初中数学的基本公式和定理有哪些?想了解的小伙伴看过来,下面由我为你精心准备了“ 初中数学公式和定理有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!
初中数学公式和定理有哪些
1、初中数学公式
完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
平方差公式:(a+b)(a-b)=a^2-b^2
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
2、判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
3、三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
4、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
5、某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h
正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
初中数学定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
拓展阅读:中考数学成绩不高的原因
一、定理掌握不牢固
在我们做数学题的时候,会发现很多同学基础的题目很容易出错,看似很简单,但是就是拿不到分数,是因为定理不记得,等到考试过后才发现,原来题目如此简单。
套个定理就可以拿到分数,就是我们通常说的:简单的题不会,难题更不会。那你还怎么考高分
二、没有掌握好学习方法
刚刚也提到过,简单的题不会,难题更不会,那你还怎么考高分说到底还是没有掌握好学习方法。再加上初中的数学公式、定理又非常的多,不加以记忆,学习方法也没有掌握好,数学成绩又怎么提高
因此,平常学生就要注意细节的把握,多练题灵活的运用公式定理,做题的时候也要举一反三。不要死磕一道题,因为数学题类型是非常多变的,核心的公式定理却是永远不会变的。
所以今天为大家总结了初中三年的所有公式定理,帮助学生学习,学生只要把上课老师讲的理解透彻,再加上平常多家联系,运用公式举一反三,成绩就肯定会有提高!
初中数学涉及到哪些比较重要的 数学定理 呢下面我为大家具体介绍下,供参考。
初中数学定理公式大全
1、点、线、角
点的定理:过两点有且只有一条直线
点的定理:两点之间线段最短
角的定理:同角或等角的补角相等
角的定理:同角或等角的余角相等
直线定理:过一点有且只有一条直线和已知直线垂直
直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短
2、几何平行
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行
两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补
3、三角形内角定理
定理:三角形两边的和大于第三边
推论:三角形两边的差小于第三边
三角形内角和定理:三角形三个内角的和等于180°
4、全等三角形判定
定理:全等三角形的对应边、对应角相等
边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等
角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等
推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
边边边定理(SSS):有三边对应相等的两个三角形全等
斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
提高初中数学成绩的方法和技巧理解性记忆
对初中数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的。
练习题
适当的练习是必要的。最后又回到了这个传统的话题--做题。想学好数学,不做题是不可能的,做题可以让我们加深对知识点的理解,提高解题的速度,熟练解题技巧。
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 �
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d wc呁/S∕
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r �
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r) �
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长扑愎�剑篖=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
b^2-4ac=0 注:方程有两个相等的实根
b^2-4ac>0 注:方程有两个不等的实根 �
b^2-4ac<0 注:方程没有实根,有轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h
正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3pir2h �
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
