和S’的大小,看可以得到怎样的不等关系
(通过对“赵爽弦图”的观察,使学生由形识数,从几何图形中得到重要不等式的代数形式:
当且仅当,a=b时,取得等号。)
问题3、那么在使用基本不等式时,对实数a、b有什么要求呢
( )
下面请大家打开课本第98页,看探究中的图34-3。
问题5、让D点动起来,请大家指出等号成立的条件
链接1:几何画板—赵爽弦图
基本不等式教案范文相关 文章 :
1 基本不等式教学反思(5篇)
2 基本不等式教学反思3篇
3 基本不等式教学反思范文
4 数学基本不等式教学反思范文
5 基本不等式教学反思
6 七年级数学《整式的加减》教案范文
7 初中七年级下册《实数》教案优质范文五篇
8 高中数学基本不等式教学设计
9 七年级上册数学《整式的加减》教案精选范文五篇
10 高考数学基本不等式专项练习题附答案
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)