费马大定理:
当整数n > 2时,关于x, y, z的不定方程
x^n + y^n = z^n
的整数解都是平凡解,即
当n是偶数时:(0,±m,±m)或(±m,0,±m)
当n是奇数时:(0,m,m)或(m,0,m)或(m,-m,0)
这个定理,本来又称费马猜想,由17世纪法国数学家费马提出。费马宣称他已找到一个绝妙证明。但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。
编辑本段研究历史
1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi Hanc marginis exiguitas non caperet")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。
对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。
1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得an + bn = cn。
1986年,Gerhard Frey 提出了“ ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。
1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。
怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。
1:欧拉证明了n=3的情形,用的是唯一因子分解定理。
2:费马自己证明了n=4的情形。
3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。
4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧密的巧秒工具,只是难以推广到n=11的情形;于是,他又在1847年提出了“分圆整数”法来证明,但没有成功。
5:库默尔在1844年提出了“理想数”概念,他证明了:对于所有小于100的素指数n,费马大定理成立,此一研究告一阶段。
6:勒贝格提交了一个证明,但因有漏洞,被否决。
7:希尔伯特也研究过,但没进展。
8:1983年,德国数学家法尔廷斯证明了一条重要的猜想——莫代尔猜想x的平方+y的平方=1这样的方程至多有有限个有理数解,他由于这一贡献,获得了菲尔兹奖。
9:1955年,日本数学家谷山丰首先猜测椭圆曲线于另一类数学家们了解更多的曲线——模曲线之间存在着某种联系;谷山的猜测后经韦依和志村五郎进一步精确化而形成了所谓“谷山——志村猜想”,这个猜想说明了:有理数域上的椭圆曲线都是模曲线。这个很抽象的猜想使一些学者搞不明白,但它又使“费马大定理”的证明向前迈进了一步。
10:1985年,德国数学家弗雷指出了“谷山——志村猜想”和“费马大定理”之间的关系;他提出了一个命题 :假定“费马大定理”不成立,即存在一组非零整数A,B,C,使得A的n次方+B的n次方=C的n次方(n>2),那么用这组数构造出的形如y的平方=x(x+A的n次方)乘以(x-B的n次方)的椭圆曲线,不可能是模曲线。尽管他努力了,但他的命题和“谷山——志村猜想”矛盾,如果能同时证明这两个命题,根据反证法就可以知道“费马大定理”不成立,这一假定是错误的,从而就证明了“费马大定理”。但当时他没有严格证明他的命题。
11:1986年,美国数学家里贝特证明了弗雷命题,于是希望便集中于“谷山——志村猜想”。
12:1993年6月,英国数学家维尔斯证明了:对有理数域上的一大类椭圆曲线,“谷山——志村猜想”成立。由于他在报告中表明了弗雷曲线恰好属于他所说的这一大类椭圆曲线,也就表明了他最终证明了“费马大定理”;但专家对他的证明审察发现有漏洞,于是,维尔斯又经过了一年多的拼搏,于1994年9月彻底圆满证明了“费马大定理”
编辑本段证明过程
1676年数学家根据费马的少量提示用无穷递降法证明n=4。1678年和1738年德国数学家莱布尼兹和瑞士数学家欧拉也各自证明n=4。1770年欧拉证明n=3。1823年和1825年法国数学家勒让德和德国数学家狄利克雷先后证明n =5。1832年狄利克雷试图证明n=7,却只证明了n=14。1839年法国数学家拉梅证明了n=7,随后得到法国数学家勒贝格的简化……19世纪贡献最大的是德国数学家库麦尔,他从1844年起花费20多年时间,创立了理想数理论,为代数数论奠下基础;库麦尔证明当n<100时除37、59、67三数外费马大定理均成立。
为推进费马大定理的证明,布鲁塞尔和巴黎科学院数次设奖。1908年德国数学家佛尔夫斯克尔临终在哥廷根皇家科学会悬赏10万马克,并充分考虑到证明的艰巨性,将期限定为100年。数学迷们对此趋之若鹜,纷纷把“证明”寄给数学家,期望凭短短几页初等变换夺取桂冠。德国数学家兰道印制了一批明信片由学生填写:“亲爱的先生或女士:您对费马大定理的证明已经收到,现予退回,第一个错误出现在第_页第_行。”
在解决问题的过程中,数学家们不但利用了广博精深的数学知识,还创造了许多新理论新方法,对数学发展的贡献难以估量。1900年,希尔伯特提出尚未解决的23个问题时虽未将费马大定理列入,却把它作为一个在解决中不断产生新理论新方法的典型例证。据说希尔伯特还宣称自己能够证明,但他认为问题一旦解决,有益的副产品将不再产生。“我应更加注意,不要杀掉这只经常为我们生出金蛋的母鸡。”
数学家就是这样缓慢而执着地向前迈进,直至1955年证明n<4002。大型计算机的出现推进了证明速度,1976年德国数学家瓦格斯塔夫证明n<125000,1985年美国数学家罗瑟证明n<41000000。但数学是严谨的科学,n值再大依然有限,从有限到无穷的距离漫长而遥远。
1983年,年仅29岁的德国数学家法尔廷斯证明了代数几何中的莫德尔猜想,为此在第20届国际数学家大会上荣获菲尔茨奖;此奖相当于数学界的诺贝尔奖,只授予40岁以下的青年数学家。莫德尔猜想有一个直接推论:对于形如x^n+y^n=z^n(n≥4)的方程至多只有有限多组整数解。这对费马大定理的证明是一个有益的突破。从“有限多组”到“一组没有”还有很大差距,但从无限到有限已前进了一大步。
1955年日本数学家谷山丰提出过一个属于代数几何范畴的谷山猜想,德国数学家弗雷在1985年指出:如果费马大定理不成立,谷山猜想也不成立。随后德国数学家佩尔提出佩尔猜想,补足了弗雷观点的缺陷。至此,如果谷山猜想和佩尔猜想都被证明,费马大定理不证自明。
事隔一载,美国加利福尼亚大学伯克利分校数学家里比特证明了佩尔猜想。
1993年6月,英国数学家、美国普林斯顿大学教授安德鲁·怀尔斯在剑桥大学牛顿数学研究所举行了一系列代数几何学术讲演。在6月23日最后一次讲演《椭圆曲线、模型式和伽罗瓦表示》中,怀尔斯部分证明了谷山猜想。所谓部分证明,是指怀尔斯证明了谷山猜想对于半稳定的椭圆曲线成立——谢天谢地,与费马大定理相关的那条椭圆曲线恰好是半稳定的!这时在座60多位知名数学家意识到,困扰数学界三个半世纪的费马大定理被证明了!这一消息在讲演后不胫而走,许多大学都举行了游行和狂欢,在芝加哥甚至出动了警察上街维持秩序。
编辑本段证明方法
五十年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八十年代德国数学家佛列将谷山丰的猜想与费马定理联系在一起,而安德鲁·怀尔斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。
这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过怀尔斯的证明马上被检验出有少许的瑕疵,於是怀尔斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,怀尔斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过怀尔斯领到时,只值五万美金左右,但安德鲁·怀尔斯已经名列青史,永垂不朽了。
用不定方程来表示,费马大定理即:当n > 2时,不定方程x^n + y^n = z^n 没有xyz≠0的整数解。为了证明这个结果,只需证明方程x^4 + y^4 = z^4 ,(x , y) = 1和方程x^p + y^p = z^p ,(x , y) = (x , z) = (y , z) = 1〔p是一个奇素数〕均无xyz≠0的整数解。
n = 4的情形已由莱布尼茨和欧拉解决。费马本人证明了p = 3的情,但证明不完全。勒让德〔1823〕和狄利克雷〔1825〕证明了p = 5的情形。1839年,拉梅证明了p = 7的情形。1847年,德国数学家库默尔对费马猜想作出了突破性的工作。他创立了理想数论,这使得他证明了当p < 100时,除了p = 37,59,67这三个数以外,费马猜想都成立。后来他又进行深入研究,证明了对于上述三个数费马猜想也成立。在近代数学家中,范迪维尔对费马猜想作出重要贡献。他从本世纪20年代开始研究费马猜想,首先发现并改正了库默尔证明中的缺陷。在以后的30余年内,他进行了大量的工作,得到了使费马猜想成立一些充分条件。他和另外两位数学家共同证明了当p < 4002时费马猜想成立。
现代数学家还利用大型电子计算器来探索费马猜想,使p 的数目有很大的推进。到1977年为止,瓦格斯塔夫证明了p < 125000时,费马猜想成立。《中国数学会通讯》1987年第2期据国外消息报导,费马猜想近年来取得了惊人的研究成果:格朗维尔和希思—布龙证明了「对几乎所有的指数,费马大定理成立」。即若命N(x)表示在不超过x的整数中使费马猜想不成立的指数个数,则证明中用到了法尔廷斯〔Faltings〕的结果。另外一个重要结果是:费马猜想若有反例,即存在x > 0,y > 0,z > 0,n > 2,使x^n + y^n = z^n ,则x > 101,800,000。
说明:
要证明费马最后定理是正确的
(即x^ n+ y^n = z^n 对n>2 均无正整数解)
只需证 x^4+ y^4 = z^4 和x^p+ y^p = z^p (P为奇质数),都没有整数解。
初中数学在学习中有哪些重要的定理呢以下是我为大家介绍的,供参考。
初中数学定理大全
1过两点有且只有一条直线
2两点之间线段最短
3同角或等角的补角相等
4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理 三角形两边的和大于第三边
中考数学知识点总结:一次函数正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当 一次函数 中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
说明:直线位置与常数的关系
一次函数的图像
所有一次函数的图像都是一条直线函数解析式
自变量取值范围图象增减性
正比例函数
全体实数
①当k>0时,y随x增大而增大;
②当k><0时,y随x增大而减小。
“科学大院”公众号
A:“我是数学家。”
B:“我是哲学家。”
C:“那你们两个可以说是相爱相杀啊!”
数学和哲学,几乎同时诞生于遥远的古希腊,共同构成了那个时代文明的骄傲,它们在历史上有着千丝万缕的联系,也一直寄托着彼时人们对生活和精神的向往。
1 古希腊时代:数学与哲学的第一次相遇
公元前三世纪,柏拉图在他的学园入口处写道:“不懂几何者,禁止入内。”
柏拉图学园
柏拉图学园作为古希腊的哲学先贤,柏拉图认为数学就是理性哲学的前提条件。数学和哲学,就这样第一次携手走进了柏拉图的理性乐园,也奠定了西方两千年理性文明的基础。柏拉图的影响波及后世无数杰出的数学家和哲学家,比如笛卡尔、斯宾诺莎、康德等等都是柏拉图信念坚定的支持者。
柏拉图之所以赋予数学如此重要的地位,将它视作理性主义的基石,其根源在于数学有着超越其他学科的先天优势。
当时的人们认为,在数学的世界里,任何一句断言都可以得到肯定或者否定的论证,且这种论证不会随着时间的推进而更改。每一个数学定理就是一座历史的丰碑,一旦树立,就千载不倒,成为后世数学家的标杆。
数学定理中展现的严谨结论更是穿越时空的通行证,以至于伽利略曾经盛赞“宇宙是用数学的语言书写而成“。这种绝对的真理观为数学确立了坚不可摧的理性基础,每一个数学证明从诞生起就经得起任何人的检验。
这和古代的神话与宗教截然不同。神灵的存在与否无法证明,它本身是一种超越理性的信仰。人们只能屈从于宣传信仰的权威。数学恰恰相反,基于它的叙述只依赖于理性论证,完全独立于客观世界和精神家园,其原则可以接受任何的质疑和辩驳。那么,哲学将前提建立在数学之上,也就有了形式上的保障。从此,数学和哲学就紧密地联系在了一起。
数学成了哲学的前提,但是它们又有本质的不同。哲学的基础是数学,却又高于数学。
柏拉图(公元前427年 - 公元前347年)
柏拉图将知识分为四个等级,人们在获取知识的过程中需要经历四个阶段。
第一个阶段是基于感觉和想象表达的结合,其对象是可感事物的影像,比如影子、水中的倒影等等。
第二个阶段是信念。信念的对象是可感事物的影像原物,如找出影子的事物本身。
第三个阶段是思想。思想所处理的对象处于感性世界和理念世界之间,思想处理的知识处于感性认识和理性认识之间,比如数学。
第四个阶段就是理性。理性认知的对象是理念,理念就进入了纯哲学的层次。只要还追求对事物的更完满的解释,我们就永不会满足。但是拥有完善的知识将要求我们把握所有事物相互之间的关系——也就是看到实在之整体的统一性。有了完善的理智就能彻底地摆脱了感性事物的束缚。在这个层次上,我们直接和理念打交道。
2.近代数学与哲学:共同成长的热恋期
在哲学家的思想深处里,他们的理念往往是通过数学的圆满来实现的,比如在哲学思辨中大名鼎鼎的反证法,就是一个源自数学创造的关键工具。
笛卡尔(1596年 - 1650年)
曾经提出“我思故我在”的法国大数学家笛卡尔,是现代哲学的奠基者。他同时也在现代数学史上有着自己独一无二的坐标,以发明“解析几何“而名垂青史。他基于悖谬推理的数学论证来逐步展开他的哲学蓝图。这种推理形式就是数学的本质。
斯宾诺莎(1632年 - 1677年)
17世纪的哲学家斯宾诺莎,认为哲学知识如果没有数学的辅助,人们将无法抵达理性的境界。他的名著《伦理学》采用了类似欧几里得的《几何原本》的结构,赋予其哲学严谨的公理体系和推理证明。从斯宾诺莎开始,哲学开始具有某种几何学的特征,其论证方式因为自然和严谨深受理性主义哲学家的喜爱。以《利维坦》奠定现代政治学基础的哲学家霍布斯也采用了相同的推理结构。他们的思想都受到牛顿通过数学建立自然哲学的启发,这再一次将数学和哲学紧密地联系在一起。
一个世纪后,德国大哲学家康德在《纯粹理性批判》里更是强调了数学的重要作用。一如当年牛顿对数学的高度评价“没有数学,就不会有任何自然科学”一样,康德指出批判哲学的存在完全依赖于数学的理性推导。
后世很多杰出的数学家,也同样是伟大的哲学家,比如19世纪的大数学家戴德金、康托,以及庞加莱,他们都是从对数学的思考中绽放出哲学理性主义的光辉。
3.蜜月期的结束:巨大的分歧
尽管数学对哲学产生巨大的推动,人们在数学的概念上却产生了分歧,这一分歧导致了后世对数学于哲学的重要意义有了不同的解读。
第一种观点继承了柏拉图的实在论,人们认为数学是独立于我们而存在的对象。这也是自古希腊时代就被人们认可的理念。
维特根斯坦(1889年 - 1951年)
另外一种观点则将数学归于形式论的范畴,这一派认为数学仅仅是一种纯粹的人为创造,尤其是形式语言的创造。典型的代表人物如维特根斯坦,他将数学视为众多语言游戏中的一种,并不具备真正的普遍性,人们不能把数学绝对化。
这场思辨源于19世纪非欧几何的诞生。统治几何学两千多年的欧几里得公理一度被颠覆,给彼时的人们带来巨大的思想震撼。一时间,“公理都会改变“的事实动摇了人们对数学的信仰。这引起了一些人对数学普遍性更为深入的思考。基于此,维特根斯坦认定哲学并不依从于数学,数学中也并没有揭示人类存在的真理。
在维特根斯坦之前,持同样观点的哲学家黑格尔甚至更加激烈,走向了一个极端。黑格尔以极其冷漠的态度批判了数学中尚待澄清的概念,比如对严格无限概念的理解,一度走到了科学的对立面。随后,西方哲学的主流开始抛弃了柏拉图的实在哲学,不再将数学推理纳入其思考的体系。从黑格尔到尼采,直至萨特的存在主义,哲学上的浪漫主义远离了分析证明的理性。
康德(1724年-1804年)
与此同时,很多哲学大家仍然支持数学对哲学不可替代的作用。康德尽管相信数学是某种先验的形式论,但他认为数学的普遍性毋庸置疑。他和笛卡尔、斯宾诺莎一样,坚持认为数学的出现为科学铺平了道路。
时至今日,数学和哲学渐行渐远,构成了人们对生活认知的两级。
1 高冷的数学
大众对数学的态度是爱恨交织。人们发现它无所不在,却又对它一无所知。
它是每个人成长过程中投入时间和精力最多的学科。数学成绩的好坏不仅影响着一个人的信心和选择,还关乎着前途和命运。数学成了个人鲤鱼跳龙门的工具。但大多数人会在完成大学的课程之后,最终和数学分道扬镳。
同时,很多真正以数学为职业的精英数学家,却刻意保持了和大众的距离。他们拥有极富创造力的数学知识,以自己独有的方式进行着极其艰涩的研究,却并不屑于向世人诠释其精妙的意义。数学家的世界,俨然和公众完全隔离,人们无法了解他们的工作方式,更遑论他们的研究成果。双方的对立导致了公众对数学工作者的误解以及数学工作者的集体排外。
随着研究的深入,当代数学已经建立起超过一百个分支的专业领域。不仅外人对数学家的研究成果无法理解,彼此不同领域的专家也逐渐有了深度的隔阂。极度的复杂性让数学成了一个遥不可及的领域。数学研究,也成了少部分精英的乐园,从而和大众渐行渐远。
进入21世纪,每年的年度科技进展成了科学界的一件盛事。物理、化学、生物、信息等等学科都是其中最耀眼的明星。历史最为悠久、理论源远流长的数学,却常常沦为冷板凳上的看客,孤独地目睹科技盛宴上众星捧月的热闹。
2.尴尬的哲学
对于哲学,问题却变得复杂起来。
那些艰深的哲学研究在今天也处于极为尴尬的位置。属于西方哲学史的黄金时代也已经落幕,原本哲学关注的核心问题渐渐融入到其他学科的范畴。比如研究“宇宙的本源”的重担转移到了物理学的前沿,研究“我们从哪里来”的问题被生物和遗传学家接手。甚至那些偏向文科的哲学内容,也逐渐被逻辑学、政治学和心理学瓜分。哲学的生命,注入到了新兴学科的血管里。
与此同时,哲学在人们的生活中更多地融入了功利主义的考量。这样的哲学逐渐和伦理学并轨,进入了人们的生活。没有人会自称是数学家,但是每个人却可以被视为哲学家。随着民主化和个性化的社会风潮,每个人都拥有了一套个体的生存哲学,并且对彼此不同的观点要么针锋相对,要么保留沉默。这一套观念和昔日哲学先驱们的思想大相径庭,而后者在当代已经被束之高阁,成为极少数人的思想阵地。
1.孤独的数学家
数学家在媒体上出现的形象,往往以天才和怪异著称。
俄罗斯的天才数学家佩雷尔曼就是最近的典型。他解决了世界七大数学难题之一的庞加莱猜想,却拒绝了随之而来的菲尔兹奖和100万美元的奖金。他性格孤傲,选择了退隐山林,过上了与世隔绝的生活。
另外一位法国大数学家,被誉为代数几何教皇的格罗腾迪克,也选择了在年富力强的时候归隐田园。
约翰·纳什(1928年 - 2015年)
2001年上映的**《美丽心灵》讲述了数学家纳什的故事,他罹患精神分裂,却做出了举世无双的贡献,他和妻子阿丽莎的一生跌宕起伏,几度分离别合,在晚年领奖回家的途中遭遇车祸,一起魂归天国。
陈景润(1933年 - 1996年)
1978年因为徐迟的报告文学《哥德巴赫猜想》而驰名大江南北的数学家陈景润,也给人留下了不食人间烟火的传奇。
历史上这样的故事不断在数学家这个群体重复。大抵数学的创造是孤独的,每一个伟大的灵感都需要数学家离群索居的独立思考,并且长期处于孤僻的状态。
对数学家而言,一个问题常常久思不得其解是家常便饭。没有人能许诺数学家:经历过风雨,就能见彩虹。寻找数学问题的答案好像探索未知的迷宫,只有他们自己在孤独地寻找那条通往中心的道路,却全然不知等待他们的,是馅饼还是陷阱。经历了绝望、希望,再绝望、再希望,每个人的神经都会处于紧张和松弛的反复交替中。探索的过程如果受到外界的干扰,则更容易迷途难返。
因此,数学家的路是注定是一条孤独的小径,数学家也在寻找真理的路途中形成了自己独特的性格。这种性格,在大众看来,就是无法理喻的古怪。
2.忧郁的哲学家
反观哲学家,他们则大多具有诗人的忧郁气质。
从古希腊的源头看,哲学的本质就是追求超脱和爱智求真。哲学家的问题往往具有全世界的普适性。他们追问人生的根本问题,通过自己对人生困境的观察来反思这个世界。哲学家在寻求解决途径的同时,付出过痛苦而又百折不挠的努力。他们带着泪水和欢笑去感受和思考人生,最终提炼出充满人生智慧的哲学思想。这样的哲学也闪耀着人性的光辉。这和诗人的气质不谋而合。
梁漱溟(1893年-1988年)
好的诗人,能写出独具眼光和深度的文字;好的哲学家,能留下遍洒激情和灵性的思想。在这个意义上来看,哲学家与诗人往往心灵相通,他们在寻求一个谜底的同时,承受着相同的煎熬。
那些流传了千百年的诗词,无数次走进过人们的内心。被人们世代传颂后,每个人或多或少都有诗人的冲动,这也构成了人们理解哲学的基础。哲学家用理性勾画的蓝图,其实深藏在每个人的基因里。人们即便无法诉说,却能感同身受。这也构成了人们能够独立表达个体哲学的基础。
只不过,那些被用于解构人性本源、世界本质的哲学词汇和推理,太过深奥,它们和艰深的数学定理一样,成了人们无法逾越的思想鸿沟。庆幸的是,哲学的诗人气质被人们继承了下来,从而形成了个体哲学的百花齐放。
人们害怕数学,因为它过于复杂,也不能指出明确的生存意义,更不能带来明显的幸福感。这就给哲学留出了空间。而柏拉图曾经认为任何献身于积极生活、参与到真理过程中的人,一定比那些寻欢作乐的人更加幸福。数学就提供了这样一种可能。
数学的单纯性和纯粹性,杜绝了语言中的欺骗和模棱两可,不受客观世界和人为的干扰,成为了清晰无误的自由表达。任何人都可以在其中体验到追求真理的幸福。昔日的人们痛恨数学带来的痛苦,却忽视了数学最重要的不是知识,而是思想。数学的理性推理和思考方式为人们提供了科学解决问题的思路。
哲学则应担负起精神启迪和鼓舞的重责。在商业至上的社会里,个人的幸福往往和物质的多寡紧密相连。失去了哲学引导的人生,就好像在黑夜里独自寻找人生的归宿。物质的丰盈只能成为个人当下安全的保障,却不能带人看清前进的道路。哲学就好像远方照射的一束光,指引着我们人生行动的方向。
数学和哲学,应该再度携起手来,为世人共同带来更多理性的光芒,更多灵魂的护航。让我们再回头看看柏拉图的学园入口,“不懂几何者,禁止入内”。其实,柏拉图想告诉人们的,不懂数学的人不能进入的,不是他的学园,而是哲学的殿堂。
参考文献:
[1]严春友 著《西方哲学新论》上卷 (中国社会科学出版社2001)
[2]洪汉鼎 陈治国·主编《知识论读本》 (中国人民大学出版社 2010)
[3]泰勒·主编 《从开端到柏拉图》 韩东晖 聂敏里 冯俊 程鑫·译 (中国人民大学出版社 2003) [4]撒母耳·伊诺克·斯通普夫 詹姆斯·菲泽著 《西方哲学史》 匡宏 邓晓芒等译 邓晓芒翻译策划 何兆武作序 (世界图书出版公司 修订第八版 2009)
欢迎分享,转载请注明来源:浪漫分享网
评论列表(0条)